
Enhanced Chosen-Ciphertext Security and Applications

Dana Dachman-Soled1 Georg Fuchsbauer2 Payman Mohassel3

Adam O’Neill4

Abstract

We introduce and study a new notion of enhanced chosen-ciphertext security (ECCA) for public-
key encryption. Loosely speaking, in the ECCA security experiment, the decryption oracle provided
to the adversary is augmented to return not only the output of the decryption algorithm on a queried
ciphertext but also of a randomness recovery algorithm associated to the scheme. Our results mainly
concern the case where the randomness recovery algorithm is efficient.

We provide constructions of ECCA-secure encryption from adaptive trapdoor functions as defined
by Kiltz et al. (EUROCRYPT 2010), resulting in ECCA encryption from standard number-theoretic
assumptions. We then give two applications of ECCA-secure encryption: (1) We use it as a unify-
ing concept in showing equivalence of adaptive trapdoor functions and tag-based adaptive trapdoor
functions, resolving an open question of Kiltz et al. (2) We show that ECCA-secure encryption can be
used to securely realize an approach to public-key encryption with non-interactive opening (PKENO)
originally suggested by Damg̊ard and Thorbek (EUROCRYPT 2007), resulting in new and practical
PKENO schemes quite different from those in prior work.

Our results demonstrate that ECCA security is of both practical and theoretical interest.

1 Department of Electrical and Computer Engineering, University of Maryland, 3407 A.V. Williams Building, College
Park, MD 20742, USA. Email: danadach@ece.umd.edu. URL: http://ece.umd.edu/danadach.

2 Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria. Email:
georg.fuchsbauer@ist.ac.at. URL: http://www.di.ens.fr/~fuchsbau. Work started when at Bristol University, sup-
ported by EPSRC via grant EP/H043454/1.

3 Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, AB. Email:
pmohasse@cpsc.ucalgary.ca. URL: http://pages.cpsc.ucalgary.ca/~pmohasse.

4 Department of Computer Science, Georgetown University, 3700 Reservoir Road NW Washington, DC 20057. Email:
adam@cs.georgetown.edu. URL: http://cs.georgetown.edu/adam. Supported in part by NSF grants 0546614, 0831281,
1012910, and 1012798.

Contents

1 Introduction 1
1.1 ECCA Security Definition and Variants . 1
1.2 Constructions of ECCA-Secure PKE . 1
1.3 Applications to Adaptive Trapdoor Functions . 2
1.4 Applications to Public-Key Encryption with Non-Interactive Opening 2
1.5 Related Work . 4

2 Preliminaries 4
2.1 Notation and Conventions . 4
2.2 Public-key Encryption . 5

3 Enhanced Chosen-Ciphertext Security 5

4 Constructions of ECCA-Secure PKE 8
4.1 Adaptivity for Trapdoor Functions . 8
4.2 ECCA Security from Adaptive Trapdoor Functions . 8

4.2.1 Enhanced DCCA Security . 9
4.2.2 EDCCA Security from ATDFs . 10
4.2.3 From EDCCA to ECCA Security . 11

4.3 ECCA Security from Tag-Based Adaptive Trapdoor Functions 15

5 Application to Adaptive Trapdoor Functions 17
5.1 From ECCA Security to Adaptivity . 17
5.2 From ECCA Security to Tag-Based Adaptivity . 18

6 Application to PKE with Non-Interactive Opening 18
6.1 PKENO-Compatible ECCA-Secure PKE . 19
6.2 PKENO-Compatible PKE using Non-Interactive Zero-Knowledge 21

7 Efficient PKENO Constructions 22
7.1 Construction from DLIN Using Groth-Sahai . 22
7.2 Construction from Instance-Independent RSA . 25

A Standard Primitives 27

B From ATDF to ECCA via KEM/DEM 28

C PKENO-Compatible Tag-based PKE to PKENO-Compatible PKE 30

D Achieving Strong Proof Soundness 31

i

1 Introduction

This paper introduces and studies a new notion of security for public-key encryption (PKE) we call en-
hanced chosen-ciphertext security (ECCA). Besides being interesting in its own right, we find that ECCA
security plays a fundamental role in contexts where randomness-recovering encryption (as discussed in-
formally in e.g. [36]) is important, such as adaptive trapdoor functions [29] and PKE with non-interactive
opening [15] (which is useful in secure multiparty computation). We also believe ECCA will find further
applications in the future. Below we describe our results concerning ECCA in more detail; for a pictorial
summary, see Figure 1.

1.1 ECCA Security Definition and Variants

Recall that in the standard formulation of CCA security [37], the adversary, given a public key pk, must
guess which of the two possible messages its challenge ciphertext c encrypts, while being allowed to query
a decryption oracle on any ciphertext c′ different from c. Very informally, our “enhancement” is that the
decryption oracle, when queried on a ciphertext c′, returns not only the output of the decryption algorithm
of the scheme run on c′, but also of an associated randomness-recovery algorithm. This randomness-
recovery algorithm, given sk and an honestly generated encryption c of m with coins r, is guaranteed to
output some coins r′ such that the encryption of m with coins r′ is also c. (However, like the decryption
algorithm — which is only guaranteed to output the right message on honestly generated ciphertexts —
its behavior on other, maliciously generated ciphertexts depends on its specification.)

Note that in general we do not require that r = r′ above, but in the special case that this holds we say
that the scheme is uniquely randomness-recovering. Looking ahead, our constructions of ECCA-secure
PKE will achieve unique randomness-recoverability, but for some applications this is not strictly necessary
as long as the scheme has perfect correctness (i.e., zero decryption error).

Our study of ECCA security is largely motivated by the related concept of randomness-recovering
encryption, in which case the randomness-recovery algorithm is efficient. Indeed, we show that not every
CCA-secure randomness-recovering encryption scheme is ECCA-secure (cf. Proposition 3.2). This means
that in applications of randomness-recovering encryption that require ECCA security, it may not be
sufficient to use a scheme proven CCA-secure.

1.2 Constructions of ECCA-Secure PKE

ECCA-Secure PKE from “adaptive” TDFs. The first standard-model construction of CCA-secure
randomness-recovering PKE was achieved by Peikert and Waters [36], based on their new concept of
“lossy” trapdoor functions (TDFs). A line of subsequent work [38, 29] focused on achieving CCA-
secure PKE from progressively weaker assumptions on TDFs.1 This leads one to wonder whether these
assumptions suffice for ECCA-secure randomness-recovering PKE as well. Ideally, one would achieve
ECCA-secure, uniquely randomness-recovering PKE — the strongest form of randomness-recovery —
based on adaptive TDFs, the weakest of these assumptions. (Intuitively, adaptivity is a form of CCA
security for TDFs, asking that the TDF remain one-way even when the adversary may query an inversion
oracle on points other than its challenge.) This is exactly what our results obtain.

Challenges and techniques. Our construction is technically novel, as the construction of CCA-secure
encryption from adaptive TDFs in the earlier work of [29] seems to be neither randomness-recovering nor
ECCA-secure (we achieve both, and moreover unique randomness recovery). Indeed, in the construction
of [29] a general transform of [33] is used to convert a one-bit CCA-secure PKE from ATDFs to a multi-
bit CCA-secure one. However, this transform does not seem to preserve either randomness-recovery nor

1Wee [40] showed that a weaker notion of adaptivity for trapdoor relations suffices; however, as this is not an assumption
on trapdoor functions it does seem to yield randomness-recovering encryption and won’t be useful for our results.

1

ECCA-security of the one-bit scheme. Furthermore, the one-bit scheme of [29] — which works by re-
sampling a domain point x until the hardcore bit of x equals the message— is not uniquely randomness-
recovering, since decryption does not recover the “thrown away” x’s. (Note that the “näıve” one-bit
scheme from ATDFs that simply XOR’s the message bit with a hardcore bit of the ATDF is trivially
malleable by flipping the last bit of a ciphertext and thus is not CCA-secure.)

We solve these problems via a novel application of detectable CCA (DCCA) security, introduced
recently by Hohenberger et al. [27]. Informally, DCCA is defined relative to a “detecting” function
F that determines whether two ciphertexts are related; in the DCCA experiment, the adversary is not
allowed to ask for decryptions of ciphertexts related to the challenge ciphertext according to F . The work
of [27] gives a transform from any DCCA-secure PKE to a CCA-secure encryption one. (For the transform
to work, F must satisfy some conditions discussed in Section 4.2.1.) In particular, bit-by-bit encryption
using a 1-bit CCA-secure encryption scheme is DCCA-secure, thus encompassing the earlier work of [33].
Our novelty is that we construct a DCCA-secure scheme from ATDFs by using the “näıve” one-bit scheme
described above. We show this one-bit scheme is uniquely randomness-recovering and moreover satisfies
a notion of DCCA with analogous “enhanced” security (where the decryption oracle also returns coins).
We observe that (enhanced) DCCA (unlike CCA) is preserved under parallel composition (with a suitable
change to the detecting function), so we can easily get a multi-bit scheme as well. Finally, to go all the
way to ECCA-security, we show that the transform of [27] (in contrast to that of [33]) preserves both
this enhanced security as well as (unique) randomness recovery for the resulting scheme. We thus get
uniquely randomness-recovering ECCA-secure PKE from ATDFs as desired.

More efficient schemes. We note that the above is a feasibility result in terms of minimal assump-
tions. We also show more efficient constructions of ECCA-secure encryption from tag-bsaed ATDFs
as defined in [29] and from ATDFs having a large number of simultaneous hardcore bits (using the
KEM/DEM paradigm). See Section 4.3 and Appendix B for details.

1.3 Applications to Adaptive Trapdoor Functions

Going the other direction, we next give applications of ECCA-security to the theory of adaptive ATDFs.
Namely, we show (1) adaptive TDFs are in fact equivalent to uniquely randomness-recovering ECCA-
secure PKE. This helps us better understand the power and complexity of adaptive TDFs. We further-
more show (2) “tag-based” ATDFs as defined in [29] are likewise equivalent to uniquely randomness-
recovering ECCA-secure PKE. A corollary of (1) and (2) is that tag-based and non-tag-based ATDFs
are themselves equivalent, which resolves a foundational question left open by [29]. We note that it is in
fact much easier to construct uniquely randomness-recovering ECCA-secure PKE from tag-based ATDFs
than from non-tag-based ATDFs. (The rough intuition is that in the tag-based case, a signature scheme
can be used to “glue together” many one-bit encryptions via a common tag, namely a single verification
key.) Indeed, the apparent extra power of tag-based ATDFs makes it surprising that they turn out to be
equivalent to (non-tag-based) ATDFs. We note that unlike the TDF case, the equivalence of tag-based
and standard PKE is much easier to prove [30].

1.4 Applications to Public-Key Encryption with Non-Interactive Opening

Background. Public-key encryption with non-interactive opening (PKENO), introduced by Damg̊ard
an Thorbeck [16] and studied in detail by [15, 19, 20], allows a receiver to non-interactively prove to
anyone that a ciphertext c decrypts to a message m. As discussed in the above-mentioned work, PKENO
has applications to multiparty computation (e.g., auctions and elections), secure message transmission,
group signatures, and more. But despite numerous applications, such schemes have been difficult to
realize. Secure constructions of PKENO currently exist from identity-based encryption [15] and robust
non-interactive threshold encryption [20], which are somewhat heavy-weight primitives.

2

Resurrecting a simple approach. We show that ECCA-secure encryption can be used to securely
realize (for the first time) a simple approach to PKENO originally suggested by [16]. The basic idea
is to use a randomness-recovering PKE and have the receiver provide the recovered coins as the proof.
However, several issues need to be addressed for this approach to work. One problem already discussed
in [20, Section 4.1] is that there must also be a way for the receiver to prove the claimed behavior of the
decryption algorithm on ciphertexts that might not even be an output of the encryption algorithm, and
for which no underlying coins necessarily exist. (Note that such ciphertexts may or may not decrypt to
⊥ in general.) More fundamentally, we observe that the encryption scheme must be ECCA secure (which
was not even defined in prior work); standard chosen-ciphertext security is not enough here, because here
the adversary in the corresponding PKENO security game has the ability to see random coins underlying
ciphertexts of its choosing. We now describe our results in more detail.

PKENO-compatible ECCA encryption. First, we formalize a notion of PKENO-compatible ECCA-
secure encryption, for which we can overcome the above problems and safely use the underlying message
and randomness as the non-interactive opening of a ciphertext. There are two requirements for such a
scheme: (1) It has a “partial-randomness” recovery algorithm that, informally, recovers enough coins to
uniquely identify the underlying message. (Here “full” randomness-recovery is not needed, and would
not permit constructions where the “randomized” part of the ciphertext is still verifiable, like a one-
time signature or zero-knowledge proof.) This should also be true for ciphertexts outside the range of
the encryption algorithm but which do not decrypt to ⊥.2 (2) The scheme has ciphertext verifiability,
meaning one can check without the secret key (but possibly with the help of the recovered partial coins)
whether the decryption of a ciphertext is ⊥. Note that ECCA security of such schemes is defined with
respect to the partial-randomness recovery algorithm.

We also define an analogous notion of PKENO-compatible ECCA-secure tag-based PKE. We show
that one can efficiently transform such a scheme into a (non-tag-based) PKENO-compatible ECCA-secure
PKE scheme using either of the two “BCHK transforms” [8]. (Recall that [8] give a “basic” transform
using one-time signatures and a “more efficient” transform based on symmetric-key primitives.)

PKENO from ECCA+NIZK. We next show a generic way to achieve PKENO-compatibility from any
ECCA-secure randomness-recovering PKE by adding a non-interactive zero-knowledge (NIZK) proof of
“well-formedness” to a ciphertext, namely that exist some underlying message and random coins. (Indeed,
the idea of adding such a proof to achieve PKENO comes from [16, 20], although not in connection with
ECCA.) For the security proof to go through, the PKE scheme does not need to have unique randomness
recovery, but it needs perfect correctness. Moreover, we show the NIZK needs to be simulation-sound,
for reasons analogous to the proof of full anonymity of the group signature construction in [4].

Efficient PKENO-compatible tag-based PKE. The above construction is generic but inefficient.
Towards more efficient schemes, we show our construction of ECCA-secure tag-based PKE from tag-based
ATDFs can be made PKENO-compatible if its starting tag-based ATDF has “range verifiability” (i.e.,
anyone can verify preimage existence of a range point). We two efficient such tag-based ATDFs. The
first instantiates a general tag-based ATDF construction from [29] that combines a lossy and all-but-one
TDF as defined in [36]. Specifically, we use the lossy and all-but-one TDFs of Freeman et al. [18] based
on the decision-linear (DLIN) assumption. We show that in this case preimage existence is a “Groth-
Sahai” statement [25], for which we know efficient NIZK constructions in bilinear groups.3 Interestingly,
we show simulation-soundness is not needed in this case, illustrating another efficiency benefit over the
generic approach. The second is a tag-based ATDF from [29] based on the “instance-independent” RSA
assumption (II-RSA), which we observe intrinstically has range verifiability because it is a permutation.

2For example, consider a randomness-recovering scheme which always outputs ciphertexts whose last bit is “0,” but whose
decryption algorithm ignores this last bit. Then clearly we can still recover the randomness underlying ciphertexts whose
last bit is “1” despite the fact that such ciphertexts are outside the range of the encryption algorithm.

3Technically, when the NIZK is added, the tag-based ATDF is not a trapdoor function anymore is already a tag-based
PKE scheme (because the NIZK part is randomized), but we gloss over this technicality in our informal exposition.

3

 RR-ECCA

 PKENO

 TB-ATDF URR-ECCA ATDF

+ NIZK, perfect correctness

Figure 1: Relations between various primitives studied in this paper. “(U)RR-ECCA” is (uniquely)
randomness-recovering enhanced-chosen-ciphertext secure PKE. “ATDF” is adaptive trapdoor function.
“TB-ATDF” is tag-based adaptive trapdoor function. “PKENO” is public-key encryption with non-
interactive opening.

The resulting PKENO scheme based on II-RSA is quite practical (see Section 7.2 for details).

1.5 Related Work

ECCA is similar in spirit to coin-revealing selective opening attack (SOA-C) [9, 17, 3, 7]. In the latter
setting, there are say n ciphertexts encrypting related (but unknown) messages under independent random
coins, and the adversary requests the plaintexts and random coins corresponding to some subset of them;
the question is whether the “unopened” ciphertexts remain secure. However, it seems to us that SOA-C is
neither implied by, nor implies, ECCA. It is an interesting question whether ECCA has any applications
in the domain of SOA-C.

An analogue of ECCA (in the case of inefficient randomness-recovery) has been previously defined
for commitment schemes by Canetti et al. [11], which they call CCA-secure commitments. These are
commitment schemes that remain secure when the adversary has access to an unbounded decommitment
oracle that it can call on commitments other than the challenge. They are interested in such schemes that
are interactive but in the plain model, meaning there are no public keys. Thus, our setting seems incom-
parable (as we disallow interaction but allow public keys). However, we view their work as supporting
the claim that ECCA is a natural notion of security to consider for encryption.

Other variants of CCA-security for encryption considered before include replayable CCA security [10],
constrained CCA security [26], and detectable CCA security [27]. Notably, these are all relaxations of
CCA security, whereas we consider a strengthening. Another strengthening of CCA security previously
considered is plaintext awareness [6, 2, 5].

2 Preliminaries

2.1 Notation and Conventions

If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on inputs x1, . . . , xn and coins r and
denote the output by y. By y←$A(x1, . . . , xn) we denote the operation of picking r at random and letting
y ← A(x1, . . . , xn; r). Unless otherwise indicated, an algorithm may be randomized. “PPT” stands
for “probabilistic polynomial time” and “PT” stands for “polynomial time.” The security parameter is
denoted k ∈ N. If we say that an algorithm is efficient we mean that it is PPT (in the security parameter).
All algorithms we consider are efficient unless indicated otherwise.

4

2.2 Public-key Encryption

A public-key encryption scheme [24] with message-space MsgSp is a triple of algorithms PKE = (Kg,Enc,Dec).
The key-generation algorithm Kg returns a public key pk and matching secret key sk. The encryption
algorithm Enc takes pk and a plaintext m to return a ciphertext. The deterministic decryption algorithm
Dec takes sk and a ciphertext c to return a plaintext.

Correctness. An issue that will be more important than usual in our context is correctness, which
refers to how likely it is that an encrypted message decrypts to some other message. By default we require
perfect correctness: for all k ∈ N and m ∈ MsgSp(1k),

Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)←$ Kg(1k)]

is 1. If instead we allow this probability to be 1− ν(k) we say that that PKE has decryption error ν(·).

Tag-based. We say that PKE is tag-based [31] with tag-space TagSp if Enc,Dec take an additional
input t ∈ TagSp(1k) called the tag. Again, by default we require perfect correctness: for all k ∈ N,
m ∈ MsgSp(1k), and t ∈ TagSp(1k),

Pr[Dec(sk, t,Enc(pk, t,m))−m : (pk, sk)←$ Kg(1k)]

is 1. Decryption error is defined analogously.

Other standard primitives. We recall the definitions of other standard primitives such as (injective)
trapdoor functions in Appendix A.

3 Enhanced Chosen-Ciphertext Security

Randomness recovery. We start with a definition of randomness recovery for public-key encryp-
tion. For any public-key encryption scheme PKE = (Kg,Enc,Dec) we specify an additional randomness
recovery algorithm that takes a secret key sk and ciphertext c to return coins r; that is, we write
PKE = (Kg,Enc,Dec,Rec). To our knowledge, this notion has been discussed informally in the literature
(e.g. in [36]) but our formalization is novel. Suppose Enc draws its coins from Coins. We require that
for all messages m ∈ MsgSp(1k)

Pr[Enc(pk,m; r′) 6= c : (pk, sk)←$ Kg ; r←$Coins(1k) ; c← Enc(pk,m; r) ; r′ ← Rec(sk, c)]

is negligible. Note that we do not necessarily require r = r′; that is, the randomness recovery algorithm
need not return the same coins used for encryption; indeed, it may not be possible, information theo-
retically, to determine r from sk and c. We also do not require Rec to be efficient in general. But in
the special case that Rec is PT we say that PKE is randomness recovering. Moreover, if the forgoing
condition on Rec holds for r = r′ we say that PKE is uniquely randomness recovering.4 In the definition
that follows these are important special cases, but they are not assumed by the definition.

In the case of tag-based public-key encryption, Rec also takes a tag as input. In this case we require
that for all m ∈ MsgSp(1k) and t ∈ TagSp(1k)

Pr[Enc(pk, t,m; r′) 6= c : (pk, sk)←$ Kg ; r←$Coins(1k) ; c← Enc(pk, t,m; r) ; r′ ← Rec(sk, t, c)]

is negligible. Randomness-recovery and unique randomness-recovery are defined analogously.

ECCA definition. We are now ready to state our new definition. Let PKE = (Kg,Enc,Dec) be a
public-key encryption scheme. We associate to PKE and an adversary A = (A1, A2) an enhanced chosen-
ciphertext attack experiment,

4Looking ahead, it turns out that in some applications of ECCA, non-unique randomness recovery is OK as long as the
scheme has perfect correctness.

5

Experiment Expind-ecca
PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$ Kg(1k)

(m0,m1, St)←$A
Dec∗(sk,·)
1 (pk)

c←$ Enc(pk,mb)

d←$A
Dec∗(sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, c)
m← Dec(sk, c)
r′ ← Rec(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query c to its oracle.
Define the ind-ecca advantage of A against PKE as

Advind-ecca
PKE,A (k) = 2 · Pr

[
Expind-ecca

PKE,A (k) outputs 1
]
− 1 .

We say that PKE is enhanced chosen-ciphertext secure (ECCA-secure) if Advind-ecca
PKE,A (·) is negligible for

every efficient A.
Note that when PKE is randomness recovering, the ECCA experiment is efficient. In general, however,

one can still ask whether a scheme meets the notion of ECCA even when it is not randomness recovering.
In this case, it may still be possible to simulate the ECCA experiment efficiently since in the proof of
security we are additionally given the code of the adversary A (and so, for example, the randomness for
encryption might be efficiently extractable from the code of A using non-black-box techniques). We leave
exploration of ECCA security relative to an inefficient Rec algorithm for future work.

(Not) allowing decryption error. Unless otherwise specified, we will always require that an
ECCA-secure PKE scheme has perfect correctness. Indeed, curiously, it turns out that an ECCA-secure,
randomness-recovering PKE scheme is easy to construct given any CCA-secure one if we allow negligi-
ble decryption error — however, an ECCA-secure scheme with negligible decryption error will not be
sufficient in the applications we consider.5 (This observation and example are due to [1].)

Let PKE = (Kg,Enc,Dec) be a CCA-secure scheme. Assume messages and the coins used by the
encryption algorithm for this scheme both have length k, and let n(k) be the length of a ciphertext
produced by Enc. We construct a scheme PKE′ = (Kg,Enc′,Dec,Rec′) in which the coins used by the
encryption algorithm have length 2k + n(k), defined via:

Alg Enc′(pk,m; r′)
r1‖r2‖r3 ← r′ // |r1| = |r2| = k, |r3| = n(k)
If r1 = 0k then return r3
Else return Enc(pk,m; r2)

Alg Rec′(sk, c)
Return 0k‖0k‖c

Proposition 3.1 Suppose PKE is CCA-secure. Then PKE′ is randomness-recovering and ECCA-secure.
However, PKE′ has decryption error 2−k.

Proof: The decryption error is evident from the construction. We next claim that PKE′ is randomness-
recovering. This is so because if c = Enc(pk,m; r) then Enc′(pk,m; 0k||0k||c) = c. We also claim that
PKE′ is ECCA-secure. The intuition is that oracle Dec∗(sk, c) in the ECCA game returns m = Dec(sk, c)
as per the original scheme and also returns 0k||0k||c, but the latter is not additional information for the
adversary since it already had c (which it queried). We omit the formal proof.

CCA does not imply ECCA. A next natural question to ask is whether, assuming perfect correctness,
ECCA security is stronger requirement than CCA security. We answer this question affirmatively by
showing that, given a perfectly correct, CCA-secure randomness-recovering PKE scheme, we can construct
another randomness-recovering PKE scheme that is still CCA-secure but is not ECCA-secure. This
motivates the construction of specialized ECCA-secure schemes in Section 4.

5The resulting ECCA-secure scheme does not have unique randomness recovery, though. In the case of unique randomness
recovery, schemes with negligible decryption error may still have some applications, but for simplicity we do not discuss it
in the paper.

6

Consider a randomness-recovering CCA-secure scheme PKE = (Kg,Enc,Dec). We transform PKE to
a new scheme PKE∗ = (Kg∗,Enc∗,Dec∗) which is still CCA-secure but is not ECCA-secure. The idea is
to embed a “test” ciphertext in the public key of the new scheme, such that its decryption algorithm
returns the secret key if given as input some randomness consistent with this test ciphertext. Formally,
PKE∗ is constructed as follows (where we implicitly assume the public key is contained in the secret key):

Alg Kg∗(1k)
(pk, sk)←$ Kg(1k)
r←$ {0, 1}k
c∗ ← Enc(pk, 0 ; r)
Return ((pk, c∗), sk)

Alg Enc∗((pk, c∗),m)
c←$ Enc(pk,m)
Return c‖0

Alg Dec∗(sk, c‖b)
If b = 1 and Enc(pk, 0; c) = c∗

then return sk
Return Dec(sk, c)

Note that using the extra “flag bit” appended to ciphertexts ensures that PKE∗ maintains perfect cor-
rectness.

Proposition 3.2 Assuming PKE is CCA-secure and has perfect correctness, PKE∗ is CCA-secure but is
not ECCA-secure.

Proof: To show that PKE∗ is not ECCA-secure, consider the following ECCA adversary A = (A1, A2)
against it:

• Algorithm A1 on input the public key (pk, c∗) queries c∗ to the decryption oracle to receive (0, r′) for
some r′. It then queries r′‖1 to the decryption oracle and receives sk. Finally, it outputs (0, 1) as the
challenge messages and sk as the state.

• A2 on inputs (pk, c∗), c‖0, sk computes b← Dec(sk, c) and returns b.

It is clear that A achieves ECCA advantage 1.

We now need to show that PKE∗ remains CCA-secure. We sketch a hybrid argument to show this. Let A
be a CCA adversary against PKE∗. We define a second game where we replace the public key in the CCA
experiment (pk, c∗) with c∗ generated as c∗ ← Enc(pk, 1; r). If A’s advantage differs significantly between
these two games, we can contradict CCA security of PKE via the following CCA adversary A′ = (A′1, A

′
2):

• Algorithm A′1 on input pk outputs (0, 1) as the challenge messages.

• On inputs pk, c∗, algorithm A′2 runs A1 on input (pk, c∗), answering any decryption query c as fol-
lows: if c = c∗ then return 0, else return Dec(sk, c) using its own decryption oracle. Eventually A1

outputs (m0,m1,St). Then A′2 picks a random bit b and sets c← Enc(pk,mb). It runs A2 on inputs
(pk, c∗), c,St , answering decryption queries as before.

Note that in this second game, A’s decryption oracle for Dec∗ behaves identically to a decryption oracle
for Dec, assuming PKE has perfect correctness: Indeed, the only way A’s decryption oracle could behave
differently from Dec is for A to query some r′‖1 such that Enc(pk, 0; r′) = c∗. But because of how the
game works we know that also Enc(pk, 1; r) = c∗ for some r. But Dec(sk, c∗) is a single value, either 0 or
1, and thus violating perfect correctness.

Tag-based definition. Let TB-PKE = (Kg,Enc,Dec) be a tag-based public-key encryption scheme
with tag-space TagSp. We associate to TB-PKE and an adversary A = (A1, A2, A3) a tag-based enhanced
chosen-ciphertext attack experiment,

Experiment Expind-tb-ecca
TB-PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$ Kg(1k)
t←$A1(1

k)

(m0,m1, St)←$A
Dec∗(sk,·,·)
2 (pk, t)

c←$ Enc(pk, t,mb)

d←$A
Dec∗(sk,·,·)
3 (pk, t, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, t, c)
m← Dec(sk, t, c)
r′ ← Rec(sk, t, c)
Return (m, r′)

7

Above we require that the output of A2 satisfies |m0| = |m1| and that A3 does not make a query of the
form Dec∗(sk, t, ·) to its oracle. Define the ind-tb-ecca advantage of A against PKE as

Advind-tb-ecca
PKE,A (k) = 2 · Pr

[
Expind-tb-ecca

PKE,A (k) outputs 1
]
− 1 .

We say that TB-PKE is tag-based enhanced chosen-ciphertext secure (TB-ECCA-secure) if Advind-tb-eccaPKE,A (·)
is negligible for every efficient A.

4 Constructions of ECCA-Secure PKE

We now detail several constructions of ECCA secure encryption. They are based on notions of adaptivity
for trapdoor functions introduced in [29] so accordingly we recall those first.

4.1 Adaptivity for Trapdoor Functions

Adaptive trapdoor functions. Let TDF = (Tdg,Eval, Inv) be an (injective) trapdoor function family.
We associate to TDF and an inverter I an adaptive one-way experiment,

Experiment Expaow
TDF,I(k)

(ek, td)←$ Tdg(1k) ; x←$ {0, 1}k
y ← Eval(ek, x)

x′←$ I Inv(td,·)(ek, y)
If x = x′ then return 1 else return 0

Above we require that I does not query y to its oracle. Define the aow-advantage of A against TDF as

Advaow
TDF,I(k) = Pr

[
Expaow

TDF,I(k) outputs 1
]
.

We say that TDF is adaptive one-way (or is an ATDF) if Advaow
TDF,I(·) is negligible for every efficient I.

Tag-based adaptivity. Let TB-TDF = (Tdg,Eval, Inv) be a tag-based trapdoor function family. We
associate to TDF and an inverter I = (I1, I2) a tag-based adaptive one-way experiment,

Experiment Exptb-aow
TB-TDF,I(k)

(ek, td)←$ Tdg(1k)
t←$ I1(1

k) ; x←$ {0, 1}k
y ← Eval(ek, t, x)

x′←$ I
Inv(td,·,·)
2 (ek, t, y)

If x = x′ then return 1 else return 0

Above we require that I2 does not make a query of the form Inv(td, t, ·) to its oracle. Define the tb-aow-
advantage of A against TB-TDF as

Advtb-aow
TB-TDF,I(k) = Pr

[
Exptb-aow

TB-TDF,I(k) outputs 1
]
.

We say that TDF is tag-based adaptive one-way (or is a TB-ATDF) if Advtb-aow
TDF,I (·) is negligible for every

efficient I.

Realizations. In [29] it is shown that ATDFs and tag-based ATDFs can be realized from lossy TDFs [36]
and correlated-product secure TDFs [38], which can be realized from a variety of standard number-
theoretic and lattice-based assumptions. Furthermore, tag-based ATDFs were constructed from a strong
but non-decisional (i.e., search) problem on RSA in [29].

4.2 ECCA Security from Adaptive Trapdoor Functions

Here we construct ECCA-secure public-key encryption from adaptive TDFs. We note that our construc-
tion applies to general ATDFs; in the case of ATDFs with a linear number of hardcore bits we obtain a
much more efficient construction, see Appendix B for details.

8

Overview and intuition. As in [29] (which constructs CCA-secure PKE from ATDFs), our approach
involves first constructing a one-bit encryption scheme and then transforming it into a multi-bit scheme.
In doing so we heavily use the recent approach of Hohenberger et al. [27] and their notion of detectable
CCA security (DCCA); this should be contrasted with [29] who rely on [33] instead. Let us explain why.

Both [27] and [33] provide a way to “tie together” many one-bit ciphertexts via “inner” and “outer”
encryption layers but differ in which layer contains the one-bit ciphertets. In [33], the inner layer is a
multi-bit q-bounded non-malleable encryption scheme while the outer later is the concatenation of one-
bit ciphertexts. This means that without a randomness-recovering inner layer, [33] does not preserve
randomness-recovery of the outer one-bit scheme. Such an inner layer seems hard to construct, as
known approaches to non-malleability [35, 12] crucially use randomness in an un-invertible way in their
encryption algorithms (e.g., to generate a signature key-pair or a zero-knowledge proof).

On the other hand, in Hohenberger et al. [27] it is the inner layer that is the concatenation of one-bit
ciphertexts, which obviates the problem since this inner layer is also used to encrypt randomness for use
by the outer layer and thus the latter does not need to be randomness-recovering for the overall scheme
to be so. Surprisingly, we also show that when this inner layer is randomness recovering then in all hybrid
games used for the security proof the simulator is even able to the return randomness corresponding to
valid ciphertexts, and thus the overall scheme also has ECCA security.

4.2.1 Enhanced DCCA Security

The notion of Detectable Chosen Ciphertext (DCCA) security was recently introduced by [27]. We
define here the notion of enhanced DCCA (EDCCA) security, which parallels the notion of enhanced
CCA security. In our definition, we require that the DCCA scheme be both enhanced and randomness-
recovering. This is due to the fact that our application of DCCA requires both properties. However, the
more general notion of enhanced DCCA security (with no efficient randomness-recovering property) may
also be of interest.

Detectable Encryption Schemes. A detectable encryption scheme is a tuple of probabilistic poly-
nomial time algorithms (Kg,Enc,Dec,F) such that: (1) (Kg,Enc,Dec) constitute a public-key encryption
scheme, and (2) F : (pk, c′, c) 7→ b ∈ {0, 1}, the detecting function F takes as input a public key pk and
two ciphertexts c′, c and outputs a bit.

Additionally, the detecting function F must have the following property: Informally, given the de-
scription of F and a public key pk, it it should be hard to find a second ciphertext c′ that is related to
a “challenge” ciphertext c, i.e. such that F(pk, c′, c) = 1, before being given c. See [27] for the formal
definition of the unpredictability experiment.

EDCCA definition. We are now ready to define enhanced, detectable chosen ciphertext security. Let
PKE = (Kg,Enc,Dec,Rec,F) be a randomness-recovering public-key encryption scheme. We associate to
PKE and an adversary A = (A1, A2) an enhanced detectable chosen-ciphertext attack experiment,

Experiment Expind-edcca
PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$ Kg(1k)

(m0,m1, St)←$A
Dec∗(⊥,sk,·)
1 (pk)

c∗←$ Enc(pk,mb)

d←$A
Dec∗(c∗,sk,·)
2 (pk, c∗, St)

If d = b then return 1 else return 0

Oracle Dec∗(c∗, sk, c)
If c∗ 6= ⊥ and F(pk, c∗, c) = 1

then return ⊥
Else m← Dec(sk, c)
r′ ← Rec(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query c∗ to its oracle.
Define the ind-edcca advantage of A against PKE as

Advind-edcca
PKE,A (k) = 2 · Pr

[
Expind-edcca

PKE,A (k) outputs 1
]
− 1 .

We say that PKE is enhanced detectable chosen-ciphertext secure (EDCCA-secure) if

9

• Encryptions are indistinguishable: Advind-edcca
PKE,A (·) is negligible for every efficient A, AND

• F is unpredictable: Every efficient adversary A has negligible probability of succeeding in the
unpredictability experiment (see [27]).

4.2.2 EDCCA Security from ATDFs

We construct an EDCCA scheme from ATDFs as follows: Let TDF = (Tdg,Eval, Inv) be a trapdoor
function with hardcore bit hc, for example the Goldreich-Levin bit [23]. Define the following multi-bit
public-key encryption scheme EDCCA[TDF] = (KgD,EncD,DecD):

Alg KgD(1k)
(ek, td)←$ Tdg(1k)
Return (ek, td)

Alg EncD(ek,m = m1, . . . ,m`)
x1←$ {0, 1}k; . . . ;x`←$ {0, 1}k
Return C = (Eval(ek, x1), hc(x1)⊕m1,

. . . ,Eval(ek, x`), hc(x`)⊕m`)

Alg Dec(td, C)
Parse C = (y1, β1, . . . , y`, β`)
For 1 ≤ i ≤ `

mi = hc(Inv(td, yi))⊕ βi
Return m1, . . . ,m`

The Detecting Function FD: On input pk, C∗ = (y∗1, β
∗
1 , . . . , y

∗
` , β
∗
`) and C = (y1, β1, . . . , y`, β`)

(where the β∗i , βi are bits), we define:

FD(pk, C∗, C) =

{
1 if for some i, j ∈ [`], y∗i = yj
0 otherwise

Claim 4.1 Suppose TDF is adaptive one-way. Then EDCCA[TDF] defined above is a multi-bit EDCCA-
secure encryption scheme.

We give some intuition for why the claim holds. Assume towards contradiction that we have an
efficient adversary A = (A1, A2) breaking EDCCA[TDF] by distinguishing encryptions of two messages
m0,m1 with advantage 1/p(k) for some polynomial p(·). Using a standard hybrid argument, we have that
there must be some index 1 ≤ i ≤ ` such that A successfully distinguishes encryptions of the messagem∗0 =
m1

0, . . . ,m
i−1
0 ,mi

0,m
i+1
1 , . . . ,m`

1 from encryptions of the message m∗1 = m1
0, . . . ,m

i−1
0 ,mi

1,m
i+1
1 , . . . ,m`

1,

where mj
b denotes the j-th bit of message mb, with advantage 1/(` · p(k)). Note that the two messages,

m∗0,m
∗
1, differ only in the setting of the i-th bit. Now assuming the existence of A, we construct an

efficient adversary A′ breaking adaptive one-wayness of TDF.

More specifically, A′ receives ỹ = Eval(ek, x̃) externally and uses A to guess hc(Inv(td, ỹ)) with ad-
vantage 1/(` · p(k)). A′ does this by simulating the EDCCA decryption oracle for A = (A1, A2) using its
inversion oracle Inv.

First, we consider simulating responses to queries made by A1. In this case, we have that with
overwhelming probability, for every decryption query C = (y1, β1, . . . , y`, β`) made by A1, it is the case
that yj 6= ỹ for all 1 ≤ j ≤ `. Thus, A′ can decrypt correctly using oracle access to Inv.

At the end of the first phase, A′ prepares the challenge ciphertext C∗ by choosing x1, . . . , xi−1, xi+1, . . . x`
and a bit β̃ uniformly at random and setting

C∗ =
(

Eval(ek, x1), hc(x1)⊕m1
0, . . . , ỹ, β̃, . . . ,Eval(ek, x`), hc(x`)⊕m`

1

)
.

Now, to answer EDCCA decryption queries C submitted by A2, A
′ checks whether FD(pk, C∗, C) = 1.

If yes, A′ perfectly simulates the decryption oracle by returning ⊥. If not, then this implies in particular
that on input C = (y1, β1, . . . , y`, β`), we have that yj 6= ỹ for all 1 ≤ j ≤ `. In this case, A′ can use its
access to the Inv oracle in order to respond correctly to the decryption query.

Finally, A returns a bit d. A′ computes α = mi
d ⊕ β̃ and guesses that hc(Inv(td, ỹ)) = α, thus

succeeding with advantage 1/(` · p(k)).

10

We omit the technical definition of A′, the analysis of the success probability of A′ and the reduction
from guessing a hardcore bit with non-negligible advantage to inverting the adaptive trapdoor function
with non-negligible probability, since they are standard.

Remark 4.2 Scheme EDCCA[TDF] defined above is also uniquely randomness-recovering. (This will be
crucial for our application to adaptive trapdoor functions in Section 5.) It is also perfectly correct.

4.2.3 From EDCCA to ECCA Security

We next show that the construction of [27] designed to build a CCA-secure scheme from a DCCA
secure one allows us to go from EDCCA to ECCA. That is, beyond what was already shown in [27]
we show that the construction preserves “enhanced” security; it also preserves (unique) randomness-
recoverability. Specifically, we instantiate the construction of [27] with the above randomness recovering
EDCCA scheme, a CPA-secure scheme with perfect correctness, and a 1-bounded CCA-secure6 scheme
with perfect correctness (note that all these components can be constructed in a black-box manner from
ATDFs):

The EDCCA scheme, EDCCA[TDF]: We instantiate the EDCCA scheme with the scheme given in
Section 4.2.2. We note that for simplicity, we sometimes refer to the detecting function FD as
checking for a “quoting” attack on the challenge ciphertext.

The CPA scheme, CPA[TDF]: We instantiate the CPA scheme with the same scheme EDCCA[TDF]
as above. Note that this scheme has perfect correctness since the Inv algorithm of the ATDF is
required to invert correctly with probability 1.

The 1-bounded CCA scheme, 1-CCA[TDF]: Since we have already observed above that we can
construct a multi-bit CPA scheme with perfect correctness from ATDFs, we may now use any
construction of a multi-bit 1-bounded CCA scheme with perfect correctness from a multi-bit CPA
scheme with perfect correctness. This can be done in a black-box manner via the [12] construction.
It is not hard to see that the construction of [12] preserves the perfect correctness property.

The Multi-Bit (Uniquely Randomness Recovering) ECCA Scheme. We present a multi-bit,
uniquely randomness recovering, ECCA-secure encryption scheme PKE[TDF] = (KgECCA,EncECCA,DecECCA)
using the schemes EDCCA[TDF] = (KgD,EncD,DecD), 1-CCA[TDF] = (Kg1b,Enc1b,Dec1b), and CPA[TDF] =
(KgCPA,EncCPA,DecCPA) defined above.

Alg KgECCA(1λ)
(pkin, skin)←$ KgD(1λ)
(pkA, skA)←$ Kg1b(1λ)
(pkB, skB)←$ KgCPA(1λ)
pk ← (pkin,pkA, pkB)
sk ← (skin, skA, skB)
Return (pk, sk)

Alg EncECCA(pk,m)
(rA, rB)←$ {0, 1}λ
CTin←$ EncD(pkin, (rA, rB,m))
CTA ← Enc1b(pkA, CTin; rA)
CTB ← EncCPA(pkB, CTin; rB)
Return CT = (CTA, CTB)

Alg DecECCA(sk, CT)
CTin←$ Dec1b(skA, CTA)
(rA, rB,m)← DecD(skin, CTin)
rin ← RecD(skin, CTin)
If CTA = Enc1b(pkA, CTin; rA)
and CTB = EncCPA(pkB, CTin; rB)

return (rA, rB,m, rin)
Else return ⊥

Theorem 4.3 PKE[TDF] is enhanced CCA-secure and uniquely randomness recovering with perfect cor-
rectness under the assumptions that EDCCA[TDF] is enhanced DCCA-secure and uniquely randomness
recovering, 1-CCA[TDF] is 1-bounded CCA secure with perfect correctness, and CPA[TDF] is CPA-secure
with perfect correctness.

6By 1-bounded CCA security, we mean an encryption scheme that is secure under an indistinguishability attack when
the adversary may make only a single decryption query to its oracle either before or after receiving the challenge ciphertext.

11

Note that Theorem 4.3 implies that there is a black-box construction of multi-bit, uniquely randomness
recovering, enhanced CCA-secure encryption from ATDF.

Proof: The proof is based on [27]. We begin by defining a game which is slightly different than the
regular enhanced CCA game, but will be useful in our analsysis of PKE[TDF]:

Enhanced Nested Indistinguishability Game for scheme PKE[TDF]: We associate to the scheme
PKE[TDF] and to an adversary A = (A1, A2) an enhanced nested indistinguishability under chosen ci-
phertext attack experiment,

Experiment Expnested-ind-ecca
PKE[TDF],A (k)

b, z←$ {0, 1} ; (pk, sk)←$ KgECCA(1k)

(m0,m1, St)←$A
Dec∗ECCA(sk,·)
1 (pk)

rA, rB←$ {0, 1}λ
If z = 0

CT ∗in←$ EncD(pkin, (rA, rB,mb))
Else if z = 1

CT ∗in←$ EncD(pkin, 0
|rA|+|rA|+|mb|)

CT ∗A ← Enc1b(pkA, CT
∗
in; rA)

CT ∗B ← EncCPA(pkB, CT
∗
in; rB)

CT ∗ ← (CT ∗A, CT
∗
B)

z′←$A
Dec∗ECCA(sk,·)
2 (pk, CT ∗, St)

If z′ = z then return 1 else return 0

Oracle Dec∗ECCA(sk, c)
m← DecECCA(sk, c)
r′ ← RecECCA(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query CT ∗ to its
oracle. In the following, we refer to decryption queries made by A1 as “Phase 1 queries” and to decryption
queries made by A2 as “Phase 2 queries.”

Define the nested-ind-ecca advantage of A against PKE[TDF] as

Advnested-ind-ecca
PKE[TDF],A (k) = 2 · Pr

[
Expnested-ind-ecca

PKE[TDF],A (k) outputs 1
]
− 1 .

We say that PKE[TDF] has enhanced nested indistinguishable encryptions under a chosen ciphertext attack
if Advnested-ind-ecca

PKE[TDF],A (·) is negligible for every efficient A.

It should be clear that enhanced nested indistinguishability of PKE[TDF] under a chosen ciphertext attack
implies enhanced CCA security of PKE[TDF] (via a simple hybrid argument).

Consider the following event:

Definition 4.4 (The Bad Query Event) We say that a bad query event has occurred during an
execution of this experiment if in Phase 2, the adversary A makes a decryption query of the form
CT = (CTA, CTB) such that

• (Quoting attack on inner ciphertext:) FD(pkin, CT
∗
in,Dec1b(skA, CTA)) = 1 AND

• (Query ciphertext differs from challenge ciphertext in first half:) CT ∗A 6= CTA.

We will show that Bad Query Event occurs with at most negligible probability when z = 1 and when
z = 0. Once we have shown this, Nested Indistinguishability of PKE[TDF] will follow in a straightforward
manner.

Lemma 4.5 Bad Query Event occurs with negligible probability when z = 1.

We prove Lemma 4.5 via a sequence of hybrids:

12

Hybrid H0: Proceeds exactly as the nested indistinguishability game for the case where z = 1.

Hybrid H1: Proceeds exactly like H0 except that CT ∗B is set to be: CT ∗B = EncCPA(pkB, 1
k; rB).

Claim 4.6 The probability of a Bad Query Event in H1 and H0 differs by a negligible amount.

Since skB is never used by the decryption oracle and since the decryption oracle can detect all Bad Query
Events, the claim follows immediately by a reduction to the semantic security of CPA[TDF].

Hybrid H2: Proceeds exactly like H1 except CT ∗A is set to be CT ∗A = Enc1b(pkA, 1
k; rA).

Claim 4.7 The probability of Bad Query Event in H2 is negligible.

The claim follows due to the fact that the challenge ciphertext in H2 contains no information about CT ∗in
and since the detecting function FD is unpredictable.

Claim 4.8 The probability of a Bad Query Event in H2 and H1 differs by a negligible amount.

Intuitively, Claim 4.8 will reduce to the 1-bounded CCA security of 1-CCA[TDF].

Proof: Assume towards contradiction that there is some efficient adversary A which causes Bad Query
Event to occur with negligible probability in H2 and non-negligible probability in H1. We denote by q
the (polynomial) number of Phase 2 queries made by A. By standard hybrid argument, there must be
some index i ∈ [q] such that the i-th Phase 2 query made by A in H1 causes Bad Query Event to occur
with non-negligible probability. On the other hand, for every index i, the i-th Phase 2 query made by A
in H2 causes Bad Query Event to occur with at most negligible probability.

Fix such i. We construct an adversary B which breaks the security of 1-CCA[TDF]. B will receive a
challenge ciphertext that is either an encryption of CT ∗in or of 1n. In case the challenge ciphertext was an
encryption of CT ∗in, B will perfectly simulate the adversary’s view in H1. In case the challenge ciphertext
was an encryption of 1n, B will perfectly simulate the adversary’s view in H2.

Moreover, B will be able to detect whether Bad Query Event occurred in the i-th Phase 2 query of the
experiment. Thus, if Bad Query Event occurs in the i-th query with non-negligible probability in H1 and
negligible probability in H2, then B will be able to break security of 1-CCA[TDF].

Formally, consider the following Simulated Decryption Oracle:

Simulated Decryption Oracle:

• Decrypt CTB using skB to retreive CTin.

• Decrypt CTin using skin to retrieve (rA, rB,m).

• Use the randomness recovering algorithm RecD and skin to retrieve rin = RecD(skin, CTin).

• Check that CTA and CTB were formed correctly with respect to (rA, rB, CTin). If not, output ⊥.
Otherwise, output (m, rA, rB, rin).

13

Note that for every possible string CT submitted to the oracle, the output of the Simulated Decryp-
tion Oracle and the real decryption oracle is identical since 1-CCA[TDF] and CPA[TDF] have perfect
correctness.

Now, B does the following: B receives pkA from its external 1-bounded CCA challenger and generates
(skB, pkB), (skin,pkin) honestly.

B and A interact in Phase 1 (while B uses the Simulated Decryption Oracle to respond to decryp-
tion queries). At some point A outputs m0 and m1. B computes CT ∗in = EncD(pkin, 0

`) and CT ∗B =
EncCPA(pkB, 1

k). It outputs CT ∗in and 1k as messages m0,m1 to its external 1-bounded CCA challenger
and receives a ciphertext CT ∗A. B then outputs CT ∗ = (CT ∗A, CT

∗
B) to A. B continues interacting with A

during Phase 2, while using the Simulated Decryption Oracle as above. When B receives the i-th Phase
2 query of A, denoted by (CT iA, CT

i
B), B checks for the Bad Query Event by doing the following:

• B checks if CT iA 6= CT ∗A.

• If so, B submits CT iA to its external 1-bounded CCA decryption oracle and receives CT iin in response.

• B checks whether FD(pkin, CT
∗
in, CT

i
in) = 1 (i.e. whether a quoting attack occurred). If yes, B

outputs 0. Otherwise, B outputs 1.

Since by assumption we have that Bad Query Event occurs with non-negligible probability at the i-th
Phase 2 query in H1 and occurs with negligible probability at the i-th Phase 2 query in H2, we have that B
achieves non-negligible advantage in the external 1-bounded CCA security game. This is a contradiction
to the security of 1-CCA[TDF] and so the claim is proved.

Lemma 4.5 follows immediately from Claims 4.6, 4.7 and 4.8.

We now turn to the case where z = 0:

Lemma 4.9 Bad Query Event occurs with negligible probability when z = 0.

Intuitively, Lemma 4.9 will reduce to the enhanced detectable CCA security of EDCCA[TDF].

Proof: We have already shown that when z = 1, Bad Query Event occurs with negligible probability.
We will now show that if there is an efficient adversary A causing Bad Query Event to occur with non-
negligible probability when z = 0, then there is a ppt adversary B breaking the security of EDCCA[TDF].

Assume towards contradiction that there is an efficient adversary A which causes Bad Query Event to
occur with non-negligible probability when z = 0. Consider the following efficient adversary B which
interacts with A in a run of the nested indistinguishability experiment, while externally participating in
an enhanced DCCA indistinguishability experiment. B does the following:

Setup: B receives pkin externally from the EDCCA experiment. B honestly generates (skA,pkA), (skB, pkB).

Phase 1: B simulates the honest (enhanced) decryption oracle using skA and the decryption oracle in
the external enhanced DCCA experiment. At the end of this phase A will output m0,m1.

Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}λ. Send to the external enhanced DCCA
challenger M0 = (rA, rB,mβ) and M1 = 0|M0| and obtain the ciphertext CT ∗in. Compute CT ∗A and
CT ∗B honestly, given CT ∗in, rA, rB. Return CT ∗ = (CT ∗A, CT

∗
B) to A.

Phase 2: WhenA queries the decryption oracle on CT = (CTA, CTB), compute CTin = Dec1b(skA, CTA).

14

Case 1 (a bad query event): CTA 6= CT ∗A and yet FD(pkin, CT
∗
in, CTin) = 1 (i.e. a quoting attack

occurred), then abort and output the bit 0.

Case 2 (partial match with challenge): CTA = CT ∗A, then return ⊥ to A.

Otherwise, query the external EDCCA decryption oracle to decrypt CTin and return its randomness.
Check that CTA and CTB are consistent with the response. If not, return ⊥. Otherwise, return
the message and all randomness.

Output: When A outputs a bit, B outputs 0 or 1 with probability 1/2.

We argue that B correctly answers all decryption queries except when it aborts. This will follow imme-
diately once we establish that B always answers correctly by returning ⊥ when a Case 2 query occurs.
We next show that this is indeed the case.

Since a decryption query on the challenge is forbidden by the experiment, if CTA = CT ∗A, then CTB 6=
CT ∗B. However, in this case CT must be an invalid ciphertext. We see this as follows: Since de-
cryption is deterministic, we have that CTin = Dec1b(skA, CTA) = Dec1b(skA, CT

∗
A) and (rA, rB,m) =

DecD(skin, CTin). But this means that there is only one possible ciphertext CTB that matches CTA =
CT ∗A. Since the challenge CT ∗ is a valid ciphertext, CT ∗B must be this value and so CT = (CT ∗A, CTB)
must be invalid.

Now, if a Case 1 query occurs, B cannot decrypt using its EDCCA decryption oracle and must abort
the experiment. But in this case, B can already guess that z = 0 since when z = 1, Case 1 occurs with
negligible probability.

More specifically, when B aborts, it causes the external EDCCA experiment to output 1 with high
probability. Moreover, when B does not abort, it causes the external EDCCA experiment to output 1 with
probability 1/2. Since B aborts with non-negligible probability when z = 0, B causes the experiment’s
output to be 1 with probability non-negligibly greater than 1/2. This is a contradiction to the security
of EDCCA[TDF] and so the claim is proved.

Finally, assuming that Bad Query Event occurs with negligible probability both when z = 0 and z = 1,
we show that Nested Indistinguishability under chosen ciphertext attacks holds. This is straightforward
via a reduction to the enhanced DCCA security of EDCCA[TDF].

4.3 ECCA Security from Tag-Based Adaptive Trapdoor Functions

We next give more efficient constructions of ECCA-secure public-key encryption from tag-based adaptive
trapdoor functions introduced by Kiltz et al. [29].

From tag-based ATDF to tag-based ECCA-secure PKE. It is straightforward to construct a
multi-bit tag-based ECCA-secure PKE scheme from a tag-based ATDF, as follows. Let TB-TDF =
(Tdg,Eval, Inv) be a tag-based adaptive trapdoor function family with tag space TagSp and hardcore bit
hc. Define the following tag-based public-key encryption scheme TB-PKE[TB-TDF] = (Kg,Enc,Dec) with
tag space TagSp and message space {0, 1}`:

Alg Kg(1k)
(ek, td)←$ Tdg(1k)
Return (ek, td)

Alg Enc(ek, t,m)
For i = 1 to ` do:

xi←$ {0, 1}k
ci,1 ← Eval(ek, t, xi)
ci,2 ← hc(x)⊕m[i]

c← ((c1,1, c1,2), . . . , (c`,1, c`,2))
Return c

Alg Dec(td, t, c)
((c1,1, c1,2), . . . , (c`,1, c`,2))← c
For i = 1 to ` do:

xi ← Inv(td, ci,1)
m[i]← hc(xi)⊕ ci,2

Return m

15

Remark 4.10 Scheme TB-PKE[TB-TDF] defined above is uniquely randomness recovering.

Proposition 4.11 Suppose TB-TDF is adaptive one-way. Then TB-PKE[TB-TDF] defined above is
ECCA-secure.

We omit the proof, which is routine.

From ECCA-secure tag-based PKE to ECCA-secure PKE. Note that Kiltz et al. [29] show a
construction of CCA-secure PKE from any CCA-secure tag-based PKE using a strongly one-time unforge-
able signature scheme. However, this construction does not preserve the randomness-recovering property
or the ECCA security of the tag-based PKE. To get around this issue, and to construct ECCA-secure
PKE from ECCA-secure tag-based PKE we employ a transformation of Boneh et al. [8], instead. Let
TB-PKE = Kgtag,Enctag,Dectag) be a tag-based public-key encryption scheme, H, g be hash functions, and
MAC = (mac, ver) be a message-authentication code. Define PKE[TB-PKE, H, g,MAC] = (Kg,Enc,Dec):

Alg Kg(1k)
(pk, sk)←$ Kgtag(1

k)

Return (pk, sk)

Alg Enc(pk,m)
x←$ {0, 1}k ; c1 ← H(x)
c2←$ Enctag(pk, c1,m‖x)
c3 ← mac(g(x), c2)
Return (c1, c2, c3)

Alg Dec(sk, (c1, c2, c3))
m‖x← Dectag(sk, c1, c2)
If H(x) 6= c1 then return ⊥
If ver(g(x), c2) = 1 then return m
Else return ⊥

Remark 4.12 If TB-PKE is (uniquely) randomness recovering, so is PKE[TB-PKE, H, g,MAC]. In par-
ticular, this is the case when TB-PKE = TB-PKE[TB-TDF] as defined above. Thus, we obtain a uniquely
randomness-recovering ECCA-secure PKE scheme from any tag-based ATDF.

Proposition 4.13 Suppose TB-PKE is ECCA-secure, H is target collision-resistant, g is pairwise-inde-
pendent, and MAC is strongly unforgeable. Then PKE[TB-PKE, H, g,MAC] is ECCA-secure.

Proof: We prove security using a sequence of hybrids. Our proof follows that of [8], and uses a deferred
analysis technique originating from [22].

Hybrid H0: The first game is the ind-cca game for PKE[TB-PKE, H, g,MAC] as defined earlier. Let
c∗ = (c∗1, c

∗
2, c
∗
3) be the challenge ciphertext, and x∗ be random input used as input to the H when

computing the challenge ciphertext.

Hybrid H1: H1 is the same as H0 except that on decryption queries of the form (c∗1, c2, c3) we always
return ⊥. Let valid be the event that this ciphertext is indeed valid (it has a valid decryption).

Obviously we have that |AdvH1
A (k)−AdvH0

A (k)| ≤ Pr1[valid]. Let coll be the event that c2 is valid and
correctly decrypts to a message m||x and at the same time we have g(x) 6= g(x∗). Furthermore, let forge
be the event that c3 ← mac(g(x∗), c2). It is easy to see that Pr1[valid] < Pr1[coll] + Pr1[forge]. Note
that Pr1[coll] is negligible given the collision resistance of H. In particular, g(x) 6= g(x∗) implies that
x 6= x∗, which makes the pair (x, x∗) a collision for H. We note that this argument works in presence
of an ECCA oracle as well. In particular, note that decryption queries of the form (c1, c2, c3) are only
answered if c1 6= c∗1, and in this case, one can query c2 to the decryption oracle for the tag-based PKE
and recover both the underlying message and all the randomness used in generating the ciphertext (note
that c3 is deterministic given c1 and c2). Analyzing he bound on Pr1[forge] is deferred to a later hybrid.

Hybrid H2: H2 is the same as H1 except that when computing the challenge ciphertext we compute
c∗2 = Enctag(pk, c1, 0

|m0|‖0k).
Note that AdvH2

A (k) = 1/2 for any PPT adversary A. It is also straightforward to see that |AdvH2
A (k)−

AdvH1
A | < Advind-ecca

TB-PKE,A(k). For the latter, once again, decryption queries are handled as discussed
above. The same bound is true for Pr2[forge]− Pr1[forge].

Hybrid H3: H3 is the same as H2 except that the key for the MAC in the challenge ciphertext (i.e. for
computing c∗3) is generated uniformly at random as opposed being set to g(x∗).

16

We note that |AdvH3
A (k) −AdvH2

A | is statistically bounded since the only information available about
x∗ is H(x∗). But since H is compressing and g is pairwise-independent hash function, it operates as
an extractor of the remaining randomness in x∗ and outputs a uniformly random key for the MAC.
Distinguishing a uniformly random key from g(x∗) is therefore negligible and bounded by this statistical
bound (see [8] for a complete argument). Decryption queries are handled as before. The same argument
implies that Pr3[forge]− Pr2[forge] is also negligible.

It remains for us show that Pr3[forge] is also negligible but this automatically follows from the unforge-
ability of the MAC.

5 Application to Adaptive Trapdoor Functions

We now give an application of ECCA-security to the theory of adaptive TDFs. Namely, we use it as a
unifying concept to show that the notions of adaptive TDFs and tag-based adaptive ATDFs introduced
by Kiltz et al. [29] are equivalent (via fully black-box reductions), resolving a foundational open question
raised in [29]. To do so, we show below that both primitives are implied by uniquely randomness-recovering
ECCA-secure PKE. Combined with Section 4, this shows that in fact uniquely randomness-recovering
PKE, adaptive TDFs, and tag-based ATDFs are all equivalent.

5.1 From ECCA Security to Adaptivity

To construct an adaptive trapdoor function from a uniquely randomness-recovering ECCA-secure PKE
scheme, we use part of the input to the former as coins for the latter used to encrypt the other
part. Namely, let PKE = (Kg,Enc,Dec,Rec) be a uniquely randomness-recovering public-key encryp-
tion scheme with message space MsgSp and coin space Coins. Define a trapdoor function family
TDF[PKE] = (Tdg,Eval, Inv) on domain MsgSp × Coins as follows:

Alg Tdg(1k)
(pk, sk)←$ Kg(1k)
Return (pk, sk)

Alg Eval(pk, x)
(m, r)← x
c← Enc(pk,m; r)
Return c

Alg Inv(sk, c)
m← Dec(sk, c)
r ← Rec(sk, c)
Return (m, r)

Proposition 5.1 Suppose PKE is uniquely randomness recovering and ECCA-secure. Then TDF[PKE]
defined above is adaptive one-way.

Proof: Given an AOW-adversary I against TDF[PKE], we can easily construct an ECCA-adversary
A = (A1, A2) against PKE, as follows:

Adversary A
Dec∗(sk,·)
1 (pk)

m0,m1←$MsgSp(1k)
Return (m0,m1,m0‖m1)

Adversary A
Dec∗(sk,·)
2 (pk, c, St)

m0‖m1 ← St
Run I on inputs pk, c:
When I makes query y do:

(m, r)← Dec∗(sk, y)
Return (m, r)

Let (m∗, r∗) be the output of I
If m0 = m∗ then return 0
Else return 1

It is clear by construction that Advaow
TDF,I(·) ≤ Advind-ecca

PKE,A (·) which proves the claim.

17

5.2 From ECCA Security to Tag-Based Adaptivity

To construct a tag-based adaptive trapdoor function from a uniquely randomness-recovering ECCA-
secure PKE scheme, we can use an analogous construction of [31, Section 4.4]. Namely, let PKE =
(Kg,Enc,Dec,Rec) be a uniquely randomness-recovering public-key encryption scheme. Define a tag-
based trapdoor function family TB-TDF[PKE] = (Tdg,Eval, Inv) as follows:

Alg Tdg(1k)
(pk, sk)←$ Kg(1k)
Return (pk, sk)

Alg Eval(pk, t, x)
m‖r ← x
c← Enc(pk, t‖m; r)
Return c

Alg Inv(sk, t, c)
t′‖m← Dec(sk, c)
r ← Rec(sk, c)
If t = t′ then return m‖r
Else return ⊥

Proposition 5.2 Suppose PKE is uniquely randomness-recovering and ECCA-secure. Then TB-TDF[PKE]
is tag-based adaptive one-way.

Proof: Given an TB-AOW-adversary I against TB-TDF[PKE], we construct an ECCA-adversary A =
(A1, A2, A3) against PKE, as follows:

Adversary A1(pk)
t←$ I1(pk)

Adversary A
Dec∗(sk,·)
1 (pk, t)

m0,m1←$MsgSp(1k)
Return (m0,m1,m0‖m1)

Adversary A
Dec∗(sk,·)
2 (pk, t, c, St)

m0‖m1 ← St
Run I on inputs pk, t, c:
When I makes query y, t′ do:

(m, r)← Dec∗(sk, y, t′)
Return (m, r)

Let (m∗, r∗) be the output of I
If m0 = m∗ then return 0
Else return 1

We claim that Advtb-aow
TB-TDF,I(·) ≤ Advind-ecca

PKE,A (·). To see this, note that I1, I2 does make a query of the
form t′ = t, which by consistency of PKE means that A does not query its challenge ciphertext.

6 Application to PKE with Non-Interactive Opening

In this section, we show that ECCA-secure encryption is a natural building-block for public key encryption
with non-interactive opening (PKENO) [16, 15, 19, 20]. PKENO allows the receiver to non-interactively
prove that a given ciphertext decrypts to a claimed message. Our constructions yield new and practical
PKENO schemes. As discussed in the introduction, PKENO has applications to multiparty computation
(e.g., auctions and elections), secure message transmission, group signatures, and more.

PKENO. Public-key encryption with non-interactive opening (PKENO) extends a scheme PKE =
(Kg,Enc,Dec) for public-key encryption by the following algorithms: Prove takes as input a secret key sk
and a ciphertext c, and outputs a proof π. Ver takes as input a public key pk, a ciphertext c, a plaintext
m and a proof π, and outputs 0 or 1. We write PKENO = (Kg,Enc,Dec,Prove,Ver).

We require proof correctness: for all ciphertexts (i.e. strings) c, the following is negligible:

Pr[Ver(pk, c,Dec(sk, c),Prove(sk, c)) 6= 1 : (pk, sk)←$ Kg(1k)] .

Following [15, 19] we define security of PKENO by two notions, indistinguishability under chosen-
ciphertext and -proof attacks (IND-CCPA) and proof soundness. The former guarantees that a ciphertext
hides the plaintext even when the adversary can see decryptions of and proofs for other ciphertexts; the
latter formalizes that no adversary should be able to produce a proof for a message and ciphertext that
is not the encryption of that message. The formal definitions follow.

18

Experiment Expind-ccpa
PKENO,A(k)

b←$ {0, 1} ; (pk, sk)←$ Kg(1k)

(m0,m1, St)←$A
Dec(sk,·),Prove(sk,·)
1 (pk)

c←$ Enc(pk,mb)

d←$A
Dec(sk,·),Prove(sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Experiment Expproof-snd
PKENO,A(k)

(pk, sk)←$ Kg(1k)
(m′, π′, c′)←$A(pk, sk)
m← Dec(sk, c′)
If Ver(pk, c′,m′, π′) = 1 and m 6= m′

then return 1 ; else return 0

Figure 2: Security experiments for PKENO.

Indistinguishability. Let PKENO = (Kg,Enc,Dec,Prove,Ver) be a public-key encryption scheme with
non-interactive opening. We associate to PKENO, and an adversary A = (A1, A2) the chosen-ciphertext
and -proof attack experiment given on the left in Figure 2. We require that the output of A1 satisfies
|m0| = |m1| and that A2 does not query c to any of its oracles. We say that PKENO is chosen-ciphertext

and -proof-attack secure (CCPA-secure) if Advind-ccpa
PKENO,A(k) := 2 · Pr

[
Expind-ccpa

PKENO,A(k) outputs 1
]
− 1 is

negligible for every efficient A.

Proof soundness. We associate to a scheme PKENO = (Kg,Enc,Dec,Prove,Ver) and an adversary
A = (A1, A2) a proof-soundness experiment, given on the right in Figure 2. We say that PKENO is

proof-sound if Advproof-snd
PKENO,A(k) := Pr

[
Expproof-snd

PKENO,A(k) outputs 1
]

is negligible for every efficient A.

We note that as compared to [15, 19] our definition of proof soundness also considers adversarially-
produced ciphertexts, which need not even be a valid output of the encryption algorithm. Note that it
is already required by proof correctness that the PKENO correctly proves decryption of such ciphertexts
(which in general may or may not decrypt to ⊥), so it would seem that constructions should achieve this
stronger notion of proof soundness anyway.

Strong proof soundness. An even stronger notion of proof soundness is defined in [20], which also
handles maliciously chosen public keys (i.e., security for senders against a malicious receiver). Such a
notion is quite challenging to achieve, and hence we mostly focus on the above formulation of proof
soundness in the paper. However, in Appendix D we define notions of strong proof soundness and discuss
how our constructions can be adapted to meet them.

6.1 PKENO-Compatible ECCA-Secure PKE

A natural approach to building PKENO suggested by [16] is to use a randomness-recovering encryption
scheme and have the receiver provide the recovered coins as the proof. A moment’s reflection reveals
that for this approach to work, the encryption scheme must be ECCA secure in order to protect against
chosen-proof attacks. In addition, as discussed in [16, 15, 20], we also need a way for the receiver to prove
correct decryption of ciphertexts that are not in the range of the encryption algorithm, in which case
such coins may not be defined. In this section we define a notion of PKENO-compatible ECCA-secure
encryption for which we can do this. Below we define the properties such a scheme must have.

Partial-randomness recovery. It turns out that for such schemes we do not always achieve, nor
need, the notion of full randomness recovery, so we first define a natural generalization we call partial-
randomness recovery, which (loosely) says that enough of the random coins are recovered to uniquely
identify the underlying message. (Such a notion is alluded to in [36], who note that their CCA-secure
encryption is not actually fully randomness-recovering because they use a one-time signature, and is
generally useful whenever we use a “publicly verifiable” but randomized component such as a one-time
signature or NIZK.) However, in order to deal with the case that some ciphertexts outside the range of the
encryption algorithm may not decrypt to ⊥, we also strengthen what we get from randomness-recovering
encryption in some respect; see the discussion following the definition.

Formally, Suppose Enc draws its coins from Coins. We say that a public-key encryption scheme PKE =
(Kg,Enc,Dec) has partial-randomness recovery if it also has a partial-randomness recovering algorithm

19

pRec and a message-consistency checking algorithm Cons, which with the help of partial randomness can
check whether a ciphertext c encrypts a message m. Namely:

• (Completeness) For all (pk, sk)←$ Kg and all c ∈ {0, 1}∗,m ∈ MsgSp(1k) ∪ {⊥}, let s←$ pRec(sk, c):

Dec(sk, c) = m ∧ m 6= ⊥ ⇒ Cons(pk, c,m, s) = 1 .

• (Soundness) For all (pk, sk)←$ Kg and all c ∈ {0, 1}∗,m ∈ MsgSp(1k), s ∈ {0, 1}∗:
Cons(pk, c,m, s) = 1 ⇒ Dec(sk, c) = m .

In this case we say PKE is ECCA-secure if it is ECCA-secure as defined in Section 3 but where the Rec
algorithm there is replaced with pRec.

It turns out that a fully randomness recovering scheme is not necessarily partial-randomness recovering
as we have defined it. This is because the completeness condition requires that even for invalid ciphertexts
c (i.e., those that are never output by the encryption algorithm) that do not decrypt to ⊥ but rather
some m 6= ⊥, enough partial randomness can still be recovered from c to check that it decrypts to m.

Ciphertext verifiability. We next define a notion of ciphertext verifiability, which intuitively means
a verifier can check (with the help of some partial random coins) whether the decryption algorithm
returns ⊥ on a given ciphertext. Let PKE = (Kg,Enc,Dec, pRec,Cons) be a public-key encryption scheme
with partial-randomness recovery. We say that PKE has ciphertext-verifiability if it also has a ciphertext-
invalidity checking algorithm Inval such that

• (Completeness) For all (pk, sk)←$ Kg and all c ∈ {0, 1}∗, let s←$ pRec(sk, c). Then

Dec(sk, c) = ⊥ ⇒ Inval(pk, c, s) = 1 .

• (Soundness) For all (pk, sk)←$ Kg and all c ∈ {0, 1}∗, s ∈ {0, 1}∗:
Inval(pk, c, s) = 1 ⇒ Dec(sk, c) = ⊥ .

We note that the notion of public ciphertext verifiability has been discussed informally in the literature
and formalized and studied concurrently to our work by [34]. In a publicly verifiable scheme, the Inval
algorithm would ignore the input s. Thus, our notion is more general. In this respect, it is noteworthy
that our most efficient constructions using the symmetric-key version of the BCHK transform [8] are not
publicly verifiable (although our basic constructions are).

PKENO-compatible ECCA-secure PKE. We can now state our definition of PKENO compatibility.
Let PKE = (Kg,Enc,Dec, pRec,Cons, Inval). We say that PKE is an PKENO-compatible ECCA-secure
PKE scheme (or just PKENO-compatible for short) if it satisfies ECCA-security, partial-randomness
recovery, and ciphertext verifiability as defined above. We next prove the main theorem of this section,
namely that a PKENO-compatible ECCA-secure PKE scheme indeed gives us PKENO by using the idea
of [16] described above.

PKENO construction. Consider a PKENO-compatible ECCA encryption scheme PKE = (Kgpke,Encpke,
Decpke, pRecpke,Conspke, Invalpke) and define PKENO[PKE] = (Kgpke,Encpke,Decpke,Prove,Ver) with:

• Prove(sk, c): Output s←$ pRecpke(sk, c).

• Ver(pk, c,m, π = s): Ifm = ⊥ then return 1 iff Invalpke(pk, c, s) = 1. Else return 1 iff Invalpke(pk, c, s) =
0 and Conspke(pk, c,m, s) = 1.

Theorem 6.1 Suppose PKE is a PKENO-compatible ECCA-secure encryption scheme. Then the con-
struction PKENO[PKE] above is a PKE scheme with non-interactive opening which is CCPA-secure and
has proof soundness.

Proof: For the case of proof correctness, we show that for (pk, sk)←$ Kg(1k) and for all strings c ←
{0, 1}∗:

Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1 .

20

There are two cases: Dec(sk, c) = ⊥ and Dec(sk, c) 6= ⊥. If Dec(sk, c) = ⊥ then by completeness of cipher-
text verifiability we have Inval(pk, c, pRec(sk, c)) = 1 hence Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1. On the
other hand, if m = Dec(sk, c) 6= ⊥ then by soundness of ciphertext verifiability (stating Inval(pk, c, s) = 1
⇒ Dec(sk, c) = ⊥) we have Inval(pk, c, s) = 0. Moreover, by completeness of partial-randomness recovery
we have Cons(pk, c,m, s) = 1 and hence together: Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1.

For proof soundness, in the relevant experiment in Figure 2, let (m′, π′, c′) be the adversary’s output and
let m← Dec(sk, c′). Then it suffices to show that

m 6= m′ ⇒ Ver(pk, c′,m′, π′) = 0 .

Again we distinguish two cases: (1) If m′ = ⊥ then by the definition of Ver we need to show that
Inval(pk, c′, π′) = 0. This is the case since ⊥ = m′ 6= m = Dec(pk, c′) means Dec(pk, c′) 6= ⊥, which by
soundness of ciphertext verifiability implies Inval(pk, c′, s) = 0 for all s, thus in particular for s = π′.
(2) If m′ 6= ⊥ then by definition of Ver it suffices to show that Cons(pk, c′,m′, π′) = 0. Since m′ 6= m =
Dec(sk, c′), by soundness of partial-randomness recovery, we have Cons(pk, c′,m′, s) = 0 for every s and
thus in particular for s = π′.

IND-CCPA follows immediately from ECCA w.r.t. pRecpke. The simulator can use its pRecpke oracle to
simulate the Prove oracle. To simulate the Dec oracle on a query c, the simulator queries pRecpke for c
to get s and outputs ⊥ if Invalpke(pk, c, s) = 1 and otherwise forwards a Decpke oracle response.

Tag-based. We also define a tag-based variant, namely PKENO-compatible tag-based ECCA-secure
encryption TB-PKE = (Kg,Enc,Dec, pRec,Cons, Inval) analogously, where all algorithms except Kg now
take an additional input t called the tag. The completeness and soundness definitions quantify over all tags
t, and the scheme is required to satisfy the tag-based ECCA definition where Rec is replaced with pRec.
One can convert any PKENO-compatible tag-based ECCA encryption scheme into a PEKNO-compatible
(non-tag-based) ECCA encryption scheme by using (either version of) the BCHK transform [8], which
we prove preserves both partial-randomness recovery and ciphertext verifiability. See Appendix C.

6.2 PKENO-Compatible PKE using Non-Interactive Zero-Knowledge

We show how to obtain PKENO-compatibility generically from any ECCA-secure randomness-recovering
PKE by adding a non-interactive zero-knowledge proof (NIZK) of ciphertext “well-formedness.” The
approach of using a NIZK originates from [15, 20], although not with respect to ECCA-secure encryption.
We note that we do not require the starting ECCA-secure encryption scheme to be uniquely randomness-
recovering (although our constructions in Section 4 achieve this), but it should have perfect correctness.

Construction. Consider a RR ECCA-secure PKE scheme PKE = (Kg,Enc,Dec,Rec,Cons) with perfect
correctness and a simulation-sound NIZK proof system NIZK = (Setup,Prv,Vrf) for the language L :=
{(pk, c) | ∃(m, r) : c = Enc(pk,m; r)}. We define a partial-randomness-recovering scheme PKEprr =
(Kgprr,Encprr,Decprr, pRecprr,Consprr, Invalprr) as follows:

• Kgprr(1
k): Run crs←$ Setup(1k); (pk, sk)←$ Kg(1k). Output pk := (crs, pk) and sk := (crs, pk, sk).

• Encprr((crs, pk),m; r): Set c := Enc(pk,m; r) and τ←$ Prv(crs, (pk, c), (m, r)); output c := (c, τ).

• Decprr((crs, pk, sk), (c, τ)): If Vrf(crs, (pk, c), τ) = 0 then output ⊥; else output Dec(sk, c).

• pRecprr((crs, pk, sk), (c, τ)): If Vrf(crs, (pk, c), τ) = 0 then output ⊥; else output Rec(sk, c).

• Consprr((crs,pk), (c, τ),m, s): Return 1 iff Vrf(crs, (pk, c), τ) = 1 and c = Enc(pk,m; s).

• Invalprr((crs,pk), (c, τ), s): Return 1 iff Vrf(crs, (pk, c), τ) = 0.

Proposition 6.2 Suppose PKE is randomness-recovering with perfect correctness and ECCA-secure and
NIZK is simulation-sound and zero-knowledge. Then PKEprr[PKE,NIZK], defined above, is an ECCA-
secure PKE scheme with partial-randomness recovery and public verifiability (i.e., it is PKENO-compatible).

21

Note that the NIZK here is required to be simulation-sound [39]. Intuitively, the reason is that
upon receiving challenge ciphertext (c∗, τ∗), the adversary might (legitimately) submit some (c∗, τ ′) to
its decryption oracle for τ ′ 6= τ∗.

Proof: We first show that the scheme PKEprr is still ECCA-secure (with respect to the partial randomness
recovery function pRec). Let A be an adversary against ECCA security of PKEprr. We use A to break
ECCA security of the underlying scheme PKE. Upon receiving our challenge c∗, we simulate a NIZK
proof τ∗ to create a challenge (c∗, τ∗) for A. Consider A making an ECCA-query Dec∗ for (c, τ): if τ is
invalid on c, we return ⊥; else we forward c to our own oracle and give A the reply. Note that simulation
soundness of the NIZK implies that A cannot produce a query (c∗, τ) for a τ 6= τ∗ which is valid for c∗.
(This is formally proven analogously to the proof of full anonymity of the group signature construction
in [4], where a group signature is defined as a CCA-secure ciphertext and a simulation-sound NIZK proof
of well-formedness of the ciphertext.) This means that every query that A makes can be forwarded to
our own oracle.

It remains to show completeness and soundness of both partial randomness recovery and ciphertext
verifiability, as defined in Section 6.1. For all these notions, let (pk = (crs,pk), sk = (crs, pk, sk)) be the
output of Kgprr.

Completeness of randomness recovery: Let c ∈ {0, 1}∗ and let s←$ pRecprr(sk, c). Suppose Decprr(sk, c) =
m with m 6= ⊥. By the definition of Decprr, with (c, τ) ← c, we have Vrf(crs, (pk, c), τ) = 1 (∗). This
means that pRecprr(sk, (c, τ)) outputs s← Rec(sk, c), which by perfect correctness of PKE recovers coins

s such that c = Enc(pk,m; s). Together with (∗) this implies Consprr(pk, (c, τ),m, s) = 1.

Soundness of partial-randomness recovery: Let (c, τ) ∈ {0, 1}∗,m ∈ MsgSp(1k) and s ∈ {0, 1}∗. Sup-
pose Consprr(pk, (c, τ),m, s) = 1, that is Vrf(crs, (pk, c), τ) = 1 (∗) and c = Enc(pk,m; s). By perfect
correctness of PKE this implies Dec(sk, c) = m, which together with (∗) yields: Decprr(sk, (c, τ)) = m.

Completeness of ciphertext verifiability: Let (c, τ) ∈ {0, 1}∗ and let s←$ pRecprr(sk, c). Suppose that

Decprr(sk, (c, τ)) = ⊥. Then we have either (1) Vrf(crs, (pk, c), τ) = 0 or (2) Dec(sk, c) = ⊥. We show
(2) implies (1) by contraposition: If Vrf outputs 1 then by soundness of NIZK there exist (m, r) : c =
Enc(pk,m; r). By perfect correctness of PKE we have Dec(sk, c) = m 6= ⊥. In either case we therefore
have Vrf(crs, (pk, c), τ) = 0 and thus Invalprr(pk, (c, τ), s) = 1.

Soundness of ciphertext verifiability: Let (c, τ) ∈ {0, 1}∗ and s ∈ {0, 1}∗. Assume Invalprr(pk, (c, τ), s) = 1,
that is, Vrf(crs, (pk, c), τ) = 0. Then by definition of Decprr, we have Decprr(sk, (c, τ)) = ⊥.

7 Efficient PKENO Constructions

7.1 Construction from DLIN Using Groth-Sahai

We first give a general construction of PKENO-compatible tag-based PKE from tag-based ATDFs that
come equipped with a NIZK proof system for perimage existence. Note that this is different from (weaker
than) a proof of ciphertext well-formedness as used in Section 6.2.

PKENO-Compatible Tag-based PKE Construction. The construction essentially follows Sec-
tion 4.3, except for incorporation of the NIZK. Let TB-TDF = (Tdg,Eval, Inv) be a tag-based trap-
door function family with tag space TagSp and hardcore bit hc. Let NIZK = (Setupnizk,Prvnizk,Vrfnizk)
be a NIZK proof system for the language L := {(ek, t, y) | ∃x : y = Eval(ek, t, x)}. We define tag-
based PKE scheme TB-PKE = (Kg,Enc,Dec, pRec,Cons, Inval) with tag space TagSp and message space
{0, 1}` as follows. Algorithm Kg outputs pk = (crs, ek), dk = (crs, td) where crs←$ Setupnizk(1k) and
(ek, td)←$ Tdg(1k), and the remaining algorithms are defined via:

22

Alg Enc((crs, ek), t,m)
For i = 1 to ` do:

xi←$ {0, 1}k ; ci,1 ← Eval(ek, t, xi)
ci,2 ← hc(x)⊕m[i]
τi←$ Prvnizk(crs, (ek, t, ci,1), xi)

c← ((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`))
Return c

Alg pRec((crs, td), t, c)
((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`))← c
For i = 1 to ` do:

If Vrfnizk(crs, (ek, t, ci,1), τi) = 0 then return ⊥
xi ← Inv(td, t, ci,1)

Return (x1, . . . , x`)

Alg Inval((crs, ek), t, c, s)
((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`))← c
For i = 1 to ` do:

If Vrfnizk(crs, (ek, t, ci,1), τi) = 0 then return 1
Return 0

Alg Dec((crs, td), t, c)
((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`))← c
For i = 1 to ` do:

If Vrfnizk(crs, (ek, t, ci,1), τi) = 0
then return ⊥

xi ← Inv(td, t, ci,1)
m[i]← hc(xi)⊕ ci,2

Return m

Alg Cons((crs, ek), t, c,m, s)
((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`))← c
s← (x1, . . . , x`)
For i = 1 to ` do:

If Vrfnizk(crs, (ek, t, ci,1), τi) = 0
then return 0

If Eval(ek, t, xi) 6= ci,1 then return 0
If hc(xi)⊕m[i] 6= ci,2 then return 0

Return 1

Proposition 7.1 Suppose TB-TDF is a tag-based adaptive TDF and NIZK is zero-knowledge. Then
TB-PKE as defined above is a PKENO-compatible tag-based PKE scheme.

Interestingly, we do not require the NIZK to be simulation-sound here, in contrast to the generic con-
struction in Section 6.2. Intuitively, this because both primitives (i.e., TB-ATDF and PKENO-compatible
tag-based PKE) are tag-based, so the adversary cannot submit (parts of) the challenge ciphertext to its
Dec∗ oracle, since the tag must be different from t chosen at the beginning of the game.

Proof: We first need to show that TB-PKE is ECCA-secure (with respect to the partial randomness
recovery function pRec). The proof is analogous to that of Proposition 4.11 (which in turn is similar
to that of Claim 4.1) and works by a hybrid argument and a reduction to adaptive one-wayness of
TB-TDF. The difference is that we have added the NIZK proofs, which are however not needed for
ECCA security. Therefore, in a first game hop, we replace the proofs τi contained in the challenge
ciphertext with simulated proofs. By zero-knowledge of NIZK, this game is indistinguishable from the
original game Expind-tb-ecca

TB-PKE . Now that the proofs are constructed without using the witnesses xi, we can
simulate the game in the reduction to adaptive one-wayness of TB-TDF, using our Inv oracle to answer
the adversary’s Dec∗ queries.

It remains to show completeness and soundness of both partial randomness recovery and ciphertext
verifiability, as defined in Section 6.1. In the following, let ((crs, ek), (crs, td)) be the output of Kg(1λ).

Completeness of randomness recovery: Let c ∈ {0, 1}∗ and let s←$ pRec((crs, td), t, c). Suppose Dec((crs,
td), t, c) = m with m 6= ⊥; thus with ((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`)) ← c, for all 1 ≤ i ≤ `: (i)
Vrfnizk(crs, (ek, t, ci,1), τi) = 1 and (ii)m[i] = hc(Inv(td, t, ci,1))⊕ ci,2. By (i) we have that pRec(crs, td), t, c)
returns x1, . . . , x` with Eval(ek, t, xi) = ci,1, which together with (i) and (ii) means that Cons((crs, ek), t, c,
m, s) = 1.

Soundness of partial-randomness recovery: Let ((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`)) ∈ {0, 1}∗,m ∈ {0, 1}`,
(x1, . . . , x`) ∈ {0, 1}∗ and suppose Cons((crs, ek), t, c,m, s) = 1. That is, for all 1 ≤ i ≤ `: (∗)
Vrfnizk(crs, (ek, ci,1), τi) = 1, Eval(ek, t, xi) = ci,1 and hc(xi)⊕m[i] = ci,2. Thus xi = Inv(td, t, ci,1)
and hc(xi)⊕ ci,2 = m[i] and thus together with (∗): Dec((crs, ek), t, c) = m.

Completeness of ciphertext verifiability: Let c ∈ {0, 1}∗ and s←$ pRec((crs, td), t, c); suppose that
Dec((crs, ek), t, c) = ⊥. Then with ((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`)) ← c, for some 1 ≤ i ≤ `: Vrfnizk(crs,
(ek, t, ci,1), τi) = 0; thus Inval((crs, ek), t, c, s) = 1.

23

Soundness of ciphertext verifiability: Let c ∈ {0, 1}∗ and s ∈ {0, 1}∗; assume Inval((crs, ek), t, c, s) = 1.
That is, with ((c1,1, c1,2, τ1), . . . , (c`,1, c`,2, τ`)) ← c, for some 1 ≤ i ≤ `: Vrfnizk(crs, (ek, t, ci,1), τi) = 0.
Then by definition of Dec, we have Dec((crs, td), t, c) = ⊥.

TB-ATDF from lossy+ABO TDF. To realize the tag-based ATDF in the above construciton, we
will specfically use the tag-based ATDF from lossy+ABO TDF given by [29]. We we briefly recall
the construction here (and refer the reader to [29] for formal details and the definitions of the relevant
primitives). Suppose we have a lossy TDF LF and an all-but one (ABO) TDF ABO-F. The construction
also uses a hash function T : {0, 1}n → {0, 1}k for some n = n(k), which is required to be (target) collision
resistant. An evaluation key for the constructed tag-based ATDF is a pair of keys (ekltf, ekabo) for LF and
ABO-F; the trapdoor is the corresponding pair (tdltf, tdabo). The evaluation of ATDF on input x ∈ {0, 1}k
and tag t ∈ {0, 1}n under key (ekltf, ekabo) is defined as (y1, y2) with

y1 ← LF(ekltf, x) y2 ← ABO-F(T (t), ekabo, x)

Finally, inversion, given (y1, y2), tag t, and trapdoor (tdltf, tdabo), computes x1 ← LF−1(tdltf, y1) and
x2 ← ABO-F−1(tdabo, t, y2). If x1 = x2 it returns the common value, otherwise ⊥.

A “GS-friendly” instantiation. Groth-Sahai (GS) proofs [25] are efficient NIZKs without random
oracles for a certain class of statements over bilinear groups. Here we provide an instantiation of the
above TB-ATDF construction for which preimage existence is a GS statement; we specifically use the
lossy and ABO TDFs of Freeman et al. [18] based on the decision linear (DLIN) assumption. We sketch
the construction here, omitting the details not relevant to show that GS proofs can be used to show that
there exists a preimage.

We first describe the ABO-TDF. In a group G of order p, generated by g ∈ G, the scheme is defined
as follows. To sample a function with a lossy branch b∗, choose a matrix A←$Zn×np with rank 1 and
define M := A− b∗In, where In is the identity matrix. Define S ∈ Gn×n as the matrix with components
Sij := gmij , where mij are the components of M . The function fS,b : {0, 1}n → Gn indexed by S is
evaluated on a branch b is defined as:

fS,b(~x) := (
∏n
j=1 S

xj
ij · gb·xi)ni=1 .

The same holds for the LTDF, which is a special case of the above for b = 0. Let us denote the
corresponding TB-ATDF obtained by plugging in these instantiations as TB-TDFdlin.

Proposition 7.2 For TB-TDFdlin, the corresponding language L := {(ek, t, y) | ∃x : y = Eval(ek, t, x)}
can be expressed as a pairing-product equation over bilinear group elements, which is a statement in the
language of Groth-Sahai proofs.

Proof: For the above, it suffices to show how to prove that there exists a preimage for a value y under
ABO-F for a certain branch b and a key ek. Given a function value (Fi)

n
i=1 ∈ Gn, we need to show that

there exists (xi)
n
i=1 ∈ {0, 1}n s.t. Fi =

∏
S
xj
ij · gb·xi for every 1 ≤ i ≤ n. Instead of giving a direct proof,

we show that the projections xi 7→ Xi = gxi of xi to G satisfy the following equations (where e denotes
the bilinear map) for every 1 ≤ i ≤ n:

e(Xi, Xi · g−1) = e(g, g0) e(g, Fi) =
∏n
j=1 e(Sij , Xj) · e(gb, Xi)

As the above are pairing-product equations over the variables X1, . . . Xn, we can use Groth-Sahai proofs
to show satisfiability, that is, to show that there exist X1, . . . , Xn ∈ G, which satisfy all the equations
simultaneously: Let (Xi)

n
i=1 satisfy the above equations and let (ξi)

n
i=1 ∈ Znp be such that Xi = gξi , for

all 1 ≤ i ≤ n; then the first equation ensures that ξi ∈ {0, 1} (since we have e(g, g)ξi·(ξi−1) = e(g, g)0).

The second equation ensures that Fi =
∏
S
ξj
ij · gb·ξi . Together this yields that (ξi)

n
i=1 is a preimage of

(Fi)
n
i=1.

24

7.2 Construction from Instance-Independent RSA

We show the RSA-based TB-TDF of [29] provides range verifiability automatically, avoiding the extra
cost of executing NIZK.

II-RSA based TB-ATDF. We briefly recall the construction and refer to [29] for more details. An
evaluation key is a random RSA modulus N = pq and the trapdoor is (p, q). The construction also uses
a collision-resistant hash function H : {0, 1}n → P` for some n = n(k), ` = `(k), where P` is the set
of `-bit prime numbers. (In theory, such a hash function can actually be built without computational
assumption [32].) The tag space is {0, 1}n and input space is Z∗N . The evaluation on N , tag t, and input x
is xH(t) mod N . Inversion on inputs (p, q), t, y, computes ys mod N where s← H(t)−1 mod φ(N) (which
can be computed efficiently given p, q). Security relies on the instance-independent RSA assumption
(II-RSA); see [29] for the definition.

Tag-based PKE scheme. We plug the above TB-ATDF into the construction of Section 7.1, with
the modification that there will be no invocation of Prvnizk (the proof is an empty string) and Vrfnizk is
replaced a the simple check of whether c < N or not. Denote this resulting tag-based PKE scheme by
TB-PKEiirsa.

Proposition 7.3 TB-PKEiirsa described above is a PKENO-compatible tag-based PKE scheme under the
II-RSA assumption.

Proof: (Sketch.) The security of the scheme then directly follows from proof of proposition 7.1 as anyone
can check preimage existence of a point c relative to evaluation key N by checking whether c < N .
Note that we need to relax our PKENO definitions to achieve completeness and soundness only for PPT
generated inputs and fail with negligible probability, since a PPT adversary may produce a c in ZN \Z∗N
with negligible probability assuming factoring N is hard. (For simplicity, we do not make these relaxations
in our formal definitions.)

Efficiency. The PKENO scheme that results from this instantiation (using proposition 6.1) is quite
efficient, requiring just one modular exponentiation to encrypt. Note that for efficiency, one can relax
the need to hash to primes by using “division-intractible” hashing instead, as defined in [21]. This could
be instantiated by using a cryptographic hash function with roughly 1024-bit output [13]. In terms of
efficiency our scheme is comparable to a previous DLIN-based PKENO construction of [20], which requires
roughly 5 elliptic curve exponentiations to encrypt (but is secure under a more standard assumption).
We leave a more detailed efficiency comparison among these schemes to future work.

Acknowledgements

We are grateful to Mihir Bellare, whose comments and suggestions improved our results and presentation.
We also thank Eike Kiltz for his involvement in the early stages of this work. Work done in part while the
first author was at Microsoft Research, New England and the fourth author was at Boston University.

References

[1] M. Bellare. Private communication, 2012. 6

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Aug.
1998. 4

[3] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.
Springer, Apr. 2009. 4

25

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 614–629. Springer, May 2003. 3, 22

[5] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without random oracles. In P. J.
Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 48–62. Springer, Dec. 2004. 4

[6] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, May 1994. 4

[7] M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack. Cryptology ePrint Archive,
Report 2009/101, 2009. http://eprint.iacr.org/. 4

[8] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
SIAM Journal on Computing, 36(5):1301–1328, 2007. 3, 16, 17, 20, 21, 30

[9] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In 28th ACM
STOC, pages 639–648. ACM Press, May 1996. 4

[10] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Aug. 2003. 4

[11] R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in the plain model from standard
assumptions. In 51st FOCS, pages 541–550. IEEE Computer Society Press, Oct. 2010. 4

[12] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Black-box construction of a non-malleable encryption
scheme from any semantically secure one. In R. Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
427–444. Springer, Mar. 2008. 9, 11

[13] J.-S. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-Rabin signature scheme. In B. Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 91–101. Springer, May 2000. 25

[14] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 28, 29

[15] I. Damg̊ard, D. Hofheinz, E. Kiltz, and R. Thorbek. Public-key encryption with non-interactive opening. In
T. Malkin, editor, CT-RSA 2008, volume 4964 of LNCS, pages 239–255. Springer, Apr. 2008. 1, 2, 18, 19, 21

[16] I. Damg̊ard and R. Thorbek. Non-interactive proofs for integer multiplication. In M. Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 412–429. Springer, May 2007. 2, 3, 18, 19, 20

[17] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. Journal of the ACM, 50(6):852–921,
2003. 4

[18] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-
secure trapdoor functions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 279–295. Springer, May 2010. 3, 24

[19] D. Galindo. Breaking and repairing Damg̊ard et al. public key encryption scheme with non-interactive opening.
In M. Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS, pages 389–398. Springer, Apr. 2009. 2, 18, 19

[20] D. Galindo, B. Libert, M. Fischlin, G. Fuchsbauer, A. Lehmann, M. Manulis, and D. Schröder. Public-key
encryption with non-interactive opening: New constructions and stronger definitions. In D. J. Bernstein and
T. Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages 333–350. Springer, May 2010. 2, 3, 18,
19, 21, 25, 31

[21] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In J. Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 123–139. Springer, May 1999. 25

[22] R. Gennaro and V. Shoup. A note on an encryption scheme of Kurosawa and Desmedt. Cryptology ePrint
Archive, Report 2004/194, 2004. http://eprint.iacr.org/. 16

[23] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages
25–32. ACM Press, May 1989. 10

[24] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984. 5

26

http://eprint.iacr.org/
http://eprint.iacr.org/

[25] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Apr. 2008. 3, 24

[26] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer, Aug. 2007. 4, 28, 29

[27] S. Hohenberger, A. B. Lewko, and B. Waters. Detecting dangerous queries: A new approach for chosen
ciphertext security. In EUROCRYPT 2012, LNCS, pages 663–681. Springer, 2012. 2, 4, 9, 10, 11, 12

[28] S. A. Kakvi, E. Kiltz, and A. May. Certifying rsa. In ASIACRYPT, pages 404–414, 2012. 31

[29] E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security. In
H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 673–692. Springer, May 2010. 1, 2,
3, 8, 9, 15, 16, 17, 24, 25, 27, 28

[30] P. D. MacKenzie, M. K. Reiter, and K. Yang. Alternatives to non-malleability: Definitions, constructions,
and applications (extended abstract). In TCC, pages 171–190, 2004. 2

[31] P. D. MacKenzie, M. K. Reiter, and K. Yang. Definitions, constructions, and applications (extended abstract).
In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 171–190. Springer, Feb. 2004. 5, 18

[32] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th FOCS, pages 120–130. IEEE
Computer Society Press, Oct. 1999. 25

[33] S. Myers and A. Shelat. Bit encryption is complete. In 50th FOCS, pages 607–616. IEEE Computer Society
Press, Oct. 2009. 1, 2, 9

[34] J. M. G. Nieto, M. Manulis, B. Poettering, J. Rangasamy, and D. Stebila. Publicly verifiable ciphertexts. In
SCN, pages 393–410, 2012. 20

[35] R. Pass, abhi shelat, and V. Vaikuntanathan. Construction of a non-malleable encryption scheme from any
semantically secure one. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 271–289. Springer,
Aug. 2006. 9

[36] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and C. Dwork,
editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. 1, 3, 5, 8, 19

[37] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Aug. 1992. 1

[38] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In O. Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 419–436. Springer, Mar. 2009. 1, 8

[39] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
FOCS, pages 543–553. IEEE Computer Society Press, Oct. 1999. 22

[40] H. Wee. Efficient chosen-ciphertext security via extractable hash proofs. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 314–332. Springer, Aug. 2010. 1

[41] A. C. Yao. Theory and applications of trapdoor functions. In 23rd FOCS, pages 80–91. IEEE Computer
Society Press, Nov. 1982. 27

A Standard Primitives

Trapdoor functions. A trapdoor function family [41] is a triple of algorithms TDF = (Tdg,Eval, Inv).
The key-generation algorithm Tdg returns an evaluation key ek and matching trapdoor td. The deter-
ministic evaluation algorithm Eval takes ek and x ∈ {0, 1}k to return an image y. The deterministic
inversion algorithm Inv takes td and y to return a point x. We require that for all x ∈ {0, 1}k,

Pr[Inv(td,Eval(ek, x)) = x : (ek, td)←$ Tdg(1k)]

is 1. (Note that this implies the trapdoor function is injective.) We say that TDF is tag-based [29] with
tag-space TagSp if Eval, Inv take an additional input t ∈ TagSp called the tag and for all x ∈ {0, 1}k and
t ∈ TagSp(1k),

Pr[Inv(td, t,Eval(ek, t, x)) = x : (ek, td)←$ Tdg(1k)]

27

is probability 1.

Authenticated Encryption. We use the definition of [26] for authenticated encryption. An authenti-
cated symmetric encryption (AE) scheme AE = (AE.Enc,AE.Dec) is specified by its encryption algorithm
AE.Enc (encrypting m ∈ MsgSp(k) with a key K ∈ K(k)) and decryption algorithm AE.Dec (returning
m ∈ MsgSp(k) or ⊥). Here we restrict ourselves to deterministic AE.Enc and AE.Dec. The AE scheme
needs to provide privacy (indistinguishability against one-time attacks) and authenticity (ciphertext au-
thenticity against one-time attacks). This is simultaneously captured by defining the ae-ot-advantage of
an adversary A as:

Advot-ae
A,AE(k) = 2 · Pr[b = b′ : K←$K(k) ; b←$ {0, 1} ; b′←$ALoRb(·,·),DoRb(·)(1k)]− 1 .

Here, LoRb(m0,m1) returns AE.Enc(K,mb), and A is allowed only one query to this left-or-right encryption
oracle, with a pair of equal length messages. Furthermore, the decrypt-or-reject oracle DoR0(C) returns
m ← AE.Dec(K,C) and DoR1(C) always returns ⊥ (reject). A is allowed only one query to this oracle
which must be different from the output of the left-or-right oracle. An encryption scheme is a one-time
authenticated encryption if Advot-ae

A,AE(k) is negligible for any PPT adversary A.

Key Encapsulation Mechanisms. The KEM/DEM paradigm was first formalized in [14]. We borrow
our formal definitions from [26]. A key-encapsulation mechanism KEM = (KEM.kg,KEM.enc,KEM.enc)
with key-space K(k) consists of three polynomial-time algorithms. Via (pk, sk)←$ KEM.kg(1k) the ran-
domized key-generation algorithm produces public/secret keys for security parameter k; via (K,C)←$

KEM.enc(pk), the randomized encapsulation algorithm creates a uniformly distributed symmetric key
K ∈ K(k) together with a ciphertext C; via K ← KEM.dec(sk, C) the possessor of secret key sk decrypts
ciphertext C to get back a key K which is an element in K or a special rejection symbol ⊥. For consis-
tency, we require that for all all (K,C)←$ KEM.enc(pk) we have Pr[KEM.dec(sk, C) = K] = 1, where the
probability is taken over the choice of (pk, sk)←$ KEM.kg(1k), and the coins of all the algorithms in the
expression above. Here we only consider KEMs that produce perfectly uniformly distributed keys (i.e.,
we require that for all public keys pk that can be output by KEM.kg, the first component of KEM.enc(pk)
has uniform distribution).

Experiment Expkem-cca
KEM,A (k)

b←$ {0, 1} ; (pk, sk)←$ KEM.kg(1k)
K∗0←$K(k); (K∗1 , C

∗)←$ KEM.enc(pk)

d←$A
KEM.dec∗(sk,·)
1 (pk,K∗b , C

∗)
If d = b then return 1 else return 0

Oracle KEM.dec∗(sk, C)
K ← KEM.dec(sk, C)
Return K

Above we require that A does not query c∗ to its oracle. Define the kem-cca advantage of A against
KEM as

Advekm-cca
KEM,A (k) = 2 · Pr

[
Expkem-cca

KEM,A (k) outputs 1
]
− 1 .

We say that KEM is chosen-ciphertext secure if Advkem-cca
KEM,A (·) is negligible for every efficient A.

B From ATDF to ECCA via KEM/DEM

The above constructions assume that the ATDF/tb-ATDF only provides us with a single hardcore bit.
But, if a linear number of hardcore bits are available (e.g. based on Lossy TDFs as discussed in [29]),
one can design significantly more efficient ECCA PKE constructions. The basic idea is simple: we use
the ATDF/tb-ATDF with linear hardcore bits to encrypt a one-time secret key k via a key encapsulation
mechanism (KEM), and use k to encrypt the message via a data encapsulation mechanism (DEM). The
standard KEM/DEM paradigm guarantees that the resulting hybrid PKE scheme is CCA secure if the

28

KEM component and the DEM component are both CCA secure7 (e.g. see [14]).
In our case, however, we need the hybrid PKE to be ECCA secure and randomness recovering as well.

One can construct a KEM based on a ATDF by simply using the hardcore bits as the one-time key. It
is easy to see that this construction is both ECCA secure and randomness recovering. The natural next
step is to use a CCA (or ECCA) DEM component to obtain a hybrid PKE with the desired properties.

CCA security of DEM is not sufficient. Surpringly, this does not work: hybrid encryption does
not preserve the ECCA security of the KEM. Roughly speaking, the subtlety in the proof arises when the
simulator needs to answer decryption queries for ciphertexts that have the same KEM component as the
challenge ciphertext but a different DEM component. In the standard proof, such decryption queries are
answered by decrypting the DEM component and returning the message (without having to decrypt the
KEM component). But, to achieve ECCA security, we need to return all the randomness to adversary,
including those used in the KEM component. To solve this we instead use a a one-time authenticated
encryption scheme as the DEM, in which case we show the resulting hybrid PKE is ECCA secure and
randomness recovering.

An ECCA KEM/DEM Construction from ATDFs. Consider the following construction based on
any ATDF with linear hardcore bits. Let TDF = (Tdg,Eval, Inv) be a trapdoor function with a hardcore
function hc, and AE = (AE.Kg,AE.Enc,AE.Dec) be a deterministic authenticated encryption scheme.
Define the following multi-bit public-key encryption scheme PKE[TDF] = (Kg,Enc,Dec):

Alg Kg(1k)
(ek, td)←$ Tdg(1k)
Return (ek, td)

Alg Enc(ek,m)
x←$ {0, 1}k
y1 ← Eval(ek, x)
y2 ← AE.Enc(hc(x),m)
Return (y1, y2)

Alg Dec(td, ((y1, y2), flag))
If flag = 1 then return (y1, y2)
Else K ← hc(Inv(td, y1))
Return (x,AE.Dec(k, y2))

Proposition B.1 Suppose TDF is adaptive one-way and AE is a one-time authenticated encryption.
Then PKE[TDF] defined above is ECCA-secure and randomness-recovering.

Proof: It is easy to see that the above construction is randomness-recovering. In particular, the decryp-
tion algorithm recovers x = Inv(td, y1), computes K = hc(x) and then uses K to recover the message
encrypted in y2. Since the AE is deterministic, there is no additional randomness to recover.

Next, we show that PKE[TDF] is also ECCA. We take advantage of the deferred analysis technique in
this proof as well. Consider the following sequence of games:

Hybrid H0: The first game is the ind-cca experiment for PKE[TDF]. Denote the challenge ciphertext
by c∗ = (c∗1, c

∗
2), and the secret key used to encrypt c∗2 by k∗.

Hybrid H1: H1 is the same as H0 except that on decryption queries of the form c = (c∗1, c2) by the
adversary we return ⊥.

Note that |AdvH0
A (k) − AdvH1

A (k)| < Pr1[valid], where valid is the event that in game H1, for some
decryption query c 6= c∗ where c1 = c∗1, c is a valid ciphertext. Assuming no decryption error, this
probability is bounded by Pr1[forge] where forge is the event that c2 is valid ciphertext for the AE
scheme. We postpone the analysis of the bound on Pr1[forge] until the final hybrid.

Hybrid H2: H2 is the same as H1, except that in the challenge ciphertext, we use a uniformly random
key K ′ for the AE scheme.

Lets denote by KEM, the KEM component of the above construction. It is easy to see that |AdvH2
A (k)−

AdvH1
A (k)| ≤ Advkem-cca

B,KEM . Note that the same bound is true for |Pr2[forge]− Pr1[forge]|.
7It is possible to relax the security requirement for the KEM component but the CCA security of the DEM seems

necessary in order to obtain a CCA secure PKE (see [26]).

29

Hybrid H3: H3 is the same as H2, except that instead of encrypting mb for the challenge ciphertext (in
the DEM component), we encrypt 0|m0|.

Obviously, AdvH3
A (k) = 1/2. It is also not hard to see that |AdvH3

A (k)−AdvH2
A (k)| ≤ Advot-ae

C,AE(k). The
same bound is true for |Pr3[forge]− Pr2[forge]| as well.

The last thing we need to show is that Pr3[forge] is negligible, but now the key K ′ for the AE is generated
at random, we have that Pr3[forge] < Advot-ae

C,AE(k), hence concluding the proof.

An ECCA KEM/DEM Construction from tb-ATDFs. The above construction can also be used
to yield an ECCA tag-based PKE from any tb-ATDF with essentially an identical proof. Then we can
apply the transformation of Section 4.3 based on [8], to turn this into a standard ECCA PKE scheme
(see proposition 4.13).

C PKENO-Compatible Tag-based PKE to PKENO-Compatible PKE

We show that starting with a PKENO-compatible ECCA tag-based PKE, the construction of Section 4.3
based on the BCHK transformation [8] yields a PKENO-compatible ECCA encryption scheme. We focus
here on the “more-efficient” version of the BCHK transform that uses symmetric primitives; the simpler
version with one-time signatures also works, however.

Let TB-PKE = (Kgtag,Enctag,Dectag, pRectag, Invaltag) be a partially randomness-recovering ciphertext-
verifiable tag-based public-key encryption scheme, H, g be hash functions as in Section 4.3, and MAC =
(mac, ver) be a message-authentication code. We define a partial-randomness-recovering scheme PKEpce =
(Kgpce,Encpce,Decpce,Conspce, Invalpce) as follows:

• Kgpce(1
k): (pk, sk)←$ Kgtag(1

k); output (pk, sk).

• Encpce(pk,m; r||x): c1 ← H(x); c2←$ Enctag(pk, c1,m‖x; r); c3 ← mac(g(x), c2); output (c1, c2, c3).

• Decpce(sk, (c1, c2, c3)): m‖x ← Dectag(sk, c1, c2); if H(x) 6= c1 or ver(g(x), c2, c3) = 0 then output ⊥;
else output m.

• pRecpce((pk, sk), (c1, c2, c3)): m‖x←$ Dectag(sk, c2); r←$ pRectag(sk, c1, c2); output (x, r).

• Conspce(pk, (c1, c2, c3),m, (x, r)): Return 1 iff H(x) = c1, ver(g(x), c2, c3) = 1 and Constag(pk, c1, c2,
m‖x, r) = 1.

• Invalpce(pk, (c1, c2, c3), (x, r)): Return 1 iff H(x) 6= c1 or ver(g(x), c2, c3)) 6= 1, or Invaltag(pk, c1, c2, r) =
1.

Proposition C.1 If TB-PKE is a PKENO-compatible ECCA tag-based PKE scheme then PKEpce defined
above is a PKENO-compatible ECCA encryption scheme.

Proof: We have already proven the ECCA security of the scheme in Proposition 4.13. In order to
prove that PKEpce is a PKENO-compatible ECCA encryption scheme we must show that it satisfies
partial-randomness recovery and ciphertext verifiability.

We begin with partial-randomness recovery (pRR). Recall that completeness for pRR is defined as follows:
For all (pk, sk)←$ Kgpce and all c = (c1, c2, c3) ∈ {0, 1}∗,m ∈ MsgSp(1k) ∪ {⊥}, let (x, r)←$ pRecpce(sk,
(c1, c2, c3)). Then

Decpce(sk, c) = m ∧m 6= ⊥ ⇒ Conspce(pk, c,m, s) = 1 .

Let m‖x←$ Dectag(sk, c2). Then by definition of Decpce that when Decpce returns m 6= ⊥ we have that
H(x) = c1 and ver(g(x), c2, c3) = 1. Additionally, by pRR completeness of TB-PKE, we have that r is re-
turned by pRectag(sk, c1, c2), and thus by pRR completeness of TB-PKE that Constag(pk, c1, c2,m‖x, r) =
1. Together we have that Conspce(pk, (c1, c2, c3),m, (x, r)) outputs 1.

30

Next, recall that soundness for partial randomness recovery (pRR) is defined as follows: For all (pk, sk)←$ Kgpce
and all c = (c1, c2, c3) ∈ {0, 1}∗,m ∈ MsgSp(1k), s = (x, r) ∈ {0, 1}∗:

Conspce(pk, c,m, s) = 1 ⇒ Decpce(sk, c) = m .

Soundness for partial randomness recovery follows immediately from the same notion for TB-PKE by
the definitions of Conspce and Decpce.

We now move onto showing the ciphertext verifiability property. Recall that completeness for cipher-
text verifiability is defined as follows: For all (pk, sk)←$ Kgpce and all c = (c1, c2, c3) ∈ {0, 1}∗, let
(x, r)←$ pRecpce(sk, c). Then

Decpce(sk, c) = ⊥ ⇒ Invalpce(pk, c, (x, r)) = 1 .

If Decpce(sk, c) = ⊥ then we must have that H(x) 6= c1 or Vertag(pk, c1, c2) 6= 1, or Dectag(sk, c1, c2) = ⊥.
Completeness for ciphertext verifiability of TB-PKE implies that in the last case Invaltag(pk, c1, c2, r) = 1.
Together this implies that Invalpce returns 1.

Recall that soundness for ciphertext verifiability is defined as follows: For all (pk, sk)←$ Kgpce and all
c = (c1, c2, c3) ∈ {0, 1}∗, s = (x, r) ∈ {0, 1}∗:

Invalpce(pk, (c1, c2, c3), (x, r)) = 1 ⇒ Decpce(sk, (c1, c2, c3)) = ⊥ .

Note that if Invalpce(pk, c, s) = 1 we have thatH(x) 6= c1 or ver(g(x), c2, c3)) 6= 1 or Invaltag(pk, c1, c2, r) =
1. In the last case, by soundness of TB-PKE, we have Dectag(sk, c1, c2) = ⊥. Together this implies that
Decpce(sk, (c1, c2, c3)) = ⊥.

D Achieving Strong Proof Soundness

The following two notions, given in [20], strengthen proof soundness. Consider the following two games:

Experiment Exps-proof-snd
PKENO,A (k)

(pk,m, St)←$A1(1
k)

c←$ Enc(pk,m)
(m′, π′)←$A2(pk, c, St)
If m ∈ MsgSp, Ver(pk, c,m′, π′) = 1 and m 6= m′

then return 1 ; else return 0

Experiment Exps-comm
PKENO,A(k)

(pk, c,m, π,m′, π′)←$A(1k)
If Ver(pk, c,m, π) = 1 and

Ver(pk, c,m′, π′) = 1 and
m 6= m′ then return 1

Else return 0

We say that PKENO is strongly proof-sound if for every efficient A = (A1, A2) the probability of

Exps-proof-snd
PKENO,A outputting 1 is negligible. Moreover, PKENO is strongly committing if for every efficient A

the probability of Exps-comm
PKENO,A outputting 1 is negligible.

These notions of proof soundness strengthen the original ones in that they let the adversary choose
the public key. Note that we cannot base such security on standard schemes, as for an adversarially
chosen public-key there might not even exist a decryption key.

Efficient scheme based on II-RSA. However, for our efficient PKENO scheme based on II-RSA
in Section 7.2, this problem can be overcome by having the verifier check that the RSA function defined
by a ciphertext is a permutation. That is, in the PKENO scheme, for strong soundness algorithm
Ver(N, c′,m′, π′) can be modified to first check that (N,H(t)) define a permutation, where t is the
corresponding tag obtained from the ciphertext c′ (depending on which version of the BCHK transform
is used, t will be e.g. a verification key for a one-time signature). In particular, Kakvi et al. [28] shows
how to efficiently verify that RSA parameters (N, e) indeed define a permutation as long as e ≥ N1/4+ε.
Thus, this check can be done efficiently if we hash to at least, say, 600 bits (for a 2048-bit modulus).

31

	Introduction
	ECCA Security Definition and Variants
	Constructions of ECCA-Secure PKE
	Applications to Adaptive Trapdoor Functions
	Applications to Public-Key Encryption with Non-Interactive Opening
	Related Work

	Preliminaries
	Notation and Conventions
	Public-key Encryption

	Enhanced Chosen-Ciphertext Security
	Constructions of ECCA-Secure PKE
	Adaptivity for Trapdoor Functions
	ECCA Security from Adaptive Trapdoor Functions
	Enhanced DCCA Security
	EDCCA Security from ATDFs
	From EDCCA to ECCA Security

	ECCA Security from Tag-Based Adaptive Trapdoor Functions

	Application to Adaptive Trapdoor Functions
	From ECCA Security to Adaptivity
	From ECCA Security to Tag-Based Adaptivity

	Application to PKE with Non-Interactive Opening
	PKENO-Compatible ECCA-Secure PKE
	PKENO-Compatible PKE using Non-Interactive Zero-Knowledge

	Efficient PKENO Constructions
	Construction from DLIN Using Groth-Sahai
	Construction from Instance-Independent RSA

	Standard Primitives
	From ATDF to ECCA via KEM/DEM
	PKENO-Compatible Tag-based PKE to PKENO-Compatible PKE
	Achieving Strong Proof Soundness

