
Onion Ring ORAM: Efficient Constant Bandwidth Oblivious
RAM from (Leveled) TFHE

Hao Chen

haoche@microsoft.com

Microsoft Research

Ilaria Chillotti

ilaria.chillotti@kuleuven.be

imec-COSIC, KU Leuven, Belgium

Ling Ren

renling@illinois.edu

University of Illinois

Urbana-Champaign

ABSTRACT
Oblivious RAM (ORAM) is a cryptographic primitive that allows a

client to hide access pattern to its data encrypted and stored at a

remote server. Traditionally, ORAM algorithms assume the server

acts purely as a storage device. Under this assumption, ORAM has

at least log(N) bandwidth blowup for N data entries. After three

decades of improvements, ORAM algorithms have reached the opti-

mal logarithmic bandwidth blowup. Nonetheless, in many practical

use cases, a constant bandwidth overhead is desirable. To this pur-

pose, Devadas et al. (TCC 2016) formalized the server computation

model for ORAM and proposed Onion ORAM which relies on ho-

momorphic computation to achieve constant worst-case bandwidth

blowup. This line of work is generally believed to be purely theoret-

ical, due to the large overheads of homomorphic computation. In

this paper, we present Onion Ring ORAM, the first efficient constant

bandwidth ORAM scheme in the single server model, based on the

Onion ORAM construction and the leveled version of the TFHE

scheme by Chillotti et al.. We propose a series of improvements,

most notably including a more efficient homomorphic permuta-

tion protocol. We implement Onion Ring ORAM and show that it

can outperform state-of-the-art logarithmic-bandwidth ORAM like

Path ORAMs and Ring ORAM when the network throughput is

limited. Under one setting, our construction reduces monetary cost

per access by 40% and end-to-end latency by 35% over Ring ORAM.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
oblivious RAM; homomorphic encryption; permutation network

ACM Reference Format:
Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion Ring ORAM: Efficient

Constant Bandwidth Oblivious RAM from (Leveled) TFHE. In 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’19),
November 11–15, 2019, London, United Kingdom. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3319535.3354226

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354226

1 INTRODUCTION
Oblivious RAM (ORAM), first introduced by Goldreich and Os-

trovsky [28, 29] allows a client to outsource its private data to an

untrusted server and perform read/write requests to its data without

leaking any information through the addresses of its requests.

In the past few years, ORAM has started to draw more attention

as recent works have demonstrated sensitive information leakage

through access patterns across various application domains, in-

cluding secure enclaves [63, 66], storage outsourcing [35, 36], and

searchable encryptions [12, 34, 67]. In light of this, researchers

from multiple communities have applied ORAM to protect against

these access pattern attacks. The two most prominent use cases

of ORAM are storage outsourcing [9, 13, 19, 59] and secure hard-

ware [23, 40, 43, 46, 50, 53, 55].

ORAM provides cryptographic-grade protection to access pat-

terns; however, its strong security also comes with a high price.

The primary source of overhead, which is also ORAM’s main

metric, is its bandwidth blowup. At a high level, an ORAM al-

gorithm turns each logical memory access into many random-

looking accesses. Bandwidth blowup, sometimes referred to as

bandwidth for short, is the amount of communication needed be-

tween the client and the server to serve one logical access. Nu-

merous works steadily improved ORAM bandwidth blowup [6, 28–

30, 37, 48, 52, 56, 60, 61, 64, 65]. Despite these efforts and progress,

the most efficient ORAMs [6, 52, 57, 60, 64] to date still incur

Θ(logN) bandwidth blowup where N is the total number of logical

memory blocks.

Moreover, it is also well known that any ORAM in the classic

model (discussed further below) must suffer from Ω(logN) band-
width blowup [29, 39], so ORAMs have reached asymptotic optimal-

ity. Combined with the fact that there exist ORAM algorithms with

very small hidden constants [52, 60], it seems necessary to explore

new models if we are to find further algorithmic improvements.

The classic ORAM model assumes the server is a plain storage

device, that is, it only supports read operations and write opera-

tions. A natural extension to the classic model is to assume that

the server can perform computation. This extended model is called

the “server-computation model”. It is important and promising for

two important reasons. First, the server computation model, in fact,

better matches reality for the cloud storage scenario, in which the

server (e.g., Amazon AWS or Microsoft Azure) has ample computa-

tional power.
1
Second, the server computation model allows for

ORAM schemes with O(1) bandwidth blowup [22], and thus holds

potential for significant improvements.

1
For secure hardware, server computation would mean in-memory or in-disk compu-

tation, which is not yet widely available and is under active research [7].

https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1145/3319535.3354226

The state-of-the-art single-server constant-bandwidth ORAM

is Onion ORAM by Devadas et al. [22]. Its two variants rely on

Damgård-Jurik [20] additively homomorphic encryption (AHE)

and BGV [10] somewhat (or leveled) homomorphic encryption

(SWHE)
2
, respectively. But Onion ORAM was proposed, and has

been regarded, as a purely theoretical advance primarily because

Damgård-Jurik AHE and BGV-style SWHE both demand heavy

computation. For example, it was estimated in [32] that the end-

to-end delay AHE variant of Onion ORAM would take more than

10,000 seconds for retrieving a 128KB block from a 40GB database,

compared to less than 30 seconds for Path ORAM and Ring ORAM.

1.1 Our Contributions
We present Onion Ring ORAM, a constant-bandwidth ORAM based

on the leveled mode of the TFHE homomorphic encryption scheme.

We estimate that our construction improves the performance of

Onion ORAM by at least three orders of magnitude, through a

series of algorithmic innovations. We show that our construction

can outperform state-of-the-art logarithmic-bandwidth ORAMs

(e.g., Path ORAM and Ring ORAM) in the oblivious cloud storage

setting when network throughput is limited.

• We designed an efficient homomorphic permutation algorithm,

which permutes an array of ciphertexts according to an encrypted

permutation, and applied it to improve the eviction phase of

Onion ORAM. Our construction homomorphically evaluates a

Waksman permutation network, taking advantage of TFHE’s

multiplexer operations (in leveled mode).

• We adapted the homomorphic expansion algorithm in [3], com-

bining it with TFHE external product, to reduce the communi-

cation cost of sending the encrypted “swap bits” in a Waksman

network. As a result, we are able to pack multiple swap bits in a

single ciphertext and use the homomorphic expansion algorithm

to unpack them for use in homomorphic permutation.

• We adapted the permuted buckets technique and the XOR trick

from [52] to our construction, making necessary modifications

to Onion ORAM to gain efficiency. For example, we replaced the

XOR trick with homomorphic addition. We also avoided costly

PIR operations in Onion ORAM.

We implemented Onion Ring ORAM based on the experimental

version of the TFHE library. With the concrete parameterization in

our implementation, Onion Ring ORAM has a bandwidth blowup

of 12.8× and spends (amortized) 7.6 seconds on computation to

access a 768KB block for N = 2
22

total logical blocks. Under similar

parameters, Path ORAM has a bandwidth blowup of 160× and

Ring ORAM has a bandwidth blowup of 34×. When the client-

server network throughput is low, Onion Ring ORAM offers better

performance. Concretely, for an ORAM with 2
22

blocks of size

1.5MB, assuming a 10 Mbps network, Onion ORAM can finish an

access in 26.5 seconds, compared to 40.7 seconds for Ring ORAM

and 192 seconds for Path ORAM.

While we motivate homomorphic permutation and expansion

in the context of ORAM, they are basic building blocks that can be

of independent interest. For example, Gentry et al. [26] introduced

a blinded permutation protocol based on AHE. Its communication

2
SWHE is similar to FHE but supports only circuits of a given depth. It avoids the

costly bootstrapping step in FHE.

cost is at least linear in the size of the entire array being permuted

and it requires sending three messages. In contrast, the communi-

cation cost of our homomorphic permutation depends only on the

number of elements in the array, and requires only one message

from client to server.

1.2 Related works
Many ORAMs leveraged server computation without realizing the

power of this new model [21, 25, 44, 52]. Thus, these works still

aim for Θ(logN) (or higher) bandwidth.
Research on constant-bandwidth ORAM to date has been en-

tirely theoretical. Apon et al. [5] is the first to observe that O(1)
bandwidth can be achieved in the server computation model. Their

work focused on feasibility rather than efficiency: they observe

that any ORAM algorithm can be madeO(1) bandwidth if executed

under fully homomorphic encryption (FHE).

Devadas et al. [22] presented Onion ORAM which achievesO(1)
bandwidth without resorting to full-blown FHE. Onion ORAM

focused on asymptotic complexity. As mentioned, both variants of

Onion ORAM require heavy computation. Nonetheless, it remained

to this day the most efficient constant-bandwidth ORAM.
3

Another line of ORAM work leverages multiple non-colluding

servers to reduce bandwidth without resorting to costly homomor-

phic operations [1, 38, 41, 47]. The state of art in this direction has

sub-logarithmic, e.g.,O(logN /log logN) bandwidth blowup [1, 38].

Two other works, Stefanov-Shi [58] and Hoang et al. [32] achieve

O(1) client-server bandwidth blowup and O(logN) inter-server
bandwidth blowup. They achieve good concrete efficiency based

on the observation that inter-server network throughput can be

much higher than that between client and server. Our construction

is in the single-server with computation model.

2 BACKGROUND
2.1 ORAM with Server Computation
An ORAM algorithm involves two parties, a trusted client and

an untrusted server. The ORAM algorithm provides the client an

Access function that takes as input a tuple (a, op, data) where a
represents the logical address of the data block the client requests,

op ∈ {Read,Write}, and data is the data being written (data = ⊥
if op = Read).

Let y = ((a1, op1, data1), . . . , (am , opm , datam)) be the client’s
sequence of logical accesses. Let ORAM(y) represent the client’s
sequence of interactions with the server to fulfill y. Here, interac-
tions include not only physical read/write requests but also any

other sub-protocols between the client and the server. In particular,

in our construction, the client-server interaction includes multi-

ple invocations of homomorphic permutation defined in the next

subsection.

We say an ORAM algorithm is correct if, except for negligi-
ble (in some security parameter) probability, the output of each

Access(ai , opi , datai) operation to the client is consistent with y,
that is, the last data that was written to address ai prior to the i-th
access. We say an ORAM algorithm is secure if for any two logical

client request sequences y and z with the same length |y| = |z|,
3
C-ORAM [45] was an attempt to improve Onion ORAM. But it was later found to be

broken [1] (together with the follow-up CHf-ORAM).

the resulting client-server interactions ORAM(y) and ORAM(z) are
computationally indistinguishable.

Threat model. In this work we assume the server is semi-honest.

That is, it will faithfully follow the prescribed protocol, but it may

run additional experiments in an attempt to infer the client’s secret

(access pattern in our case). We discuss the options and costs to

defend against a malicious server in Section 6.

2.2 Onion ORAM
Onion ORAM is an ORAM algorithm in the server computation

model with O(1) bandwidth blowup [22]. We briefly explain Onion

ORAM in this subsection. We will, however, leave out certain opti-

mizations and techniques from Onion ORAM that are superseded

by our techniques.

Onion ORAM follows the binary tree ORAM paradigm of Shi

et al. [56]. The server storage is structured as a binary tree with

L levels. Each node in the tree is a bucket that contains Z slots.

Each slot can hold a logical block or a dummy block. Each block

has a size of B bits. Later, we will see that Z decides the correctness

failure probability. Once we select Z , L should be set such that the

total number of blocks Z (2L − 1) is between 2N to 4N .

Onion ORAM maintains the key invariant of binary tree

ORAMs: each logical block is mapped to a random path in the

tree, and must reside somewhere on that path. The client locally

tracks all the block-to-path mappings as well as slot-to-block map-

pings. That is, for each logical address a ∈ [N], the client tracks
pos[a], the path block a is mapped to; for each slot (i, j) where
i ∈ [2L − 1], j ∈ [Z], the client also tracks id[i][j], the logical ad-
dress of the block that resides in the j-th slot of the i-th bucket in

the tree.

Having the client store the above two metadata arrays locally is a

common design choice in oblivious cloud storage [19, 21, 59]. Both

arrays have Θ(N) entries of Θ(logN) bits each. It is also typically

assumed that the size of each logical block D is at least several

Kilo Bytes. Thus, the client still enjoys significant storage savings

despite having to store the two metadata arrays. In contrast, a

theoretical ORAM algorithm (Onion ORAM included) is typically

required to use only O(B) bits of client storage, where B is the size

of each block; hence, the id array is stored encrypted on the server

and the pos array is stored in recursive ORAMs [56], adding extra

overheads.

Now, accessing a block involves the following steps. Suppose

the client requests the block with logical address a.

(1) The client locally looks up x = pos[a], the path block a is

mapped to.

(2) The client locally looks up id[i][j] for each slot (i, j) on path x .
Due to the invariant, one of these slots stores block a.

(3) The client uses private information retrieval (PIR) based on

either AHE or SWHE to download block a from the path. The

client can now read or update block a.
(4) The client remaps block a to a fresh random path x ′ and updates

pos[a].
(5) The client puts block a to the next available slot in the root

bucket. (Note that the root bucket is on every path, so the

invariant is honored.)

(6) After A < Z accesses, the client and server jointly perform an

eviction procedure, which will empty the root so that the client

can make another A accesses.

Barring the eviction step, correctness and security of Onion

ORAM are relatively straightforward. Correctness is guaranteed

by the key invariant. Security holds because the client-server inter-

action on each access is a PIR operation on a path. The path was

generated at random on the last access to block a and it has never

been revealed to the server until this access, and the PIR operation

reveals no additional information by definition.

We omit Onion ORAM’s eviction procedure because it needs to

be modified to account for the permuted bucket technique, which

we will describe in Section 3.2.

2.3 Leveled TFHE
TFHE is a fully homomorphic encryption scheme presented in 2016

by Chillotti et al. [14] and improved in 2017 by the same authors [15].

TFHE uses a ring variant of the GSW construction [27] together

with two other encryption schemes. The security of TFHE is based

on the hardness of the Learning With Errors (LWE) problem and

its ring variant (RLWE) [42, 51, 62]. The scheme is available in

open source on GitHub [16, 17]. TFHE can be used in both fully

homomorphic mode with bootstrapping after every single gate, or

in leveled mode where the number of operations allowed is limited

by the parameter choice. For efficiency reasons, our construction

avoids the use of bootstrapping. Instead, we make non-black-box

use of various building blocks in the leveled mode of TFHE to

achieve our efficiency goals.

The TFHE scheme works over the real torus T = R mod 1 and

over the torus polynomials Tn (X) = R[X]/(X
n + 1) mod 1. Here

n is the ring dimension parameter of the scheme, and is a power of

two. We let R denote the ring Z[X]/(Xn + 1).

Ring LWE. A RLWE secret s is a polynomial sampled from a key

distribution χ in R (generally uniformly distributed binary poly-

nomials). RLWE ciphertexts encrypt torus polynomial messages

µ ∈ M, whereM is a discrete subset of Tn (X). In our case, we

suppose M is the set of torus polynomials with coefficients in

{0, 1t , . . . ,
t−1
t }, for a fixed positive integer t . Then, a RLWE ci-

phertext is a pair of torus polynomials (a,b) ∈ Tn (X)
2
where

b − a · s = e + µ, where the “noise term” e is sampled from a

Gaussian distribution centered in 0 with small variance. To decrypt,

we use the secret key s to compute φ = b −a ·s and we approximate

it to the nearest message inM. In our setting, decryption is correct

given that the norm of the error | |e | |∞ is smaller than
1

2t .

A RLWE public key is equal to a fresh RLWE encryption of 0:

pk = (apk ,bpk = apk · s + epk) ∈ Tn (X)
2
. In order to encrypt a

message µ ∈ Tn (X), we sample a polynomial u from the secret key

distribution χ and two polynomials e0, e1, whose coefficients are

sampled from a Gaussian distribution centered at 0 with a small

variance. A public key RLWE encryption of µ is then the pair of

torus polynomials (apk ·u+e0,bpk ·u+e1+µ) ∈ Tn (X)
2
. To decrypt

a ciphertext (c0, c1), compute µ ′ = (c0, c1) · (−s, 1)
T = c1 − s · c0 =

µ + epk ·u + e1 − e0 · s , which gives µ after rounding if epk , e0, e1,u
are all small. RLWE ciphertexts support additive homomorphism.

Ring GSW. Given a base B and a length parameter ℓ, we define

the RGSW gadget vector as g(ℓ×1) = (1/B, . . . , 1/Bℓ)T . The RGSW
gadget matrix is defined as follows

G = I2 ⊗ g =
[
g 0

0 g

]
∈ Tn (X)

2ℓ×2.

Then, a RGSW ciphertext encrypting an integer polynomial µ ∈ R
with respect to a secret RLWE key s is defined as C = Z + µ · G
where Z ∈ Tn (X)2ℓ×2. Each row of Z is a RLWE encryption of 0

and Z satisfies the property that | |Z · (−s, 1)T | |∞ is small. Note that

the bottom half of the matrix C consists of ℓ RLWE ciphertexts that

encrypt the base-B decomposition of the plaintext µ. To decrypt,

simply decrypt all these ℓ RLWE ciphertexts to reconstruct µ. RGSW
ciphertexts support additive homomorphism.

External RLWE product. The top half of C will become use-

ful here in external products. We first need to introduce a vec-

tor’s gadget decomposition. Intuitively, the gadget decomposition

of a vector times the matrix G yields an approximation of the

original vector. Hence, a vector u’s gadget decomposition is de-

noted as G−1(u) ∈ R2ℓ . In more detail, G−1(u) has coefficients in

Z∩(−B/2,B/2], such that the decomposition error | |G−1(u)·G−u| |∞
is upper bounded by 1/(2Bℓ+1).

The external RLWE product takes as input a RLWE ciphertext

d, encrypting µd ∈ Tn (X), and a RGSW ciphertext C, encrypting
µC ∈ R, with respect to the same secret s . The output is a RLWE

ciphertext encrypting the product µd · µC ∈ Tn (X). The external
product is denoted by � and defined as C � d = G−1(d) · C. One
can see that the result is approximately µcd plus some noise term.

For more details on the external product, we refer to [15, 18].

CMux. Building on the external product, Chillotti et al. [14, 15, 18]

defined a ternary operation called CMux, the homomorphic mul-

tiplexer. CMux takes as input two RLWE ciphertexts d0 and d1,
encrypting respectively µ0 and µ1 in Tn (X), and a RGSW cipher-

text C, encrypting a bit b ∈ {0, 1}, all with respect to the same

secret key, and it outputs a RLWE encryption of µb . In other words,

it implements the multiplexer gate. The homomorphic operation

CMux is defined as c′ = CMux(C, d1, d0) = C� (d1 −d0)+d0.We let

Var(c) denote the variance of the noise term in cipehrtext c . More

precisely, we can view each ciphertext as a random variable, then

we can define the “message”m inside a ciphertext c = (a,b) as the
expectation of φs (c) := b − as , and Var(c) (which is denoted Err (c)
in [15]) is defined as the maximum variance among the coefficients

of the polynomial φs (c) −m. The variance of the noise in a RGSW

ciphertext is defined similarly.

From the noise analysis done in [15], the noise after CMux satis-
fies:

Var(c′) ≤ max(Var(d0),Var(d1)) +VC (1)

where VC only depends on the variance of the noise in the RGSW

ciphertext and the TFHE parameters. We stress that the impor-

tant property of CMux is that the noise growth is additive. If we
were to perform this operation solely over RLWE ciphertexts, us-

ing a somewhat homomorphic encryption scheme such as BGV,

then the noise growth will be multiplicative, i.e., Var(c′) ≥ C ·
max(Var(d0),Var(d1)) for some constant C > 1 depending on

Var(C). Hence if we perform L CMux operations sequentially, the fi-

nal noise will be a factor Ω(2L) larger than the input noise, whereas

the TFHE construction of CMux has final noise only a linear O(L)
factor larger than input noise.

2.4 Homomorphic Permutation
A homomorphic permutation protocol involves two parties, a

trusted client and an untrusted server. We assume that the client

has generated a pair of keys (sk,pk) for a homomorphic encryp-

tion scheme. It consists of two functions run by the two parties,

respectively.

• π̂ ← genPerm(pk,π) is run by the client. It takes as input a

permutation of sizem and outputs an encryption of some

encoding of π̂ .

• {c′i }
m
i=1 = evalPerm

(
pk, π̂ , {ci }mi=1

)
is executed by the

server. It takes as input the above π̂ andm ciphertexts and

permutes them ciphertexts homomorphically.

We say the above protocol is correct if except for negligible

probability, Dec(sk, c′i) = Dec(sk, cπ (i)) where Dec is the decryp-

tion function of the underlying homomorphic encryption scheme.

The homomorphic permutation is secure if, for any π1 and π2, the
generated encrypted permutations π̂1 and π̂2 are computationally

indistinguishable.

3 ONION RING ORAM
In this section, we present the Onion Ring ORAM algorithm assum-

ing a black-box homomorphic permutation algorithm. We present

our modifications to Onion ORAM and fill in some details omitted

by the original construction. A major modification is to incorporate

the permuted bucket technique introduced by Ren et al. [52]. The

Onion ORAM briefly mentioned the permuted bucket technique but

did not provide details on how to integrate it with their algorithms.

3.1 Initialization
First, the client generates keys for the three encryption schemes

utilized in Onion Ring ORAM: AES, RLWE and RGSW (RGSW and

RLWE use the same keys). The client then sends the RLWE public

key to the server. The server initializes all slots of the ORAM tree

to dummy blocks, i.e., RLWE encryptions of zero, using the public

key. Next, the client initializes the block-to-path mappings pos and
the slot-to-block mappings id. Each entry in pos is initialized to

a random integer between 0 and 2
L − 1, representing a random

path in the tree. Each entry in id is initialized to dummy, indicating
that every slot in the ORAM tree contains a dummy block in the

beginning.

3.2 Access
Algorithm 1 present the access algorithm of Onion Ring ORAM.

The biggest advantage of Onion Ring ORAM is that it avoids PIR

operations by combining permuted buckets with RLWE.

The permuted bucket technique adds S additional slots reserved

for dummy blocks to each bucket. A real block b is stored as

RLWE(AES(b)), whereas a dummy block has the form RLWE(0).
When a bucket is involved in eviction (Section 3.3), its Z + S slots

are randomly permuted.

We will set S = Z so that each bucket has 2Z slots and can be

at most half full. Setting S = Z gives the best option for Onion

Algorithm 1: Onion Ring ORAM Access Algorithm.

Input: (a, op, data′) where a is the logical address of the

requested block, op is either Read orWrite, and data′

is the data written to address a if op =Write
Data Structure :
- G, number of evictions that happened so far

- д, number of accesses since the last eviction

- pos, block-to-path mappings stored locally at client

- id, slot-to-block mappings stored locally at client

- R, root bucket stored locally at client.

Notation :
- N , number of logical blocks

- L, number of levels in ORAM tree

- Z , maximum number of real blocks per bucket

(also the number of reserved dummy blocks per bucket)

- P(x , l) denotes the l-th bucket on path x

- shaded part is executed by server

1 Client locally looks up x = pos[a]
2 Initialize a vector S of length L

3 for l = 0 : L − 1 do
4 i = P(x , l) ▷ the l-th bucket on path x

5 if ∃j s.t. id[i][j] == a then
6 S[l] = (i, j) ▷ requested block resides in this bucket

7 end
8 else
9 S[l] = (i, j ′) where id[i][j] == dummy

10 end
11 id[i][j] = ⊥ ▷ mark slot (i, j) as touched

12 end
13 Client sends S to server

14 Y = RLWE(0)
15 for l = 1 : L − 1 do
16 (i, j) = S[l]

17 Server fetches data y from slot (i, j)

18 Y = Y ⊕ y ▷ ⊕ is homomorphic add

19 end
20 Server sends Y to client

21 (⊥, j) = S[0]

22 Y = Y ⊕ R[j] ▷ add block from local root

23 Client decrypts Y to obtain data of block a
24 data = data′ if op is write

25 R[д] = data ▷ add to locally stored root

26 id[0][д] = a

27 pos[a] = rand() mod 2
L

28 д = д + 1

29 if д == A then
30 Evict()

31 д = 0

32 end

Algorithm 2: Onion Ring ORAM Eviction Algorithm Evict().

Data Structure and Notation as defined in Algorithm 1

1 Eviction path x = ReverseLexicalOrder(G)
2 Client AES-encrypts R to get {r j }

A
j=1 = {AES(R[j])}

A
j=1

3 Client generates a random permutation π , computes

π̂ = genPerm(pk,π), and sends π̂ to server

4 Server RLWE-encrypts {r j } to get {cj }Aj=1 =
{
RLWE(r j)

}A
j=1

5 Server supplies (2Z −A) RLWE encryptions of zero RLWE(0)
as {cj }2Zj=A+1

6 Server computes {c′j }
2Z
j=1 = evalPerm(pk, π̂ , {cj }2Zj=1) and puts

{c′j }
2Z
j=1 to the root

7 for l = 0 : L − 2 do
8 src = P(x , l) ▷ the l-th source bucket

9 dst = P(x , l + 1) ▷ destination bucket

10 sib = sibling of dst ▷ sibling bucket

11 Client generates a random permutation π , computes

π̂ = genPerm(pk,π), and sends π̂ to server

12 Client specifies Z slots {sj }
Z
j=1 in src which include all real

blocks in src mapped to sib (pad to Z with dummy)

13 Server fetches {cj }Zj=1 = {src[sj]}
Z
j=1 Server supplies Z

RLWE(0) as {cj }2Zj=Z+1
14 Server computes {c′j }

2Z
j=1 = evalPerm(pk, π̂ , {cj }2Zj=1) and

puts {c′j }
2Z
j=1 to sib

15 Client generates a random permutation π , computes

π̂ = genPerm(pk,π), and sends π̂ to server

16 Client specifies Z slots {sj }
Z
j=1 in dst which include all

remaining untouched real blocks (pad to Z with dummy)

17 Server fetches {cj }Zj=1 = {dst[sj]}
Z
j=1

18 Server fetches the other Z blocks in src as {cj }2Zj=Z+1
19 Server computes {c′j }

2Z
j=1 = evalPerm(pk, π̂ , {cj }2Zj=1) and

puts {c′j }
2Z
j=1 to dst

20 Server fills src with 2Z RLWE(0) ▷ src is now empty

21 Client marks all slots in src and sib as untouched and

updates id to track the blocks currently residing in them

22 end
23 Client downloads Z slots {cj }Zj=1 from leaf = P(x ,L − 1)

which include all real blocks (pad to Z with dummy)

24 Client decrypts {cj }Zj=1 (both RLWE and AES) to get {bj }
Z
j=1

25 Client re-encrypts using AES with fresh randomness to get

{b ′j }
Z
j=1 and sends {b ′j }

Z
j=1 to server

26 Client generates a random permutation π , computes

π̂ = genPerm(pk,π), and sends π̂ to server

27 Server RLWE-encrypts {b ′j } to get {cj }Zj=1 = {RLWE(b ′j)}
Z
j=1

28 Server supplies Z RLWE encryptions of zero as {cj }2Zj=Z+1
29 Server computes {c′j }

2Z
j=1 = evalPerm(pk, π̂ , {cj }2Zj=1) and puts

{c′j }
2Z
j=1 to leaf

30 Client marks all slots in leaf as untouched and updates id to

track the blocks currently residing in it

Ring ORAM since it matches two types of failure probabilities

(cf. Section 3.4). We remark that Ring ORAM [52], on the other

hand, can use a small number slots for both real and dummy blocks

and perform extra on-demand reshuffles (called early reshuffles) to

blocks that run out of dummy blocks before their next scheduled

eviction.

In the access algorithm, the client can now specify one block

from each bucket on the path: the requested block from the bucket

containing it and a random untouched dummy block from every

other bucket. The server homomorphically “add up” these blocks

and return it to the client, which yields RLWE(AES(b) + 0 + ... + 0)
where b is the requested block. After this step, the client locally

marks all slots involved as “touched” (in the id metadata array).

These slots will not be touched again until they are re-permuted

during evictions. (Recall that the requested block will be relocated

to other buckets after this access.)

The permuted bucket technique requires only homomorphic add

operations, which are cheaper than PIR which requires homomor-

phic multiplications. Therefore, it reduces online latency, i.e., the
latency for the client to receive the requested block.

However, with permuted bucket it is trickier to put the requested

block back to the root (Step 5 in Section 2.2). Without permuted

bucket, the client simply uploads the requested block to the next

available slot in the root bucket. Now, it has to keep the root bucket

randomly permuted. Onion ORAM suggests using a “PIR write”

operation to insert the requested block to a random slot in the root

bucket, and they do this immediately after each access to keep the

client storage a constant number of blocks. Since we do not target

constant client storage, we simply let the client buffer the requested

blocks locally until the next eviction. The buffer consumes A < Z
blocks of client storage where A is the eviction period (i.e., we

perform one eviction per A accesses).

3.3 Eviction
Algorithm 2 present the eviction algorithm of Onion Ring ORAM.

The purpose of the eviction procedure is to move blocks towards

the leafs of the tree to free up space in and near the root bucket.

Like in Onion ORAM, eviction happens every A accesses.

As the first step of Onion Ring ORAM eviction, the client AES-

encrypts the blocks in the locally stored root bucket and uploads

them to the server. The server encrypts them using the RLWE

public key and supplies (2Z − A) RLWE-encryptions of zero as

dummy blocks. The client and server then randomly permute the

root bucket using the homomorphic permutation protocol in Sec-

tion 4. Compare to the PIR write approach, our design saves both

bandwidth and computation at the expense of a reasonable amount

(a few hundred blocks) of extra client storage.

Each eviction operation goes down a path. The eviction paths are

selected according to a reverse lexical order [25], which interprets

increasing integers in their binary representation flipped. As an ex-

ample, for a tree with eight paths numbered 0 to 7 from left to right,

the reverse lexical order is [000, 001, 010, 011, 100, 101, 110, 111] →

[000, 100, 010, 110, 001, 101, 011, 111] = [0, 4, 2, 6, 1, 5, 3, 7].

Intuitively, performing evictions according to reverse lexical order

is efficient because it minimizes the amount of redundant work by

consecutive evictions, since it minimizes the number of overlapping

buckets between consecutive paths.

Once an eviction path is selected, the Onion ORAM eviction

algorithm takes each non-leaf bucket on the path and moves all real

blocks in it to its two children. This step is called a triplet eviction
in Onion ORAM. Each eviction consists of L − 1 triplet evictions
along the selected path.

Next we explain what happens during a triplet eviction. To ease

notation, we call the child on the eviction path the destination bucket
and the other child the sibling bucket. The parent bucket is also

called the source bucket. The client and server engage in the ho-

momorphic permutation protocol to move blocks from the source

bucket to the two child buckets. The client splits the source bucket

into two halves by specifying Z slots that include all real blocks

mapped to the sibling bucket (and the right amount of dummy

blocks to to make the total Z). The server takes these Z blocks,

supplies Z encrypted dummy blocks, puts them into the sibling

bucket (which is empty before this step [22]), and homomorphically

permutes them according to an encrypted random permutation

chosen by the client. The other Z slots in the source bucket then

include all real blocks mapped to the destination bucket. The client

further specifies Z blocks from the destination bucket, which in-

clude the remaining untouched real blocks (and the right number

of untouched dummy blocks to make the total Z). The server takes
these 2Z blocks, puts them into the destination bucket, and ho-

momorphically permutes them according to an encrypted random

permutation chosen by the client.

Lastly, the destination bucket in the last triplet, which is a leaf

bucket, needs to be decrypted and re-encrypted to keep the noise

level low in the ciphertexts. Concretely, the client download Z
blocks (which includes all real blocks) from random slots, decrypts

these Z blocks, re-encrypts them under AES, and sends them back

to the server. The server further encrypts the AES ciphertext under

RLWE, supplies Z encrypted dummy blocks of zero, and carries

out a homomorphic permutation according to an encrypted ran-

dom permutation chosen by the client. Note that the eviction algo-

rithmmakes extensive use of a homomorphic permutation protocol,

which will be explained in detail in Section 4.

3.4 Correctness and Security
The access algorithm returns the data lastly written to the requested

address unless some bucket overflows during eviction. A sibling or

destination bucket overflows if more than Z blocks from the source

bucket need to move into it. We will bound this probability at the

end of this subsection.

To prove security, we argue that every piece of value the client

reveals to the server contains no secret information and can hence

be simulated.

In the access algorithm, the client first reveals a path x = pos[a].
x is random following the standard tree-based ORAM security:

x was selected the previous time block a was accessed and has

not been revealed since then. Then, for each bucket on the path,

the client specifies a slot, which contains either the untouched

requested block a or an untouched dummy block. Any untouched

block resides in a random slot of that bucket and once the slot is

touched, it will not be touched again until the it is re-permuted in an

eviction. Hence, the access algorithm is secure unless some bucket

runs out of untouched dummy blocks before its next schedule

eviction. At the end of this subsection, we will show that, except

for negligible probability, a bucket is untouched less than Z times

before it is involved in eviction, ensuring that it will not run out of

untouched dummy blocks.

The eviction algorithm consists of L − 1 triplet evictions. In each

triplet eviction, the client invokes the homomorphic permutation

subroutine twice. The permutations and blocks are both encrypted

under RLWE. The security of homomorphic permutation thus re-

duces to the IND-CPA security of the underlying RLWE encryption

scheme, which can be reduced to the hardness of the decision RLWE

problem. We remark that Peikert et al. [49] showed a reduction

from worst-case ideal lattice problems to decision RLWE problems.

In addition, the client specifies Z slots in the source bucket (line 12)

and Z slots in the destination bucket (line 16). The locations of

these slots look random as we explain below. The Z slots in the

source bucket will look random because the source bucket has just

been randomly permuted — the root bucket is immediately ran-

domly permuted after being uploaded and each subsequent source

bucket was the destination bucket of the previous triplet eviction.

This argument also applies to the leaf bucket (line 23) as it was

randomly permuted as a destination bucket just before that. The Z
slots in the destination bucket will look random because they are

untouched since the bucket was lastly permuted during eviction —

again, unless the bucket is touched more than Z times since its last

eviction, which happens with negligible probability.

It remains to choose suitable parameters Z and A to ensure that,

except for negligible probability, the child buckets do not overflow

during evictions and that buckets do not run out of dummy blocks.

For dummy slots, a bucket at level l > 0 is permuted every (2l−1A)
accesses (alternating between sibling and destination) and each

access independently has a 2
−l

probability of touching the bucket.

Thus, the number of dummy slots touched before a bucket is re-

permuted is captured by a binomial distribution. The probability of

running out of dummy slots is hence the upper tail bound of the

this distribution, Pr[X > Z] where X follows the above binomial

distribution with mean A/2. The events for buckets to overflow

conveniently follow the same binomial distribution, according to a

more involved argument in Devadas et al. [22] (which is the reason

we set the number of reserved dummy slots S toZ) A standard Cher-

noff bound shows that with Z = A, this probability is exp(−Ω(Z)),
which suffices for a theoretical security proof. But the more precise

binomial distribution will help us choose tighter parameters. In our

implementation, we will set Z = 254 and A = 249 for a security

level of 2
−80

failure probability.

3.5 Bandwidth Analysis
We use pt to denote RLWE plaintext size and ct to denote RLWE

ciphertext size. We let F = ct/pt denote the ciphertext expansion
factor of RLWE.

On each access, the client downloads one RLWE ciphertext. Thus,

Onion Ring ORAM has online bandwidth blowup exactly F . On
each eviction, the client (i) uploads A AES ciphertexts to the root

bucket, and (ii) downloads Z RLWE ciphertexts and uploads Z AES

ciphertexts to refresh the leaf.

The client also sends encrypted permutations during eviction.

These bandwidth overheads can be absorbed by having multiple

chunks per block. Each chunk is a RLWE ciphertext. The encrypted

permutations are reused for every chunk in a block, so they account

for very little bandwidth when the blocks have many chunks (cf.

confirmed by experiments in Section 5.3).

Ignoring the bandwidth of encrypted permutation, each eviction

consumes bandwidth A · pt +Z (pt + ct). The eviction bandwidth is

amortized acrossA accesses. Hence, our construction has amortized

bandwidth blowup

F +
A · pt + Z · (pt + ct)

A · pt
= (F + 1)(1 + Z/A).

SinceA < Z and F ≥ 1. Hence 4 is a lower bound on the bandwidth

blowup of Onion Ring ORAM. Note that a smaller F also reduces

Onion Ring ORAM’s computation cost and server storage blowup.

4 HOMOMORPHIC PERMUTATION FROM
(LEVELED) TFHE

In this section, we discuss one major technical contribution in this

work – an efficient algorithm for performing a permutation on

homomorphically encrypted data.

First, we briefly discuss the inefficiencies of the basic homomor-

phic permutation protocol in Onion ORAM. A straightforward way

to implement homomorphic permutation is to usem 1-out-of-m se-

lections. In this method, the client needs to send O(m2) ciphertexts

and the server needs to perform O(m2) homomorphic multiplica-

tions. A better method is to use permutation networks (a.k.a sorting

networks), which reduces both metrics above toO(m logm). This is
indeed adopted in the AHE variant of Onion ORAM [22]. However,

if we use permutation networks in the SWHE variant of Onion

ORAM, its BGV-style ciphertext size needs to be increased by a

factor of the multiplicative depth, which is O(logm) of permuta-

tion networks. The larger ciphertexts result in an O(logm) factor
blowup in server storage and computation cost.

We base our algorithm on the CMux opertaion in TFHE and con-

struct a homomorphic expansion algorithm allowing the server to

generate the encryptions of swap bits from a small number of ci-

phertexts each encrypting many such bits, thus reducing the client

to server communication overhead. We will see that using the CMux
operation in TFHE to evaluate permutation networks on encrypted

data avoids the above issues, and one reason is that for SWHE

schemes like BGV, the noise growth is multiplicative in the depth

O(logm), whereas in CMux the noise growth is additive (see Equa-
tion 1). This fact allows us to evaluate many permutation networks

in sequence on large number of inputs, without much negative

impact on either computational cost or ciphertext expansion.

4.1 Overview of Our Construction
One way to achieve homomorphic computation is to evaluate

a Waksman permutation network [8] over homomorphically en-

crypted data. A Waksman permutation network is a circuit withm
input and output wires consisting of O(m logm) controlled swap

gates each specified by a swap bit. The depth of the network is

O(logm). We encode the permutation π as the swap bits in a Waks-

man permutation network, which can be viewed as a circuit com-

posed of controlled swap gates. A controlled swap takes two input

messages x0,x1 and a swap bit b:

CSwap(b,x0,x1) =

{
(x0,x1) if b = 0

(x1,x0) if b = 1.

A Waksman network onm inputs requires a total number of

ω(m) :=
∑m
i=1 ⌈log(i)⌉ ≤ m logm controlled swaps. At a high level,

the client first configures a Waksman permutation network for π
by locally computing the swap bits b1, . . . ,bω(m). Then, the client
encrypts all bi ’s and sends them to the server. The server uses these

encrypted swap bits to evaluate the permutation network.

Note that an encrypted version of CSwap can be built directly

from TFHE’s CMux operations. Therefore, we make use of the two

encryptionmodes of TFHE tomatch the interface of CMux. The input
ciphertexts are encrypted using RLWE mode. The swap bits are

encrypted using RGSW mode. We can then evaluate the Waksman

permutation network on these ciphertexts. From Equation 1, we

can deduce that the noise of each output ciphertext satisfies

Var(cout) ≤ Var(cin) +O(logm) ·Vgsw, (2)

where the Vgsw term is independent of the noise of cin : it only de-

pends on the noise of the RGSW-encrypted swap bits and the TFHE

parameters. This observation accounts for a large performance

improvement, because the small noise growth allows us to keep

a constant ciphertext expansion ratio (hence ORAM bandwidth

blowup) for sufficiently large blocks. Meanwhile, the homomorphic

permutation takesO(m logm) operations, but importantly, the com-

plexity of each operation only scales double-logarithmically with

the length of the permutationm. We refer the readers to Section 4.2

for a detailed analysis.

Then, we turn our attention to reducing the size of the encrypted

permutation. The client has several options to send the encrypted

swap bits to the server. The naive way is to send each bit encrypted

under RGSW, ready to be used in the permutation, which incurs a

lot of communication in practice. The other end of extreme is to use

a RLWE-to-LWE extraction followed by the circuit bootstrapping
algorithm in [15, 16], which take LWE ciphertexts as input and out-

puts RGSW ciphertexts: this approach minimizes communication

but incurs huge computational cost.

We strike a balance between communication and computation

cost by adapting the homomorphic expansion algorithm in [3] (see

Section 4.3) which makes use of RLWE key switching together with

the TFHE external product. Roughly speaking, we pack multiple

bits inside a small number of RLWE ciphertext. Then we let the

server extract each encrypted bit and homomorphically expand it

into a RGSW ciphertext to be used in the permutation. Our solution

reduces the communication costs over the naive method by about

three orders of magnitude, with the cost of some additional server

computation which is independent of the block size. Hence for

large blocks, the amount of additional server computation is small

compared to the actual encrypted permutation network evaluation.

4.2 Efficiency Analysis of Homomorphic
Permutation

Instead of using a single cryptosystem, our approach to homomor-

phic permutation makes use of two encryption schemes supported

in TFHE. Namely, we encrypt the swapbits in RGSW and the input

in RLWE. Then, the network evaluation is performed using the

CMux operation (recalled in Section 2.3). We noted that the CMux
operation works particularly nicely with our approach due to Equa-

tion 2. Moreover, in our construction inherited from [22], ORAM

eviction requires us to perform L permutation networks in sequen-

tial manner. In this case, we can bound the output noise of all nodes

after one eviction by

Var(cout) ≤ O(L · logm) ·Vgsw. (3)

Below, we present an informal analysis to estimate the server’s

computation and storage overhead of our construction.

To prepare the analysis, we give some background on the rela-

tionship between the noise growth and computation complexity

in TFHE. For the correctness of the RLWE decryption, we require

the final noise to be smaller than
1

2t . Also, the TFHE implemen-

tation chooses a cut-off modulus q, so that every torus element

is represented by its most significant logq bits. Let α denote the

standard deviation of the noise in the freshly generated ciphertexts,

we have Vgsw = O(α2). The correctness of the scheme requires

q = Ω(1α) (since otherwise the noise will be dominated by a larger

rounding error). Now, taking square roots on both sides of Equa-

tion 3, we found that the standard deviation of the output noise is

σ ≤ O(
√
L logm)α . Hence it suffices to select q = 2t ·O(

√
L logm),

i.e., logq = log t + O(log logm + logL) to ensure decryption suc-

ceeds with an overwhelming probability. Recall that Each RLWE

ciphertext is of 2n logq bits and the underlying plaintext has n log t
bits. Hence the server’s storage blowup of our construction is

2

logq

log t
= 2 +

O(log logm + logL)

log t
.

Hence, we conclude that for any fixedm and L, with sufficiently

log t , the server’s storage blowup in our construction approaches

the limiting optimal value of 2, though we do not achieve this lim-

iting value in our current implementation: in our experiments, the

ciphertext expansion factor is 2 × 64/12 ≈ 10.66. This is due to

the fact that the current TFHE library does not support increas-

ing the parameters q. We envision that it will be possible with an

arbitrary-precision implementation of TFHE.

On the other hand, the computation complexity of the CMux
operation scales linearly with the complexity of multiplications of

integers modulo q, which we assume to beO(log(q)1+ϵ) for some ϵ
between 0 and 1. Since log(q) scales linearly with log logm + logL,
the permutation input lengthm and the depth of the ORAM tree L
have a mild impact on the complexity.

In Figure 1, we compare the concrete timings of our methods

to evaluate a permutation network onm encrypted 128KB-blocks

with the two methods proposed by [22]: the AHE approach using

Dåmgard-Jurik cryptosystem and the SWHE approach using BGV.

For AHE, we estimated the timing using the results in [4] with

1024-bit RSA modulus. For BGV, we used the HElib library [31]. We

selected the parameters in HElib such that it provides 128 bits of se-

curity and it supports the depths of the network, namely 2 log(m)−1.
From Figure 1, we see that our method outperforms the SWHE

and AHE approaches by roughly 2.5 and 4 orders of magnitudes,

respectively. As for server’s storage blowup, our method and AHE

can both achieve O(1) for sufficiently large blocks, whereas the

SWHE method requires O(logm) blowup.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

6 7 8 9

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
)

log(m)

Our method (TFHE CMux) SWHE(BGV) AHE(DJ)

Figure 1: Single-core server time for computing a permuta-
tion network onm homomorphically encrypted inputs

4.3 Reducing Client to Server Communication
via Homomorphic Expansion

One problem remains of the above approach: during the ORAM

eviction process, the client needs to send RGSW encryptions of

O(m logm) swap bits to the server for each permutation ofm en-

crypted blocks. However, the RGSW ciphertexts are large: each

RGSW ciphertext is 32KB in TFHE and even larger for our param-

eter choices, whereas every ciphertext only encrypts a single bit.

Thus, this naïve solution introduces a high communication over-

head when used in practice, which contradicts our initial goal of

minimizing the concrete communication overhead of ORAM.

In order to reduce the client to server communication during

ORAM eviction, we adapted a homomorphic expansion algorithm in

Angel et al. [3], which uses repeated RLWE key switching to expand

one RLWE ciphertext RLWE(X j) into n ciphertexts RLWE(ei j)with
eii = 1 and ei j = 0 if i , j. Our algorithm shares some similarity

with the one in [3] but they are different in two major aspects.

First, note that rather than expanding an integer index into a

bit-vector as in [3], our task is to expand a ciphertext encrypt-

ing many bits into many encryptions of individual bits, For this

task, we observed that the same idea can be applied to turn

RLWE(
∑
biX

i) into individual encryptions RLWE(bi). To see how

this is done, recall that the RLWE key switching operation could

be used to perform a “substitution" operation Subs(·,k) that trans-

forms RLWE(
∑
biX

i) to RLWE(
∑
bi (X

i)k) for any odd integer k .

For k = n + 1, we have X ik = (−1)iX i
. Now for a ciphertext

c = RLWE(
∑
biX

i), we see that c + Subs(c,n + 1) will encrypt∑
i 2b2iX

2i
and X−1(c − Subs(c,n + 1)) will encrypt

∑
i 2b2i+1X

2i
.

So in effect we extracted the even and odd parts of the message

polynomial. Then, doing this recursively using substitutions with

k = n/2s + 1 for s = 1, 2, . . . , log(n) − 1 results in encryptions

of bi . Algorithm 3 gives a description of this algorithm, which is

Algorithm 3: RLWE Expansion SubRoutine expandRlwe

Input: c = RLWE(
∑n−1
i=0 biX

i),bi ∈ {0, 1}
Output: ci = RLWE(n · bi), 0 ≤ i < n

1 c0 := c
2 for i = 1 : logn do
3 k = n/2i−1 + 1

4 for b = 0 : 2
i − 1 do

5 c
2b = cb + Subs(cb ,k)

6 c
2b+1 = cb − Subs(cb ,k)) · X−k

7 end
8 end
9 return {cj }n−1j=0

Algorithm 4: Homomorphic Expansion homExpand

Input: ck = RLWE(
∑n−1
i=0

bi
nBk+1

X i),bi ∈ {0, 1},

k = 0, 1, . . . , ℓ − 1

Input: A = RGSW(−s)
Output: Ci = RGSW(bi), 0 ≤ i < n

1 for k = 0 : ℓ − 1 do
2 c′k := expandRlwe(ck)
3 end
4 for i = 0 : n − 1 do
5 Initialize Ci as an empty 2ℓ × 2 matrix of polynomials

6 for k = 0 : ℓ − 1 do
7 Ci [k] = A � c′k [i]
8 Ci [k + ℓ] = c′k [i]
9 end

10 end
11 return {Ci }n−1j=0

used as a subroutine of our expansion algorithm. For completeness,

we present the key switching and substitution algorithms in the

appendix.

Also, we need to generate RGSW encryptions for the server to

use in the homomorphic permutation, whereas in [3] it is suffi-

cient to generate RLWE encryptions. To achieve this, we observe

that the first ℓ rows of a RGSW encryption of b can be viewed

as RLWE(b · (−s)/Bk) for 1 ≤ k ≤ ℓ, where s is the secret key

polynomial, and the second ℓ rows are RLWE(b/Bk). In order to

generate the second half of the rows, we could repeat the subrou-

tine in the previous paragraph ℓ times on RLWE(
∑
biX

i/Bk). Then,

we could perform the external product between RLWE(bi/Bk) and
RGSW(−s) to generate RLWE(bi (−s)/Bk) for k = 1, 2, . . . , ℓ. These

ciphertexts together constitute a RGSW ciphertext encrypting bi .
See Algorithm 4 for a formal description of our homomorphic ex-

pansion algorithm.

Theorem 4.1 (Correctness of Algorithm 3). Suppose the
RLWE key switching keys are instantiated with decomposition base
Bks , decomposition length ℓks and noise variance θks . Then, for
an input ciphertext c = RLWE(

∑n−1
i=0 biX

i), Algorithm 1 outputs

cj = RLWE(n · bj) with noise variance

Var(cj) ≤ n2Var(c) +
n2 − 1

3

Vks ,

where Vks :=
n

4B
2ℓks
ks

+ ℓks · n · (
Bks
2
)2θks .

Proof. See appendix. □

Theorem 4.2 (Correctness of Algorithm 4). Suppose A is a
RGSW encryption of (−s) with noise variance θA. If the input cipher-
texts ck = RLWE(

∑n−1
i=0

biX i

nBk+1
) have noise variance bounded by θ ,

then Algorithm 4 outputs Ci = RGSW(bi) with noise variance

Var(Ci) ≤ n3θ +
n3 − n

3

Vks +Vext ,

where Vks is as in Theorem 4.1 and

Vext = 2ℓn

(
B

2

)
2

θA + (1 + n)n

(
1

2Bℓ

)
2

Proof. See appendix. □

Computation Complexity of Algorithm 4 In addition to the ℓ

calls to Algorithm 3 (a.k.a. expandRlwe), it requires n × ℓ exter-
nal products to generate n RGSW ciphertexts. Each expandRlwe
requires n key switching operations, Hence the amortized cost

for generating one RGSW ciphertext is ℓ external products plus ℓ

key switchings, resulting in roughly ℓ2 ring operations if we take

ℓks ≈ ℓ.

Communication Complexity. With our homomorphic expan-

sion algorithm, for n swap bits, the client sends ℓ ciphertexts to the

server. The server then executes Algorithm 4 to generate n RGSW

encryptions. The amortized communication is ⌈ ℓn ⌉ ℓ/n RLWE ci-

phertexts per swap bit. Note that the naïve method requires sending

one RGSW ciphertext per swap bit, and the size of one RGSW ci-

phertext is 2ℓ times of a RLWE ciphertext. Hence our method saves

communication by a factor of 2n, the ring dimension in TFHE. Since

n > 10
3
in practice (our experiments used n = 2

11
), our homomor-

phic expansion algorithm reduces the communication cost by 3
orders of magnitude in our settings. We illustrate this improvement

on communication in Figure 2.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

m=128 m=256 m=512

Co
m

m
un

ica
tio

n
(K

B)

naïve

with homomorphic
expansion

Figure 2: Client to server communication cost to send an en-
crypted permutation onm ∈ {128, 256, 512} input blocks.

4.4 Putting it together
We separate the pseudocode for our homomorphic permutation

into client part and server part, and include them in Algorithm 5

and Algorithm 6, respectively. For line 1 in Algorithm 5, we note

that there are standard ways to configure a permutation network

to realize a particular permutation, and refer the readers to [33] for

details of a configuration algorithm.

Algorithm 5: Client part of homomorphic permutation

genPerm

Input: Inputs a permutation π onm inputs

Output: π̂ , encryptions of the swap bits

1 Configure a permutation network that realizes π by computing

the swap bits {bi } = swapbits(π) for 0 ≤ i < ω(m)

2 c[j][k] = RLWE(
∑n−1
i=0

bi+nj
nBk

X i) for 1 ≤ k ≤ ℓ,

1 ≤ j ≤ ⌈ω(m)/n⌉.

3 return c

Algorithm 6: Server part of homomorphic permutation

evalPerm
Input: π̂ , homomorphically encrypted swap bits in a

Waksman network realizing the permutation π
Input: ci = RLWE(µi), 0 ≤ i < m
Output: c′i = RLWE(µπ (i)), 0 ≤ i < m

1 Π̂ = empty list of omeдa(m) RGSW ciphertexts.

2 Π̂ := homExpand(c[1])∥ · · · ∥homExpand(c[[k/n]])
3 c′i = ci
4 evalWaksman(π̂ , c′i) ▷ defined in appendix

5 return c′i

Correctness. The correctness of our homomorphic permutation

protocol (Algorithms 5 and 6) follows from the correctness of the

subroutines, which we prove in the appendix.

5 IMPLEMENTATION AND EVALUATION
5.1 Further optimizations

Reduce fresh ciphertext size via PRG. Observe that the first

element (generally noted a) of every fresh RLWE ciphertext is a

polynomial sampled uniformly at random. In practice, these polyno-

mials can be generated from a pseudo-random generator initialized

by a seed. In order to reduce the communication from the ORAM

client to the ORAM server, the client could send only the second

element of the RLWE ciphertexts together with the seed used to

generate the a polynomials and ask the ORAM server to generate

the a polynomials itself. This technique, already proposed in [14],

could halve the size of ciphertexts from client to server.

Modulus switching. First proposed in [11], themodulus switching

technique allows for noise control and ciphertext size reduction in

homomorphic encryption. We use it to reduce the communication

cost from ORAM server to ORAM client, which occurs both at

online block retrieval and offline leaf refreshing phases. Put simply,

modulus switching works as follows: suppose the server wishes to

send a ciphertext c = (a,b) to the client where each polynomial has

logq bits of coefficients. Instead of sending c itself, it only sends

the most significant logq′ bits of each coefficient. This reduces the

ciphertext size by logq/logq′, with the side effect of adding some

extra noise. The variance of the added noise is upper bounded by

(
q′
2q)

2(1 + | |s | |1) ≤ (
q′
2q)

2(1 + n). For our parameters with n = 2048

and log(q) = 64, we found that using log(q′) = 32 does not affect

the correctness of decryption. Thus, we can reduce the size of

ciphertexts from server back to client by a half.

Combining the two techniques above, we reduced the effective

ciphertext expansion factor F by roughly a half, from 10.66 to 5.33.

5.2 Experimental Setup
We run our experiments on an Azure virtual machine with the

following configurations. The machine has an 8-core Intel Xeon

E5-2673 CPU running at 2.30GHz and 32GB memory. We use all

eight cores for the server, but only one core for the client.

ORAM parameters. In this paper, we set Z = 254. Thus, each

homomorphic permutation takes 2Z = 508 ciphertexts. The reason

for this choice is that the packed swap bits for a permutation of

size 508 fit in 16 RLWE ciphertexts. We then set A = 249 to obtain

a security level of 2
−80

failure probability. We test three block sizes:

384KB, 768KB, and 1536KB. Each RLWE ciphertext encrypts 3KB.

So the above sizes correspond to blocks broken up into 128, 256,

and 512 RLWE ciphertexts, respectively.

TFHE parameters. In our implementation, we used the experi-

mental version of TFHE, which is available in open source [16].

We use ring dimension n = 2048 and modulus q = 2
64
. We fix the

standard deviation of our error distribution to be α = 2
−55

, which

yield about 120 bits of security according to the LWE estimator [2].

For the plaintext, we choose t = 2
12
, so each ciphertext can encrypt

up to log(t) · N = 3 KB of data. This gives F = 64/12 = 5.33. For

the RGSW parameters, we use B = 2
3
and ℓ = 8, except for the

RGSW encryption of −s we use B = 2
7
and ℓ = 7. For RLWE key

switching, we use Bks = 2
5
and ℓks = 10.

Simulation methodology. Instead of instantiating the entire

ORAM on the server machine, we chose to simulate an ORAM

tree with 15 levels and N = 2
22

blocks in total. This is because if we

instantiate an ORAM with 2
22

blocks, then the entire ORAM would

require a huge amount of storage (7.5TB for 384KB blocks). Instead,

we measure computation cost on a small ORAM with 4 levels and

project the results to the 15-level ORAM. In order to justify our

projection, we make the following notes. First, we simulated one

triplet eviction by running L = 15 homomorphic permutations

sequentially, and verified that the noise in the result was still small

enough to guarantee correct decryption. This justifies our choice of

TFHE parameters. Second, we verified that our computation costs

are dominated by triplet eviction operations, whose CPU cost ap-

pears stable across experiments, given the fixed TFHE parameters.

Finally, we did not take into account the disk access overhead for a

large ORAM, since it is dominated by other overheads: server com-

putational overhead for Onion Ring ORAM and network bandwidth

overhead in case of Ring ORAM.

online bandwidth amortized bandwidth

Scheme raw blowup raw blowup

Path ORAM 30 MB 80 60 MB 160

Ring ORAM 384 KB 1 12.9 MB 34.3

Onion Ring ORAM 2 MB 5.33 4.8 MB 12.9

Table 1: Bandwidth cost and blowup under 384 KB block size

5.3 Bandwidth, Computation and Monetary
Cost

In this subsection, we evaluate the bandwidth blowup and com-

putation cost of Onion Ring ORAM and compare them to existing

ORAM protocols.

Following the literature, we distinguish online and amortized cost.
Online cost refers to the cost incurred between when the client

makes an access and when it gets the returned data. Amortized cost

refers to the total cost per access. Another related notion is worst-
case cost. For Onion Ring ORAM, they are simply amortized costs

multiplied by the eviction frequency A, so we omit reporting them.

We remark that Onion Ring ORAM as presented has high worst-

case cost, but de-amortization techniques of tree-based ORAMs

have also been proposed in the literature [19, 54] and they apply to

Onion Ring ORAM.

Bandwidth cost. Table 1 lists the bandwidth cost and blowup of

Path ORAM, Ring ORAM, and Onion Ring ORAM. Path ORAM’s

bandwidth blowup under similar conditions (ORAM size, client-side

position map) is 8 log(N /4) = 160×, half of which is incurred online.

Ring ORAM under similar conditions should use a higher eviction

frequency A = 450 and reserved number of dummies of S = 500

according to the analytic model in [52], giving an amortized band-

width blowup of about 2.26L = 34.3× (L is the same as Onion Ring

ORAM since we use the same Z). Its online bandwidth is optimal

due to the XOR technique [21]. Since Ring ORAM outperforms Path

ORAM, we compare to Ring ORAM only for the rest of the paper.

Onion Ring ORAM has an online bandwidth blowup of 5.33×

and an amortized bandwidth blowup of 12.9×. Note that the the-

oretical formula in Section 3.5 gives 12.8×, confirming that the

encrypted swap bits account for very small bandwidth after pack-

ing. Importantly, the cost of sending the encrypted swap bits is

independent of the block size. Compared to Ring ORAM, Onion

Ring ORAM reduces overall bandwidth blowup while increasing

online bandwidth blowup. Note that the homomorphic expansion

technique plays a crucial role in our construction to achieve a low

bandwidth blowup. Without using this technique, the encrypted

swap bits become 2048× larger and add 246MB of communication

per access. In other words, the block size would have to be at least

comparable to 246MB to achieve constant bandwidth blowup.

Computation cost. Table 2 shows the computation cost break-

down of Onion Ring ORAM.

The computational component of online latency consists of the

time for homomorphic addition on the server and the time for

decryption on the client. The permuted bucket technique is effective

in reducing online latency. As is shown in the table, homomorphic

Time (second)

Block Size (KB) 384 768 1536

Server add 0.005 0.01 0.02

Online Client decrypt 0.11 0.19 0.38

Total 0.11 0.2 0.4

Client genPerm 0.015 0.015 0.015

Offline Server expansion 31.7 31.7 31.7

homomorphic Server Waksman 15.1 30.1 60.2

permutation Total (of 2L) 1404 1854 2757

Amortized (over A) 5.6 7.4 11.1

Total 5.7 7.6 11.5

Table 2: Computation cost of each step inOnionRingORAM.
The server uses 8 threads while the client uses 1 thread.

addition on the server takes very little time. Most of the online

latency is incurred by the client to decrypt the block.

For each homomorphic permutation in eviction, the time client

takes to generate encrypted swap bits is less than 0.02 second. The

server takes 31.7 seconds to expand them into RGSW ciphertexts.

These two components are the computational overheads of the

homomorphic expansion techniques. Importantly, these two parts

do not depend on the number of chunks in a block and hence do

not depend on block size. Hence, for larger blocks, the overhead of

homomorphic expansion on the total timing decreases. The time

spent on homomorphically evaluating the Waksman permutation

scales linearly with the number of ciphertext chunks. For 768KB

block size (256 chunks), this step takes 30.1 seconds, which is com-

parable to the expansion step. One eviction uses 30 permutations,

two per each non-leaf level, one for root and one for leaf. This cost

is amortized among A = 249 accesses per eviction.

To summarize, again using 768KB as an example, the computa-

tion cost per accessing a 768KB clock is about 7.6 seconds, of which

7.4 seconds are spent offline (mostly on the server using 8 cores)

and 0.2 second is spent online (mostly by the single-core client).

We remark that Path ORAM and Ring ORAM use minimum

computation whose effects to performance can be ignored. Path

ORAM uses no server computation and Ring ORAM uses only XOR

operations. Clients in both schemes only use symmetric encryp-

tion. Onion ORAM with BGV or AHE, on the other hand, will

incur prohibitive computational cost, 2.5 and 4 orders of magnitude,

respectively, as shown in Figure 1.

Monetary cost. To further compare the performance of ORAMs,

we considered a concrete scenario in which we rent a server for

several years and perform many ORAM requests, and estimated

the actual cost in US dollars of our scheme compared with Ring

ORAM. The advantage of the dollar cost analysis is that it takes into

account both the cost of computations and bandwidth. To estimate

the real costs, we refer to the prices offered by Microsoft Azure
4
:

assuming a long term use, say 3 years, for the type of machine we

used in our experiments, i.e. a Standard VM B8MS with 8 vCPU,

4
https://azure.microsoft.com/

Cost ($)

384 KB 768 KB 1536 KB

Ring ORAM ∼ 0.0006$ ∼ 0.0012$ ∼ 0.0025$

Onion Ring ORAM ∼ 0.0004$ ∼ 0.0007$ ∼ 0.0013$

Table 3: Estimates on themonetary cost for 384, 768 and 1536
KB block size requests.

384 KB 768 KB 1.5 MB
Block Size

0

10

20

30

40

La
te

nc
y

(s
ec

on
d)

Ring ORAM
Onion Ring BW
Onion Ring Compute

(a) 10 Mbps

384 KB 768 KB 1.5 MB
Block Size

0

5

10

15

20

La
te

nc
y

(s
ec

on
d)

Ring ORAM
Onion Ring BW
Onion Ring Compute

(b) 20 Mbps

Figure 3: Online latency and overall (amortized) access time
of Ring ORAM and Onion ORAM under different block size
and network throughput.

32 GB RAM and 64 GB of temporary storage, the price proposed

by Azure is ∼ 0.1253$ per hour of computation; the cost for data

transfer is ∼ 0.05$ per GB. Table 3 shows estimated costs in dollars

for block sizes 384, 768 and 1536 kB, for both our construction and

Ring ORAM. The estimates show that our construction could save

monetary cost for actual deployment of ORAM.

5.4 Latency and Access Time
To compare the end-to-end latency between different ORAM proto-

cols, we need to assume a network throughput between the client

and server. We did not implement the network protocol between

client and server. Instead, we simulate the online latency and over-

all amortized timing for Ring ORAM and Onion Ring ORAM under

different network throughput. The simulations do not add network

round-trip delays. Since both ORAMs have a single round trip (re-

call that the position map is stored locally), we expect round-trip

delays to affect them similarly.

From Figure 3, we observe that the comparison between end-

to-end latency heavily depends on network throughput. When

network throughput is low, communication is the bottleneck of

access time and Onion Ring ORAM outperforms Ring ORAM due

to its smaller bandwidth blowup. Taking the configuration of 1.5

MB block size and 10 Mbps network throughput as an example,

the amortized access time Onion Ring ORAM is about 26.5 sec-

onds, compared to 40.7 seconds for Ring ORAM. As the network

throughput increases, the amortized access time of Ring ORAM

scales inversely proportionally. The communication component

of Onion Ring ORAM’s access time also scales inversely propor-

tionally, but its overall time cost converges to the aforementioned

computation time. In summary, Onion Ring ORAM is preferred in a

 https://azure.microsoft.com/

cloud storage setting where the client-server communication is ex-

pensive or limited. Under our experimental settings, the cross-over

with Ring ORAM is at about 20 Mbps.

Lastly, we make a remark on S3ORAM [32]. It was left out in

our performance comparisons, since it is under a different security

model. By assuming three non-colluding servers, S3ORAM offers a

better performance for slow client-server network settings, given

that the inter-server network throughput is high. For example,

when the client-server network is 9Mbps and inter-server network

is 250Mbps, S3ORAM takes about 3 seconds to access a 512KB block.

6 CONCLUSIONS AND FUTURE DIRECTIONS
We presented the first efficient single-server ORAMwithO(1) band-
width blowupwhich we call Onion Ring ORAM. Our construction is

based on the Onion ORAM and the TFHE homomorphic encryption

scheme. To achieve our efficiency goal, we built an efficient homo-

morphic permutation protocol, and incorporated the permuted

buckets and the XOR trick from Ring ORAM. We implemented

our ORAM scheme and performed experiments in various network

bandwidth settings. We observed that in low-throughput networks,

our construction can have better end-to-end latency than state-of-

the-art ORAM constructions such as Path ORAM and Ring ORAM.

We believe our work can serve as the first step to exploring practical

impacts of cutting-edge homomorphic encryption techniques to

improve the efficiency of ORAM.

We list some directions for future work:

Reducing bandwidth blowup. In our implementation, we have

the effective ciphertext expansion factor F = 5.33 and Z/A =
254/249 = 1.02, which results in the 12.9× bandwidth blowup we

reported (the encrypted swap bits contributed little to this blowup).

Note thatZ/A is already close to their theoretical limit of 1. Nonethe-

less, from the heuristic analysis in Section 4.2, we see that there

is still a lot of room for improving the ciphertext expansion factor

F . We did not implement these improvements in this work, since

a further reduction of F requires a larger precision logq, and the

TFHE library only supports logq up to 64, due to the use of double

precision complex FFT. Hence, we leave the task for reducing F to

future work.

Malicious security. Our implementation assumes an honest-but-

curious server. If security against a malicious server is desired, there

are two options. The first one is the position-map-based message

authentication code integrity verification for ORAM [24]. In fact,

since we store the position map locally, this method degenerates to

per-block count-based message authentication codes. It adds very

small overhead: one HMAC operation on the client per access. With

this method, the client can reliably detect any incorrect return data.

However, the above method may allow a subtle type of leakage

through detection. For example, say the server overwrites a slot

with a dummy block. If the slot contained a dummy block to begin

with, then this action will not result in any observable outcome to

the client; but if the overwritten block was a real block, the client

will detect incorrect return data. If the client stops interacting with

the server upon detection (which seems to be a natural thing to do),

the server learns whether the overwritten block was real or dummy.

Nevertheless, this leakage seems reasonable: it only leaks the time

of detection, which is akin to the total number of accesses leakage

allowed in the ORAM definition. Thus, we believe this method still

provides a reasonable solution to malicious security. Onion ORAM

gave a method based on erasure coding and the “cut-and-choose”

trick to defend against a malicious server without any extra leak-

age [22]. Their method works for any server computation ORAM

but it is largely theoretical and incurs large overhead. It is inter-

esting future work to design efficient defenses against malicious

servers for our construction.

7 ACKNOWLEDGEMENTS
Wewould like to thank the anonymous reviewers and our shepherd,

Xiao Wang, for their feedback and helpful comments.

This work has been supported in part by ERC Advanced Grant

ERC-2015-AdG-IMPaCT and by the FWOunder anOdysseus project

GOH9718N. Any opinions, findings and conclusions or recommen-

dations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the ERC or FWO.

REFERENCES
[1] Ittai Abraham, Christopher Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren.

2017. Asymptotically tight bounds for composing ORAM with PIR. In IACR
International Workshop on Public Key Cryptography. Springer, 91–120.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. J. Mathematical Cryptology 9, 3 (2015), 169–203.

[3] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with com-

pressed queries and amortized query processing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 962–979.

[4] Anastasov Anton. 2016. Implementing Onion ORAM: A Constant Bandwidth

ORAM using AHE. https://github.com/aanastasov/onion-oram/blob/master/doc/

report.pdf. (2016).

[5] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. 2014.

Verifiable oblivious storage. In InternationalWorkshop on Public Key Cryptography.
Springer, 131–148.

[6] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, and Elaine Shi.

2018. OptORAMa: Optimal oblivious RAM. Technical Report. Cryptology ePrint

Archive, Report 2018/892.

[7] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,

Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-data processing:

Insights from a MICRO-46 workshop. IEEE Micro 34, 4 (2014), 36–42.
[8] Bruno Beauquier and E Darrot. 2002. On arbitrary size Waksman networks and

their vulnerability. Parallel Processing Letters 12, 03n04 (2002), 287–296.
[9] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

Yan Huang. 2015. Practicing oblivious access on cloud storage: the gap, the fallacy,

and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 837–849.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012. 309–325. http:

//doi.acm.org/10.1145/2090236.2090262

[11] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Efficient fully homomorphic

encryption from (standard) LWE. SIAM J. Comput. 43, 2 (2014), 831–871.
[12] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. ACM, 668–679.

[13] Zhao Chang, Dong Xie, and Feifei Li. 2016. Oblivious RAM: a dissection and

experimental evaluation. Proceedings of the VLDB Endowment 9, 12 (2016), 1113–
1124.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.

In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I. 3–33. https://doi.org/10.1007/

978-3-662-53887-6_1

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2017.

Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for

TFHE. InAdvances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I. 377–408. https://doi.org/10.1007/

978-3-319-70694-8_14

 https://github.com/aanastasov/onion-oram/blob/master/doc/ report.pdf
 https://github.com/aanastasov/onion-oram/blob/master/doc/ report.pdf
http://doi.acm.org/10.1145/2090236.2090262
http://doi.acm.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14

[16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. 2017. TFHE: experimental-tfhe repository. (2017).

https://github.com/tfhe/experimental-tfhe.

[17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Au-

gust 2016. TFHE: Fast Fully Homomorphic Encryption Library. (August 2016).

https://tfhe.github.io/tfhe/.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2018.

TFHE: Fast Fully Homomorphic Encryption over the Torus. Cryptology ePrint

Archive, Report 2018/421. https://eprint.iacr.org/2018/421.

[19] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal,

and Lorenzo Alvisi. 2018. Obladi: Oblivious serializable transactions in the cloud.

In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 727–743.

[20] Ivan Damgård and Mads Jurik. 2001. A generalisation, a simpli. cation and

some applications of paillier’s probabilistic public-key system. In International
Workshop on Public Key Cryptography. Springer, 119–136.

[21] Jonathan L Dautrich Jr, Emil Stefanov, and Elaine Shi. 2014. Burst ORAM: Mini-

mizing ORAM Response Times for Bursty Access Patterns.. In USENIX Security
Symposium. USENIX Association, 749–764.

[22] Srinivas Devadas, Marten van Dijk, Christopher Fletcher, Ling Ren, Elaine Shi,

and Daniel Wichs. 2016. Onion ORAM: A constant bandwidth blowup oblivious

RAM. In Theory of Cryptography Conference. Springer, 145–174.
[23] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A secure

processor architecture for encrypted computation on untrusted programs. In

Proceedings of the seventh ACM workshop on Scalable trusted computing. ACM,

3–8.

[24] Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas

Devadas. 2015. Freecursive oram:[nearly] free recursion and integrity verification

for position-based oblivious ram. In ACM SIGARCH Computer Architecture News,
Vol. 43. ACM, 103–116.

[25] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,

and Daniel Wichs. 2013. Optimizing ORAM and using it efficiently for secure

computation. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 1–18.

[26] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. 2015. Private

database access with HE-over-ORAM architecture. In International Conference
on Applied Cryptography and Network Security. Springer, 172–191.

[27] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. IACR Cryptology ePrint Archive 2013 (2013), 340. http:

//eprint.iacr.org/2013/340

[28] Oded Goldreich. 1987. Towards a theory of software protection and simulation

by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 182–194.

[29] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[30] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. 2011. Oblivious RAM simulation with efficient worst-case access

overhead. In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. ACM, 95–100.

[31] Shai Halevi and Victor Shoup. May 2019. HElib-An Implementation of homo-

morphic encryption. (May 2019). https://github.com/homenc/HElib.

[32] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam

Nguyen. 2017. S3ORAM: A Computation-Efficient and Constant Client Band-

width Blowup ORAMwith Shamir Secret Sharing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 491–505.

[33] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set intersection: Are

garbled circuits better than custom protocols?. In NDSS.
[34] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation..

In Network and Distributed System Security, Vol. 20. 12.
[35] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. Inference

attack against encrypted range queries on outsourced databases. In Proceedings
of the 4th ACM conference on Data and application security and privacy. ACM,

235–246.

[36] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1329–1340.

[37] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in)-security of

hash-based oblivious RAM and a new balancing scheme. In Proceedings of the
23rd annual ACM-SIAM symposium on Discrete Algorithms. Society for Industrial

and Applied Mathematics, 143–156.

[38] Eyal Kushilevitz and Tamer Mour. 2018. Sub-logarithmic distributed oblivious

RAM with small block size. arXiv preprint arXiv:1802.05145 (2018).
[39] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, there is an oblivious

RAM lower bound!. In Annual International Cryptology Conference. Springer,
523–542.

[40] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine

Shi. 2015. Ghostrider: A hardware-software system for memory trace oblivious

computation. ACM SIGPLAN Notices 50, 4 (2015), 87–101.
[41] Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure

two-party computation. In Theory of Cryptography. Springer, 377–396.
[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and

learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1–23.

[43] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,

John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious computa-

tion in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 311–324.

[44] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private

File Retrieval by Combining ORAM and PIR.. In Network and Distributed System
Security.

[45] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant commu-

nication ORAM with small blocksize. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 862–873.

[46] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam,

Elaine Shi, and Vipul Goyal. 2017. HOP: Hardware makes obfuscation practical.

In Network and Distributed System Security.
[47] Rafail Ostrovsky and Victor Shoup. 1997. Private information storage. In Proceed-

ings of the twenty-ninth annual ACM symposium on Theory of computing. ACM,

294–303.

[48] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.

PanORAMa: Oblivious RAMwith logarithmic overhead. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 871–882.

[49] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. 2017. Pseudorandom-

ness of ring-LWE for any ring and modulus. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing. ACM, 461–473.

[50] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution.. In USENIX Security Symposium.

431–446.

[51] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and

cryptography. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005. 84–93. http://doi.acm.org/10.

1145/1060590.1060603

[52] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

Van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements

to Oblivious RAM.. In USENIX Security Symposium. 415–430.

[53] Ling Ren, Christopher Fletcher, Albert Kwon, Marten van Dijk, and Srinivas

Devadas. 2018. Design and implementation of the ascend secure processor. IEEE
Transactions on Dependable and Secure Computing (2018).

[54] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. Taostore: Overcoming asynchronicity in oblivious data storage. In IEEE
Symposium on Security and Privacy. IEEE, 198–217.

[55] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. 2018. ZeroTrace: Obliv-

ious memory primitives from Intel SGX. In Network and Distributed System
Security.

[56] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O (log3 N) worst-case cost. In International Conference on The Theory
and Application of Cryptology and Information Security. Springer, 197–214.

[57] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An

Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4 (2018), 18:1–18:26.

[58] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security. ACM,

247–258.

[59] Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious

cloud storage. In 2013 IEEE Symposium on Security and Privacy. IEEE, 253–267.
[60] Emil Stefanov, Elaine Shi, and Dawn Song. 2012. Towards practical oblivious

RAM. In Network and Distributed System Security.
[61] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 299–310.

[62] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. 2009. Effi-

cient Public Key Encryption Based on Ideal Lattices. In Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings. 617–635. https://doi.org/10.1007/978-3-642-10366-7_36

[63] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,

Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron

on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2421–2434.

https://eprint.iacr.org/2018/421
http://eprint.iacr.org/2013/340
http://eprint.iacr.org/2013/340
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-642-10366-7_36

[64] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 850–861.

[65] Peter Williams, Radu Sion, and Bogdan Carbunar. 2008. Building castles out of

mud: practical access pattern privacy and correctness on untrusted storage. In

Proceedings of the 15th ACM conference on Computer and communications security.
ACM, 139–148.

[66] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems. In IEEE
Symposium on Security and Privacy. IEEE, 640–656.

[67] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption.. In USENIX Security Symposium. 707–720.

A RLWE KEY SWITCHING AND
SUBSTITUTION

The algorithms below are known and we include them for the sake

of self-containment. The RLWE key switching procedure trans-

forms an encryption of message µ under secret s ′ to an encryption

of same message under secret s . It is described in Algorithm 7 below.

Lemma A.1. Suppose the input to Algorithm 7 is an RLWE cipher-
text with noise variance θ and assume the key switching keys have
noise variance θks . Algorithm 7 outputs c ′ = RLWEs (µ) with

Var(c′) ≤ θ +
n

4B
2ℓks
ks

+ ℓks · n ·

(
Bks
2

)
2

θks .

Proof. Define φs (a,b) = b − as . We have

φs (c′) = c1 −
∑
j
c0[j]φs (KS[j])

= c1 −
∑
j
c0[j](s

′/B
j
ks + e

j
ks)

= φs ′(c) − (ϵdecs
′ +

∑
j
c0[j]e

j
ks).

The result follows by noting that the terms each term e
j
ks has

variance θks and | |s
′ | |1 ≤ n. □

Since this key switching algorithm is not available in the TFHE

library, we implemented it ourselves. Note that the only difference

between this variant and the usual key switching for BGV scheme

is that we allow small errors for the decomposition.

It is easy to construct the substitution algorithm Subs(c,k) from
key switching. We include it in Algorithm 8 for completeness.

To see the correctness of Algorithm 8, note that c′ =
(c0(X

k), c1(X
k)) is an encryption of µ(Xk) under s(Xk). This step

Algorithm 7: RLWE Key Switching Algorithm

Input: c = RLWEs ′(µ), Bks and ℓks
Input: KSs ′→s [j] = RLWEs (s ′/B

j
ks) for j = 1 : ℓks

Output: c′ = RLWEs (µ)
1 c = (c0, c1)

2 Decompose c0 as
∑ℓks
j=1 c0[j]/B

j
ks + ϵdec with

| |c0[j]| |∞ ≤ Bks/2 and | |ϵdec | |∞ ≤
1

2Bℓ
ks

3 return c′ = (0, c1) −
∑ℓks
j=1 c0[j] · KSs ′→s [j]

only replaces the noise polynomial e(X)with e(Xk), which does not

affect the maximal variance on its coefficients. Then, key switching

from s(Xk) to s(X) will output an encryption of µ(Xk) under the

original secret key s . The noise growth of Subs is exactly the same

as that of the underlying key switching.

B PROOFS
Proof of Theorem 4.1. For convenience, we denote V =
n

4B
2ℓks
ks

+ℓks ·n · (
Bks
2
)2θks . So we have Var(Subs(c,k)) ≤ Var(c)+V .

Now Algorithm 3 has log(n) iterations, and let ci denote any single

ciphertext obtained after the i-th iteration (with c0 = c the input
ciphertext), and let ei denote the error term in ci . Then we have

the relation

ei = ei−1 ± ei−1(Xk) + ϵks

where we use ϵks to denote the key switching noise term whose

variance is bounded above by V . Thus, we have

Var(ci) ≤ 4Var(ci−1) +V .

Applying this relation recursively, we have

Var(ci) ≤ 4
iVar(c) +V · (1 + 4 + . . . + 4i−1).

= 4
iVar(c) +

4
i − 1

3

V .

The claim in Theorem 4.1 follows by taking i = log(n). □

Proof of Theorem 4.2. Since the first ℓ rows of the output of

Algorithm 4 are obtained as an external product involving the

second ℓ rows, it suffices to look at the first row of each ouptut. Let

c be any output ciphertext of expandRlwe with variance θc, and let

θA denote the variance of the RGSW encryption of −s . Then, we
have

Var(A � c) ≤ θc | |(−s)| |
2

2
+ 2ℓn

(
B

2

)
2

θA

+ | |(−s)| |2
2
(1 + n)

(
1

2Bℓ

)
2

≤ θcn + 2ℓn

(
B

2

)
2

θA + (1 + n)n

(
1

2Bℓ

)
2

= θcn +Vext .

Algorithm 8: RLWE Substitution Algorithm Subs(c,k)
Input: c = RLWEs (µ(X)); odd integer k
Input: KSs(X k)→s [j] for j = 1 : ℓks

Output: c′ = RLWEs (µ(Xk))

1 c = (c0, c1)
2 Let c′ = (c ′

0
, c ′
1
) = (c0(X

k), c1(X
k))

3 Decompose c ′
0
as

∑ℓks
j=1 c

′
0
[j]/B

j
ks + ϵdec with

| |c ′
0
[j]| |∞ ≤ Bks/2 and | |ϵdec | |∞ ≤

1

2Bℓ
ks

4 return c′ = (0, c1) −
∑ℓks
j=1 c0[j] · KSs(X k)→s [j]

The last inequality follows from the fact s has binary coefficients.

Now from Theorem 4.1, we have

θc ≤ n2θ +
n2 − 1

3

Vks ,

where θ is the noise variance of the input ciphertexts. Substituting

this into the previous inequality finishes the proof. □

C THE evalWaksman ALGORITHM
We present the algorithm for evalWaksman in Algorithm 9. Note

that it is mostly a rewriting the of the algorithm to evaluate a clear-

text Waksman permutation network in [8], with the only difference

that the TFHE CMux operation replaces the swapping of two values.

Algorithm 9: evalWaksman

Input: A vector Π̂ of ω(m) RGSW encyrptions of the bits in

swapbits(π)
Input: a vector c[i] = RLWE(µi), 0 ≤ i < m
Output: c is modified in-place such that

c[i] = RLWE(µπ (i)), 0 ≤ i < m

1 if m ≤ 1 then
2 return
3 end
4 ins = ⌊m/2⌋

5 Initialize two arrays cup , cdown

6 for i = 0 : ins − 1 do
7 temp = CMux(Π̂[i], c[2i], c[2i + 1])
8 c[2i + 1] = c[2i] + c[2i + 1] − temp

9 c[2i] = temp ▷ using CMux to swap c[2i] and c[2i + 1]
10 end
11 for i = 0 : ins − 1 do
12 cup [i] = c[2i]
13 cdown [i] = c[2i + 1]
14 end
15 if m is odd then
16 cdown [ins] = c[m − 1]
17 end
18 j1 = ins + ω(ins)

19 j2 = j1 + ω(ins + (m%2))

20 evalWaksman(cup , Π̂[ins : j1])
21 evalWaksman(cdown , Π̂[j1, j2])

22 for i = 0 : ins − 1 do
23 c[2i] = cup [i]
24 c[2i + 1] = cdown [i]

25 end
26 if m is odd then
27 c[m − 1] = cdown [ins]

28 end
29 outs = ⌊m/2⌋ − 1

30 if m odd then
31 outs = outs + 1

32 end
33

34 for i = 0 : outs − 1 do
35 temp = CMux(Π̂[j2 + i], c[2i], c[2i + 1])
36 c[2i + 1] = c[2i] + c[2i + 1] − temp

37 c[2i] = temp

38 end
39 return

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related works

	2 Background
	2.1 ORAM with Server Computation
	2.2 Onion ORAM
	2.3 Leveled TFHE
	2.4 Homomorphic Permutation

	3 Onion Ring ORAM
	3.1 Initialization
	3.2 Access
	3.3 Eviction
	3.4 Correctness and Security
	3.5 Bandwidth Analysis

	4 Homomorphic Permutation from (Leveled) TFHE
	4.1 Overview of Our Construction
	4.2 Efficiency Analysis of Homomorphic Permutation
	4.3 Reducing Client to Server Communication via Homomorphic Expansion
	4.4 Putting it together

	5 Implementation and Evaluation
	5.1 Further optimizations
	5.2 Experimental Setup
	5.3 Bandwidth, Computation and Monetary Cost
	5.4 Latency and Access Time

	6 Conclusions and Future Directions
	7 Acknowledgements
	References
	A RLWE Key Switching and Substitution
	B Proofs
	C The evalWaksman Algorithm

