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Abstract. Self-pairings have found interesting applications in crypto-

graphic schemes, such as ZSS short signatures and so on. In this paper,

we present a novel method for constructing a self-pairing on supersingular

elliptic curves with even embedding degrees, which we call the Ateil pair-

ing. This pairing improves the efficiency of the self-pairing computation

on supersingular curves over finite fields with large characteristic. On the

basis of the ηT pairing, we propose a generalization of the Ateil pairing,

which we call the Ateili pairing. The optimal Ateili pairing which has the

shortest Miller loop length is faster than previously known self-pairing

on supersingular elliptic curves over finite fields with small characteristic.

We also propose a new self-pairing based on the Weil pairing which is

faster than the previously known self-pairing on ordinary elliptic curves

with embedding degree one.

Keywords: Tate pairing,Weil pairing, Self pairing, Pairing based cryptography.

1 Introduction

Since pairings on elliptic curves have found many cryptographic applications [23],

it leads to fast developments of algorithmic foundations of pairings. Two exten-

sive surveys of pairing computations can be found in [2] and [9]. More recently,

a multitude of efficient techniques which speed up pairing computations have

been proposed. We categorize them into the following cases:

– Shortening the loop length in Miller’s algorithm. In the case of the Tate

pairing, we refer to [7, ?,?,16, 31, 15, 32, 25, 12]. In the case of the Weil pairing,

we refer to [33, 12, 30].
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– Speeding up the basic doubling and addition steps in Miller’s algorithm [1,

6].

– Speeding up the final exponentiation in the computation of the Tate pairing

or its variants [24].

All of the above improvements are very practical and lead to fast implemen-

tations. Pairings which feature specific properties are often required in crypto-

graphic applications. In particular, the self-pairing e(P, P ) has been used in a

wide range of cryptographic applications including, but not limited to, short

signatures [28, 27], ID-based Chameleon hashing schemes [29], on-line/off-line

signature scheme [27]. To the best of our knowledge, there is no other study

for computing self-pairings except [21]. It is known that e(P, P ) will be equal

to one if we directly compute the Tate or Weil pairings. Thus the latter P

should be mapped to another point which is independent with P for keeping

non-degeneracy in cryptographic protocols and schemes. Note that the distor-

tion map exists only on supersingular curves and ordinary curves with embedding

degree one [18]. Therefore, we will mainly consider the self-pairing computation

in the two cases.

In this paper, we present a new self-pairing on supersingular elliptic curves

with even embedding degrees, which we call the Ateil pairing. There are two

points to call this name. Firstly, it is like the Tate pairing, but faster than the

self-pairing based on the Tate pairing (hence we miss the “T”). Secondly, it comes

from the Weil pairing (hence we add“eil” in the end). This new pairing only has

one Miller loop despite it is devised by the Weil pairing. We show that it is the

fastest self-pairing on supersingular elliptic curves over finite fields with large

characteristics. Based on the ηT pairing, we present a natural generalization of

the Ateil pairing, which we call the Ateili pairing. The optimal Ateili pairing

with the shortest Miller loop is faster than the self-pairing based on the ηT

pairing. In the case of ordinary elliptic curves with embedding degree one, we

apply the denominator elimination technique in the computation of the self-

pairing based on the Weil pairing. Note that this technique does not exist when

computing the self-pairing based on the Tate pairing on the same curves. It is

shown that our new self-pairings achieve better performance than the previously

known self-pairings at any security level.

The remainder of this paper is structured as follows. In Section 2, we provide

some background and notation used through this study. In Section 3, we pro-
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vide a method for constructing self-pairings on supersingular elliptic curves with

even embedding degrees. In Section 4, we present a new self-pairing on ordinary

elliptic curves with embedding degree one. In such, we provide an analysis of the

computational complexity of the presented self-pairing and give a comparison to

the complexity of different self-pairings. We draw our conclusion in Section 5.

2 Mathematical Preliminaries

2.1 Tate Pairing

Let Fq be a finite field with q = pm elements where p is a prime, and E be

an elliptic curve defined over Fq. Consider a large prime r such that r|#E(Fq),

where #E(Fq) is denoted as the order of the rational points group E(Fq). Let k

be the embedding degree with respect to r, i.e., the smallest positive integer such

that r|qk − 1 . Let P ∈ E[r] and R ∈ E(Fqk). For each integer i and point P ,

let fi,P be a rational function on E such that (fi,P ) = i(P )− (iP )− (i− 1)(O).

Assume that D is a divisor which is equivalent to (R) − (O) with its support

disjoint from (fr,P ). Denote µr by the algebraic group of r-th roots of unity in

Fqk . The reduced Tate pairing [8] is a bilinear map

ē : E[r]× E(Fqk)/rE(Fqk )→ µr,

ē(P,R) = fr,P (D)
qk−1

r .

Note that the evaluation of fr,P at the divisor D can be computed by Miller’s

algorithm in polynomial time [19, 20].

2.2 Weil Pairing

Using the same notation as previous, one may make a few slight modifications

and then define the Weil pairing. Let k be the minimal positive integer such that

E[r] ⊂ E(Fqk ). Suppose that P, Q ∈ E[r] and P 6= Q. Let DP and DQ be two

divisors which are equivalent to (P )− (O) and (Q)− (O), respectively. Assume

that fr,P and fr,Q are two rational functions on E satisfying (fr,P ) = rDP and

(fr,Q) = rDQ, respectively. The Weil pairing [20] is a bilinear map

ê : E[r]× E[r]→ µr,
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ê(P,Q) = (−1)r
fr,P (Q)

fr,Q(P )
.

In general, computing the Weil pairing is always slower than computing the

reduced Tate pairing since it involves two Miller loops [9]. However, it has been

shown that the variant of the Weil pairing is faster than that of the Tate pairing

on certain pairing-friendly curves [30]. This results also indicate that the special

structure of the Weil pairing is useful for pairing computations. In the following,

we will take full advantages of the symmetry of the structure of the Weil pairing

and then present new self-pairings with great efficiency.

3 The Ateil Pairing Approach

In practical implementations, the self-pairing e(P, P ) can be designed by Type 1

pairings [11], i.e., it can be constructed on supersingular elliptic curves with

even embedding degrees. For interests, we cite all cases as Table 1. Note that

the computation of the pairings on E1 and E2 has been discussed [18]. In the

mean time, The ηT pairing can be defined on E3 and E4 [3]. Since the distortion

map φ [26] is an isogeny, we list its dual isogeny φ−1 for convenience.

In this section, we will explore the computation of the self-pairings on the

curves given in Table 1. Our general understanding of the construction of the

self-pairings comes mostly from the following theorem.

Theorem 1. Let E be the supersingular curves over the ground field Fq given

in Table 1. Let r be a large prime dividing the order of E(Fq). The embedding

degree with respect to r is equal to k. Let πq be the Frobenius endomorphism and

take P ∈ G1 = Ker(πq − [1]) ∩ E[r]. The self-pairing based on the Weil pairing

can be given by

es(P, P ) , ê(P, φ(P ))2(q
k/2

−1) = fr,P (φ(P ))4(q
k/2

−1).

Proof. It follows from the definition of the Weil pairing that

es(P, P ) , ê(P, φ(P ))2(q
k/2

−1) = (
fr,P (φ(P ))

fr,φ(P )(P )
)2(q

k/2
−1).

Since the distortion map in Table 1 is an automorphism, we have

fr,φ(P )(P )(q
k/2

−1) = fr,P (φ
−1(P ))(q

k/2
−1),
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Table 1. Popular pairing-friendly curves with distortion maps

No. Elliptic curve data Distortion map k

1

E1 : y2 = x3
− 3x over Fp,

where p ≡ 3 (mod 4).

#E(Fp) = p+ 1

φ : (x, y) → (−x, iy),

φ−1 : (x, y) → (−x,−iy),

where i2 + 1 = 0.

2

2

E2 : y2 = x3
− 1 over Fp,

where p ≡ 5 (mod 6)

#E(Fp) = p+ 1

φ : (x, y) → (βx, y),

φ−1 : (x, y) → (β2x, y),

where β2 + β + 1 = 0.

2

3

E3 : y2 + y = x3 + x+ b over F2l ,

where b = 0 or 1.

#E5(F2l) = 2l ± 2(l+1)/2 + 1 (l odd)

φ : (x, y) → (x+ s2, y + sx+ t),

φ−1 : (x, y) → (x+ s2, y + sx+ t+ 1),

where s ∈ F22l and t ∈ F24l

satisfy s2 + s+ 1 = 0 and t2 + t+ s = 0.

4

4

E4 : y2 + y = x3
− x+ b over F3l ,

where b = 1 or −1.

#E6(F3l) = 3l ± 3(l+1)/2 + 1 (l odd)

φ : (x, y) → (α− x, iy),

φ−1 : (x, y) → (α− x,−iy),

where i ∈ F32l and α ∈ F33l

satisfy i2 = −1 and α3
− α− b = 0.

6

which has been discussed in Proposition 2 of the paper [21]. Now it suffices to

demonstrate that

(
1

fr,P (φ−1(P ))
)(q

k/2
−1) = fr,P (φ(P ))(q

k/2
−1),

i.e.

(fr,P (φ
−1(P ))fr,P (φ(P )))(q

k/2
−1) = 1. (1)

Let P = (xP , yP ) ∈ G1. We will show that the equality (1) holds in the following.

Case 1. We first consider the curve E1. Let q = p, where p ≡ 3 (mod 4). The

rational function fr,P can be written as a(x) + b(x)y, where a(x) and b(x) are

the rational functions over the finite field Fq in terms of x [10]. We have

fr,P (φ
−1(P )) = a(−xP )− b(−xP )yP i

and

fr,P (φ(P )) = a(−xP ) + b(−xP )yP i.

It follows from Fermat’s little Theorem and i2 + 1 = 0 that

(fr,P (φ
−1(P ))fr,P (φ(P )))(q

k/2
−1) = 1.
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Case 2. Now we consider the curve E2. Let q = p, where p ≡ 2 (mod 3). Similar

to Case 1, the rational function fr,P can be written as c(y) + d(y)x + e(y)x2,

where c(y), d(y) and e(y) are the rational functions over the finite field Fq in

terms of y. Applying β2 + β + 1 = 0, we get

fr,P (φ
−1(P )) =c(yP ) + d(yP )xPβ + e(yP )x

2
Pβ

2

=(c(yP )− e(yP )x
2
P ) + (d(yP )xP − e(yP )x

2
P )β

and

fr,P (φ(P )) =c(yP ) + d(yP )xPβ
2 + e(yP )x

2
Pβ

4

=(c(yP )− d(yP )xP ) + (e(yP )x
2
P − d(yP )xP )β

=(c(yP )− e(yP )x
2
P )− (d(yP )xP − e(yP )x

2
P )(β + 1).

It follows from Fermat’s little Theorem and β2 + β + 1 = 0 that

(fr,P (φ
−1(P ))fr,P (φ(P )))(q

k/2
−1) = 1.

Case 3. Now we consider the curve E3. Let q = 2l. Similar to the above, the

rational function fr,P can be written as a(x) + b(x)y, where a(x) and b(x) are

the rational functions over the finite field Fq in terms of x. For convenience, we

use the notation a and b for a(xP + s2) and b(xP + s2), respectively. Then

fr,P (φ
−1(P )) =a+ b(yP + sxP + t+ 1)

=(a+ byP + bsxP ) + b(t+ 1)

and

fr,P (φ(P )) =a+ b(yP + sxP + t)

=(a+ byP + bsxP ) + bt.

Since s ∈ Fqk/2 and t2 + t = s, it follows from Fermat’s little Theorem that

(fr,P (φ
−1(P ))fr,P (φ(P )))(q

k/2
−1) = 1.

Case 4. Now we consider the curve E4. Let q = 3l. The rational function fr,P

can be written as a(x) + b(x)y, where a(x) and b(x) are the rational functions

over the finite field Fq in terms of x. For convenience, we use the notation a and

b for a(α− xP ) and b(α− xP ), respectively. Then

fr,P (φ
−1(P )) = a+ byP i
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and

fr,P (φ(P )) = a− byP i.

It follows from Fermat’s little Theorem that

(fr,P (φ
−1(P ))fr,P (φ(P )))(q

k/2
−1) = 1.

Therefore the equality (1) holds in all cases. This completes the whole proof.

We call our new pairing in Theorem 1 the Ateil pairing. In the case of the

supersingular curves with embedding degree k = 2, we see that at any security

level the Ateil pairing is faster than the self-pairing based on the reduce Tate

pairing since the final exponentiation of the former is simpler than that of the

latter and both of them have the same Miller loop. However, in the case of the

supersingular curves with embedding degree k = 4 or 6, the self-pairing based

on the ηT pairing whose Miller loop is half the length of that required for the

reduced Tate pairing. This leads to the proposed pairing in Theorem 1 is slower

than the self-pairing based on the ηT pairing in this case. We next provide the

improvement of the Ateil pairing, as compared to the self-pairing based on the

ηT pairing.

3.1 An Improvement on the ηT Pairing

Our goal is to construct a new self-pairing which has the same Miller loop as the

ηT pairing. It is known that the ηT pairing is the fastest pairing on supersingular

elliptic curves over finite fields with small characteristics 2 or 3 and Hess et. al

give another approach for the ηT pairing in Section 3.2 of [13]. We will mainly

consider the self-pairing computation in this case. The following lemma is useful

for generating the Ateil pairing on supersingular elliptic curves over finite fields

with small characteristics.

Lemma 1. Let E be the supersingular curves defined as Theorem 1. Let r be a

large prime satisfying r | #E(Fq) and denote the trace of the Frobenius endo-

morphism with t, i.e., #E(Fq) = q + 1 − t. The embedding degree with respect

to r is equal to k. Write T = t − 1. For T i = (t − 1)i ≡ qi mod r where

1 ≤ i ≤ k − 1, we denote Ti = T i mod r. Let a be the smallest positive integer

such that T a
i ≡ 1 mod r. There exists an integer L such that T a

i − 1 = Lr. Given

the two points P, Q ∈ G1 = Ker(πq − [1]) ∩E[r], we have
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ê(P, φ(Q))2(q
k/2

−1)L =
fTi,P (φ(Q))

fTi,Q(φ
−1(P ))

2(qk/2
−1)c

,

where c =
∑a−1

j=0 T
a−1−j
i qej ≡ aqei(a−1) (mod r).

Proof. It is obvious from the definition of the Weil pairing and fr,φ(Q)(P ) =

fr,Q(φ
−1(P )) (see Proposition 2 of [21]) that

ê(P, φ(Q))2(q
k/2

−1)L = (
fr,P (φ(Q))

fr,φ(Q)(P )
)2L(qk/2

−1) = (
fLr,P (φ(Q))

fLr,Q(φ−1(P ))
)2(q

k/2
−1).

Applying the identity Lr = T a
i − 1 into the above equation, we obtain

ê(P, φ(Q))2(q
k/2

−1)L = (
fTa

i −1,P (φ(Q))

fTa
i −1,Q(φ−1(P ))

)2(q
k/2

−1) = (
fTa

i ,P (φ(Q))

fTa
i ,Q(φ−1(P ))

)2(q
k/2

−1)

(1)

Since (π̂q ◦ π)(P ) = [q]P = [T ]P , we have π̂i
q(P ) = [T i]P = [Ti]P . Due to the

discussion in Section 3.2 of [13] (or see the proof of Theorem 1 in [3]), we see

that

fTa
i ,P (φ(Q)) = (fTi,P (φ(Q)))

∑a−1
j=0 T

(a−1−j)
i qj (2)

Using the same argument for fTa
i ,Q(φ

−1(P )), we have

fTa
i ,Q(φ

−1(P )) = (fTi,Q(φ
−1(P )))

∑a−1
j=0 T

(a−1−j)
i qj . (3)

Substituting (2) and (3) into the equation (1), we have

ê(P,Q)2(q
k/2

−1)L = (
fTi,P (φ(Q))

fTi,Q(φ
−1(P ))

)2(q
k/2

−1)c,

where c =
∑a−1

j=0 T
a−1−j
i qj ≡ aqi(a−1) (mod r). This completes the whole proof.

On the basis of Lemma 1, we can define a new powered pairing as (
fTi,P

(φ(Q))

fTi,Q
(φ−1(P )) )

2(qk/2
−1)

which will be non-degenerate provided that r ∤ L. It has the same loop length as

the ηT pairing when i = 1. Despite this new pairing has the simple exponentia-

tion, it is slower than the ηT pairing since it involves two Miller iteration loops.

Applying Q = P in the new defined pairing (
fTi,P

(φ(Q))

fTi,Q
(φ−1(P )) )

2(qk/2
−1), we have the

following results.

Theorem 2. Using the same notation as above, the self-pairing based on the ηT

pairing can be given by

es(P, P ) , (
fTi,P (φ(P ))

fTi,P (φ
−1(P ))

)2(q
k/2

−1) = fTi,P (φ(P ))4(q
k/2

−1).
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Proof. It is immediate from the proof of Theorem 1 and Lemma 1.

We call our new pairing in Theorem 2 the Ateili pairing. Some remarks on

the Ateili pairing are stated as follows.

Remark 1. A series of the Ateili pairing can be obtained as i varies. We call

the Ateili pairing with the shortest Miller loop is optimal. Due to the discussion

in [25, 12], the optimal Ateili pairing has the same loop length as the ηT pairing.

Remark 2. The loop length of the Ateili pairing is as same as that of the ηT

pairing when i = 1. For Ti < 0, the generalized version of the Ateil pairing

suggests to use Ti · (Ti)
k/2 = Ti · (−1) (mod r) provided that k > 2.

Remark 3. At any security level, the optimal Ateili pairing will be faster than

the self-pairing based on the ηT pairing since the former has a simpler final

exponentiation than the latter and both of them have the same Miller loop.

Remark 4. The optimal Ateili pairing on supersingular elliptic curves over finite

fields with characteristic three can achieves better performance when imple-

menting ZSS short signatures [28].

4 Self-pairing on Elliptic Curves with Embedding Degree

one

Since the distortion maps exist on not only supersingular elliptic curves but also

ordinary elliptic curves with embedding degree one, we will consider self-pairing

computation on the latter curves in this section. Koblitz and Menezes first gave

the concrete construction of ordinary curves with embedding degree one and

analyzed the efficiency of pairing computations on these curves [18].

Assume that the prime p = A2+1. The equation of the elliptic curve E5 over

Fp is defined by

E5 : y2 = x3 + ax,

where a = −1 or −4. The order of the group E5(Fp) is #E5(Fp) = p− 1. Note

that the distortion map on E5 is given by φ : (x, y)→ (−x,Ay). In the following,

we will provide the efficiency of the computation of self-pairings based on the

Weil and Tate pairing, respectively.
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4.1 Self-pairing Based on the Weil pairing

It is known that the denominator elimination techniques can be used for speeding

up the reduced Tate pairing [4] and the powered Weil pairing [18, 17] due to the

final exponentiation. However, these methods can not be applied in the case of

pairing computations on the curve E5 with embedding degree one. To apply the

denominator elimination techniques in self-pairing computations, we will define

a new fixed power of the Weil pairing. Let P ∈ E5(Fp) have prime order r. The

self-pairing based on the Weil pairing can be defined as

es(P, P ) = ê(P, φ(P ))4. (4)

The following lemma shows that the proposed self-pairing (4) can be com-

puted efficiently.

Lemma 2. The denominator elimination technique can be applied when com-

puting the self-pairing (4) on the curve E5 with embedding degree one.

Proof. In the case of the doubling steps of the self-pairings, after initially setting

T = P , f1 = f2 = 1, for each bit of r we do

T ← 2T

f1 ← f2
1

lT,T (φ(P ))

v2T (φ(P ))

f2 ← f2
2

lφ(T ),φ(T )(P )

vφ(2T )(P )

Assume that P = (xP , yP ) and 2T = (x2T , y2T ). We obtain φ(P ) = (−xP , AyP )

and φ(2T ) = (−x2T , Ay2T ). It is easy to check that

v2T (φ(P )) =− xP − x2T

vφ(2T )(P ) =x2T − xP = (−1) · v2T (φ(P )).

Note that we can ignore −1 due to the final power four. Thus the denomina-

tors in the doubling steps can be eliminated. Similarly, it can be seen that the

denominators in the addition steps can be also eliminated. This completes the

proof of Lemma 2.

Now we will consider the doubling and addition steps of self-pairing compu-

tations in Miller’s algorithm.
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Doubling Step Assume that T = (xT , yT ), [2]T = (x2T , y2T ) and P = (xP , yP ).

Let lT,T be the equation of the tangent line through the point T and λ be the

slope of the line. We have

lT,T (φ(P )) = (AyP − yT )− λ(−xP − xT ) = (−yT + λ(xP + xT )) + yP · A.

Observe that if the slope of the tangent line through the point T is λ, then

the slope of the tangent line through the point φ(T ) is −Aλ. It follows that

lφ(T ),φ(T )(P ) = yP −AyT +Aλ(xP + xT ).

Then

(−A)lφ(T ),φ(P )(P ) = (−yT + λ(xP + xT ))− yPA.

Since A4 = 1 (mod p) and the final power equals four, we can replace lφ(T ),φ(T )(P ))

by (−Alφ(T ),φ(T )(P )) in the whole computation.

Note that we can cache R1 = A · yP . The formulas for the doubling steps in

affine coordinates will be given by

λ =
3x2

T + a

2yT
; x2T = λ2 − 2xT ; y2T = λ · (xT − x2T )− yT

t1 =− yT + λ · (xP + xT ), t2 = R1, f1 ← f2
1 · (t1 + t2), f2 ← f2

2 · (t1 − t2)

The total cost of the operation for the doubling steps in affine coordinates will

be 1I+5M+4S, where I, M and S denote the costs of inversion, multiplication

and squaring in the ground field Fp.

Now we consider the operation count for the doubling steps in Jacobian

coordinates. A point (X,Y, Z,W = Z2) in the modified Jacobian coordinates

corresponds to the point (x, y) in affine coordinates with x = X/Z2, y = Y/Z3.

Let T = (XT , YT , ZT ,WT = Z2
T ) and N = 2T = (XN , YN , ZN ,WN = Z2

N ).

Based on the explicit-formulas database given by Bernstein and Lange [5], the

following formulas compute a doubling in 6M + 10S.

B =X2
T ;C =Y 2

T ;D =C2;E = W 2
T ;S = 2((XT + C)2−B−D);M = 3B+aE;

XN = M2 − 2S;YN = M · (S −XN )− 8D;ZN = (YT + ZT )
2 − C −WT ;

wN = Z2
N ; t1 = ZN ·WT ·R1; t2 = −2C +M · (WT · xP +XT );

l1 = t1 + t2; l2 = t1 − t2; f1 ← f2
1 · l1; f2 ← f2

2 · l2;
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Addition Step Assume that T = (xT , yT ), P = (xP , yP ) and N = T + P =

(xN , yN). Let lT,P be the equation of the line through points T and P . Denote

by λ the slope of the line lT,P . We have

lT,P (φ(P )) = (AyP − yP )− λ(−xP − xP ) = (−yP + 2λxP ) + yP · A.

Observe that if the slope of the line through points T and P is λ, then the slope

of the line through points φ(T ) and φ(P ) is −Aλ. It follows that

lφ(T ),φ(P )(P )) = (yP −AyP )− (−Aλ)(xP − (−xP )) = A(−yP + 2λxP ) + yP .

Then

(−A)lφ(T ),φ(P )(P ) = (−yP + 2λxP )− yP ·A.

Since A4 = 1 (mod p) and the final power equals four, it follows that lφ(T ),φ(P )(P ))

can be replaced by (−Alφ(T ),φ(P )(P )) in the whole computation.

Similar to the doubling step, we can cache R1 = A · yP . The formulas for the

addition steps in affine coordinates can be given by

λ =
yT − yP
xT − xP

; xN = λ2 − xP − xT ; yN = λ · (xP − xN )− yP ;

t1 =− yP + 2λ · xP ; t2 = R1, f1 ← f1 · (t1 + t2), f2 ← f2 · (t1 − t2)

The total cost of the operation for the addition steps in affine coordinates will

be 1I+5M+1S.

Now we consider the operation count for the addition steps in Jacobian co-

ordinates. Note that we will cache R1 = A · yP , R3 = y2P , and R4 = x2
P . Let

T = (XT , YT , ZT ,WT = Z2
T ) and N = (XN , YN , ZN ,WN = Z2

N ) = T +P . Based

on the explicit-formulas database given by Bernstein and Lange [5], the following

formulas compute an addition step in 9M + 7S.

U2 = xP ·WT ;S2 = (yP ) · ZT ·WT ;H = U2−XT ;HH = H2; I = 4HH ;

J = H · I;M = S2−YT ;R = 2M ;V = XT · I;R2 = R2;XN = R2−J−2V ;

YN = R · (V−XN )−2YT · J ;ZN = (ZT +H)2−WT−HH ;WN = Z2
N ;

t1 =(ZN +R1)
2−WN+R3; t2 =(ZN +yP )

2−WN−R3+2((R+ xP )
2−R2−R4);

l1 = t1+t2; l2 = t1−t2; f1 = f1 · l1; f2 = f2 · l2;

4.2 Self-pairing Based on the Tate Pairing

The self-pairing can be defined on the basis of the reduced Tate pairing. Similar

to the paper [18], we could choose R to be the point (0, 0) on the curve E5. Thus
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the divisor D equals to (φ(P ) + R) − (R). The self-pairing based on the Tate

pairing is given by

es(P, P ) = ē(P, φ(P )) = (
fr,P (φ(P ) +R)

fr,P (R)
)(p−1)/r. (5)

Note that we can not replace the divisor D by the point φ(P ) for computing

the reduced Tate pairing ē(P, φ(P )). We next analyze the cost of the doubling

and addition steps for computing ē(P, φ(P )) in detail.

Doubling Step Let T = (xT , yT ) and 2T = (x2T , y2T ) in affine coordinate

systems. The function lT,T and v2T correspond respectively, to the tangent line

to the curve E5 at the point T and the vertical line through the point 2T . For

each bit of r we do

λ =
3x2

T + a

2yT
; x2T = λ2 − 2xT ; y2T = λ · (xT − x2T )− yT

f1 ←f2
1 · lT,T (φ(P ) +R) · v2T (R); f2 ← f2

2 · lT,T (R) · v2T (φ(P ) +R).

The formulas need 1I+8M+4S to compute the doubling step in affine coor-

dinates. Koblitz and Menezes have considered the doubling steps which cost

13M+9S in Jacobian coordinates [18]. Ionica and Joux have given the improved

formulas for the doubling steps in this case which cost 10M+10S [14].

Addition Step Assume that T = (xT , yT ), P = (xP , yP ) and N = T + P =

(xN , yN). The formulas for the addition steps will be given by

λ =
yT − yP
xT − xP

; xN = λ2 − xP − xT ; yN = λ · (xP − xN )− yP ;

f1 ←f1 · lT,P (φ(P ) +R) · vT+P (R); f2 ← f2 · lT,P (R) · vT+P (φ(P ) +R).

The total cost of the operation for the addition steps in affine coordinates will

be 1I+8M+1S. Ionica and Joux have developed the improved formulas for the

addition steps in Jacobian coordinates which cost 18M+3S [14].

4.3 Efficiency Consideration for Self-pairing on the Curve with

Embedding Degree one

In this subsection, we compare the efficiency of computing the self-pairings

with different structures on the curve E5. We first note that the presented self-

pairing (4) has the simpler final exponentiation than the reduced Tate pairing (5)
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which leads to the reduction of the computational complexity. Furthermore, we

summarize the computational costs of basic doubling and addition steps for dif-

ferent pairings into Table 2.

Table 2. Comparison of Basic Steps for Different Self-pairings on Curves with Em-

bedding Degrees one

Coordinate System Self-pairings Doubling Steps Addition Steps

Affine coordinate Proposed pairing (4) 1I+5M+4S 1I+5M+1S

Tate pairing (5) 1I+8M+4S 1I+8M+1S

Jacobian coordinate Proposed pairing (4) 6M+10S 9M+7S

Tate pairing (5) 10M+10S 18M+3S

As shown in Table 2, computing the proposed self-pairing (4) needs fewer

multiplications than computing the reduced Tate pairing (5) on the curve E5

with embedding degree one in each step. We conclude that the proposed self-

pairing (4) is faster than the self-pairing (5) based on the Tate pairing at any

security level.

5 Conclusion

In this paper, the computation of the self-pairing is considered in all cases. Using

the symmetry of the structure of the Weil pairing, we have presented the Ateil

pairing with one Miller loop. The proposed pairings achieve better performance

than the previously known self-pairings at any security level. From the Ateil

pairing approach, we see that the variant of the Weil pairing may be preferred

in certain cases.
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