
INFORMATION TO USERS

This manuscript has been reproduced fram the microfilm master. UMI films the

text directly tram the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The qu.'1ty of this reproduction is dependent upon the qua'My of the copy

submitted. Broken or indistinct prin!, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a comptete manuscript and

thera are missing pages, these will be noted. Also, if unauthorized copyright

material had ta be removed, a note will indicate the deletion.

Cversize materials (e.g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand corner and continuing from 18ft te

right in equal sections with small overfaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6- x 9" black and white photographie

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly te oraer.

Bell & Howell Information and Leaming
300 North leeb Raad. Ann Arbor, MI 48106-1348 USA

UM1
GD

800-521-0600

•

•

•

Design and Implementation of Database
Computations in Java

Patrick Baker

School of Computer Science
~lcGill University. N[ontreal

July 1998

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements of the degree of Master of Science

@Patrick Baker 1998

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON Kl A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
OttawaON K1A0N4
Canada

YOllf hJe VOtf. ,.'';,enœ

OUf fiJe Not'. ,s.r."c.

The author bas granted a non
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies ofthis thesis in microfonn,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
May be printed or otherwise
reproduced without the author's
permISSIon.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de ceDe-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-44121-0

Canad~

•

•

•

Abstract

This thesis documents the design and implementation of computations, the procedural

abstraction facility of a database programming language. Conceived as a special form

of relation, computations fit neatly into the relational model. A computation is defined

over a set of domains, which also aet as parameters. Invocation is aceomplished by

means of the operators of the relational algebra. A computation is intended to embody

a eonstraint amongst its parameters. These are grouped into inputs and outputs at

caU time. Given a set of input values, the computation returns output values that

satisfy the constraint.

Computations may be recursive, and may also be nested within other computa

tions. This latter property leads to a notion of scopes and environments.

\-Vith computations, a mechanism is also provided for the instantiatian of stateful

abjects. [t is designed ta handle large numbers of such abjects efficiently. Behaviour

may be encapsulated within the abject.

The implementation is part of the jRelLx project at ~IcGill University. jRelix is the

successor of the Relh: relational database programming language. :\. significant feature

of the new implementation is the support for nested relations of arbitrary depth. The

programming language Java was used exclusively for the implementation.

•

•

•

Résumé

Cette thèse documente la conception et l'implantation de cornputations, l'outil d'ab

straction procédurale d'un langage de programmation pour les bases de données.

Conçues comme étant une forme spéciale de relation, les computations s'insèrent

nettement dans le modèle relationnel et sont définies sur un ensemble d'attributs qui

agissent aussi comme paramètres. L'invocation est accomplie au moyen des opérateurs

de l'algèbre relationnelle. Une computation devrait établir une contrainte parmi ses

paramètres. Au temps d'appel ceLLx-ci sont regroupés en paramètres d'entrée et de

sortie. Pourvue d'un ensemble déterminé de valeurs d'entrée. la computation délivre

des valeurs de sortie satisfaisant la contrainte.

Les computations peuvent être récursives ou imbriquées dans d'autres compu

tations. La dernière propriété conduit à une notion de visibilité des données et

d'environnements.

Avec les computations, un mécanisme est inclus pour la création d'objets étatiques.

Il est conçu pour en traiter efficacement un grand nombre. Des conlportements

peuvent être encapsulés dans l'objet.

L'implantation fait partie du projet jRelix de l'université ~IcGill. jRelix est le

successeur du langage de programmation de la base de données relationnelle Relix.

Un trait significatif de la nouvelle implantation est le support des relations imbriquées

à profondeur arbitraire. Le langage de programmation Java fut exclusivement utilisé

pour le projet.

II

•

•

•

Acknowledgments

1 \Vish to express my gratitude to my supervisor, Professor T.H. :\Ierrett. Our dis

cussions have guided me throughout the course of this project. .-\S weIl, this thesis

would not have its present form if it \Vere not for his assiduity in reviewing the earlier

dràfts. To him 1 happily acknowledge my obligation.

~Iy teammates on this project \Vere aiso very helpfuI. Opinions. suggestions and

criticisms \Vere exchanged at severa! meetings. Biao coded most of the parser and

designed the structure of the interpreter. :\Iso, he has kindly allowed me ta reproduce

the BNF grammar for jRelix from his thesis. Zhongxia wrote the source code for

handIing the system relations, including moving them between memory and disk.

1 would aiso like to thank Xiaoyan Zhao for her assistance with the .-\LD.-\T lab

facilities. In addition, she sat in on many group meetings at the beginning of the

project to offer advice on the internais of ReILx.

1 wish to thank my parents for their support throughout my studies. They have

always encouraged and supported me in my endeavours. ~..ry mom aIso helped me to

translate the abstract into French. This thesis is dedicated to them.

Finally, 1 wish to thank Suzan for her love, encouragement and patience. 1 love

you very much.

iii

•

•

•

Contents

Abstract

Résumé

Acknowledgments

1 Introduction
1.1 Aim of the Thesis
1.2 Survey of Database Programming Languages .

1.2.1 Language-oriented database systems. . .
1.2.2 Persistent programming languages .
1.2.3 Object-oriented languages .
1.2.4 Knowledge-base management systems .

1.3 ~Iotivation for the Thesis .
1.4 Outline of the Thesis .

2 Overview of jRelix
2.1 Relations and Domains
2.2 Relational Aigebra ...

2.2.1 Unary operators ..
2.2.2 Binary operators

2.3 Domain A.lgebra .
2.3.1 Horizontal operations .
2.3.2 Vertical operations

2.4 Update Statement . .
2.5 Nested Relations

3 User ManuaI on Computations
3.1 Creating Computations .
3.2 Invoking Computations

3.2.1 Invoking a computation with a select expression
3.2.2 Array syntax for computation invocation
3.2.3 JoÏn of a computation with a relation
3.2.4 Stand-alone invocation of computations .
3.2.5 Nlultivalued computations

iv

ii

iii

1
1
2
3
8
Il
15
19
21

22
22
·y·_1

28
31
3-1
3-1
3i
-10
-11

46
-16
-l8
-19
-19
50
-.)J_

53

COIVTENTS•
3.3
3.4
3.5
3.6

3.2.6 Properties of computations . .
Stateful Computations
Recursive Computations
Constraint 'Verification
Commands .

y

53
54
56
58
59

•

•

4 Implementation of Computations
4.1 Overview of the jRelix Implementation

4.1.1 Data dictionary
4.1.2 Representation of nested relations .
4.1.3 Storage of relations ...

·1.2 Parsing a JJTree Syntax Tree . .
4.3 Environments in jRelix

4.3.1 The environment model
4.3.2 Creating abjects with state
4.3.3 The static environment model
4.3.4 Implementation details
4.3.5 Scopes induced by nested relations

4.4 Application of Computations
4.5 Creation of Computations .
4.6 Implementation of Stateful Computations
·1.7 Storage of Computations .

4.7.1 Top-level computations
.1.7.2 Computations nested in a relation .

..1.8 Recursion

5 Conclusion
5.1 Summary .
5.2 Future Work .

5.2.1 ..\ note on the commutivity of the natural join
5.2.2 ~atural JOÎn of two computations
5.2.3 Overloading other relational algebra operators
5.2.4 Events and triggers
5.2.5 Black algorithm: select clause
5.2.6 Storing a view in a relation.
5.2.7 Object-oriented features . . .

A Backus-Naur Form Cor jRelix Commands

Bibliography

61
61
62
65
67
69
il
...?t_

80
82
85
88
91
94
99

101
103
103
105

106
106
107
107
108
109
109
110
111
112

116

122

•

•

•

List of Figures

1.1 Datalog program .
1.2 Expressing a constraint with a relation, part 1 .
1.3 Expressing a constraint with a relation, part 2

2.1 A fiat relation
2.2 Domain declarations
2.3 Command sd
2.4 Creating relations ..
2.5 Commands sr and pr
2.6 Assignment and incremental assignment ..
2.7 Projection.

~ 2.8 Selection .
2.9 T-Selection .
2.10 Relation orders
2.11 Natural joïn ...
2.12 Actualization of a virtual domain, part la
2.13 Actualization of a virtual domain, part 1b
2.14 Constant virtual domains .
2.15 Unary virtual domains
2.16 Binary virtual domains . . .
2.17 Conditional virtual domains
2.18 Predefined functions in virtual domains .
2.19 Reduction
2.20 Actualization of a virtual domain, part 2a
2.21 Actualization of a virtual domain, part 2b
2.22 Equivalence reduction ..
2.23 The domain algebra ..
2.24 Update statement ...
2.25 A nested relation
2.~6 Nested domain declaration
2.27 Creating a nested relation
2.28 Nested domain algebra . .

3.1 Velocity computation
3.2 Velocity computation as a relation . .
3.3 Sum of squares computation .

vi

18
20
20

23
24
25
26
26

28
29
30
33
33
35
35
36
36
36
37
37
38
39
39
39
-l0
-l2
-l2
-l4
-l5
-l5

-li
-li
-l8

•

•

•

LIST OF FIGURES

3.4 Applying the velocity computation \Vith. a selection ..
3.5 Array synta..x for computation invocation
3.6 Applying the velocity computation \Vith an ijoin
3.7 Stand-alone computation caU. . . .
3.8 Also operator .
3.9 Declaration of a bank account class
3.10 Instantiation of bank account objects
3.11 Transfer of money between bank accounts
3.12 Recursive computation
3.13 Constraint verification with a computation
3.14 Commands for computations

4.1 System relations
4.2 In R.ANI system metadata structures
·1.3 ImplementatIon of nested domains, part 1. .
4.4 Implementation of nested domains, part 2 ..
4.5 Toois used to create the jRelix parser
-L6 JJTree syntax trees
-1.7 Debug mode
4.8 Variable look ups in an environment. .
4.9 ~Ia.x computation, part 1 .
4.10 ~Ia.x computation, part 2 .
4.11 Static binding .
4.12 Dynamic binding .
4.13 Sum of squares, part 1
4.14 SUffi of squares, part 2
4.15 Sum of squares, part 3
4.16 Sum of squares, part --1
4.17 Bank account computation, part 1 . .
4.18 Bank account computation, part 2 . .
4.19 Bank account computation, part3 ..
4.20 Static environment, part 1
4.21 Static environment, part 2
4.22 Static environment, part 3
4.23 A deeply nested relation . .
4.24 Nested-relation environment
4.25 Block type
4.26 Nested Computation .
-1.27 Hidden state variables, part 1
4.28 Hidden state variables, part 2
-1.29 Storage of a computation nested in a relation

.
5.1 Computation that does not embody a constraint . . .
5.2 Sorne musicians _ .
5.3 ~Iusician abjects .

vii

49
50
51
-.)v_

53
55
56
56
57
58
60

64
66
6i
68
iD
iD
71
73
7-l
75
Ti--••
78
T8
79
79
81
81
82
83
8-1
8-.l
90
90
94
98

101
102
10-.l

107
Il-t
115

•
List of Tables

1.1 PS-algol procedural interface ta the persistent store 10
1.2 The golden mIes 12
1.3 Features of ObjectStore, 0 21 and ONTOS 16

·2.1 Primitive types in jRelix 2-.1
2.2 Summary of j.t-joins . 32
2.3 Summary of a-joins :34

-1.1 System relations 62
4.2 Component structures of the Environment class 86
4.3 Classes encapsulating the different kinds of variables. . 8i• 4.4 Interface methods of the Environment class . 89

5.1 Ambiguous black types . 110

A.l BNF convention 116

•

•

•

•

Chapter 1

Introduction

1.1 Aim of the Thesis

This thesis documents the design and implementation of a procedural abstraction

mechanism for the jRelLx relational database programming language. jRelbc consists

of a database management system (DB~IS) together with the query language Aldat

.-\.Lgebraic DATa language. The work is based on a previous version, called Relix, that

\Vas written using the C programming language [38]. Over the years, many features

\Vere added to this base implementation: computations-a mechanism for procedural

abstraction, managing constraints and modeling abjects; procedures-which provide

a different procedural abstraction facility [43), as weIl as a method to define event

handlers [26); support for nested relations with at most one level of depth [31}. One

of the motivations for building jRelLx is to integrate these features neatly in a new

system. Experience with RelLx has led to new ideas for the design of the language.

This also provides incentive for a fresh implementation. One of the features that has

been redesigned in jRelix is the full support for nested relations of arbitrary depth.

This has profound implications for the implementation of the relational algebra as \Vell

as the domain algebra. It also pennits the unification of computations and procedures,

thereby leading ta a simpler language. Computations have also been redesigned to

enable the modeling of objects in a more manageable and efficient manner. The

programming language Java was used for the implementation of jRelLx. It may he

used on any system which supports the Java Run-time Environment (JRE). Such an

l

environment is included in today's most popular web browsers. The combination of

Java's graphical user interface generation tools and networking facilities make possible

the development of a Java front end to jRelL~ that will make it readily available to a

large number of people over the Internet.

The full documentation for jRelix is split across three theses. Although there \Vas

much collaboration, especially in the design of jRelix and the implementation of the

core of the DB~'IS, the work was roughly divided as foUows. The relational aIgebra

\Vas implemented by Biao Hao and is documented in [30]. The domain algebra \Vas

the responsibility of Zhongxia Yuan, details of which are to be found in [70]. Finally,

computations are the subject of this thesis.

• 1.2. SURVEY OF D.41:4.B.ASE PROGR..~A[l\tlING L.-\lVGU.AGES 2

•

•

1.2 Survey of Database Programming Languages

The relational model, first introduced by Codd [21], has attracted much attention

both in the academic world and in industry. This has led to severa! research and

commercial implementations. lt has proven itself exceptionally useful for many busi

ness applications. The basic model, however, is lacking in expressive power and in

the ability ta handle complex data. ~Iany applications are arising in the science and

engineering fields for which the relational model, as originally proposed, is not an

adequate tooL This has fueled the need for continued research in the field of database

programming languages (DBPL).

The goal is ta create programming languages which ease the development of large

applications which are characterized by a combination of the following properties:

• involve large amounts of data

• require the data ta persist

• involve complex structured data

• allow concurrent access ta the data

• involve complex operations on the data

Computer automated design (CAO) and VLSI chip design are examples of such ap

plications.

DBNIS are capable of dealing with large amounts of persistent data and allowing

concurrent access to it even if it is distributed among several sites. Programlning

languages provide well proven and pawerful techniques far creating, organizing and

manipulating data that is in memory. Oatabase programming languages seek ta com

bine these t,va aspects in arder ta pravide a programming environment suitable for

the development af applications of the type just described. In this section, a survey of

attempts ta create such languages is presented. In [13), F. Bancilhon identifies four

classes of DBPL. These are

• 1.2. SURV'EY OF D.·t'L--\BA5E PROGRA.JL.\IIiVG LAiVGUA.GES 3

•

•

• language-oriented database systems

• persistent programming languages

• engineering database systems

• object-ariented database systems

.-\ firth class should also be included

• knowledge-base management systems

.-\Ithough we do not discuss engineering database systems, the organization of this

survey is based on the other four classes.

1.2.1 Language-oriented database systems

An earlyapproach to creating a OBPL has been ta embed a database query language

inta an existing programming language. An example of this is the INGRES relational

database system [64]. Its query language, called QUEL, resembles tuple relational

calcuJus in which variables represent tuples of a relation. QUEL bas been embedded

into the C programming language yielding EQUEL [41. This was accomplished by

means of a precompiler. QUEL variables and statements are inserted into a C program

in Hnes that begin with '##'. The precompiler only takes action on these lînes. The

other Hnes of code are output without modification. If a Hne beginning \\ith 1,##'

•

•

•

1.2. SURvEY OF DATABASE PROGR..4A[}IING LA.J.VGUAGES

contains a variable declaration, then this is noted for future use. If it is a QCEL

statement. then the INGRES parser is invoked on it. If this statement does not contain

any C variables then code is inserted ta handle the query. If however a C variable

appears in the statement then its value and type must be passed to the E'J'GRES

lexical analyzer, and then the rest of the Hne is passed to INGRES as weIl. C code is

then generated for this statement.

A major disadvantage of this approach is that it requires the programmer ta he

Buent \Vith both the hast language as well as the query language. It is unwieldy to

make the hulk types of the query language, like the relation, fit together with the

typing system of the hast language. This difficulty in integrating the host language

\Vith the query language has been referred ta as impedance mismatch. This approach

therefore yields an awkward programming environment, and more integrated solutions

are needed. An other example of this kind of language is System/R [5} which combines

SEQGEL and PL/l.

.\nother approach ta creating a OBPL is to add database features ta an existing

programming language. A popular and widely used language in this class is Pascal/R

[59}. It is an attempt at combining the relational data model \Vith the Pascal pro

gramming language [33]. The record type of Pascal is used ta represent a tuple of

a relation. The constructor relation of has been added ta the language. It takes as

arguments a record type, which effectively specifies the schema of the relation, and a

key for the relation, whieh must be a subset of the fields in the record. The data

base constructor is used to specify the relation types of the relations that make up a

database..:\ new iteration construct, for each, is added for looping aver the tuples

of a relation. Also, there is a set of four operators that permit the traversaI of a

relation-Iow, Dext, high and eor. Two other mecanisms are available for manipu

lating relations. First, relational operators are provided by the system, and secondly,

procedures May have relations as their arguments.

Sorne criticisms [Il} of the Pascal/R language are that the for each operatar does

not apply to the other bulk types that are provided in Pascal-the file, the array and

the set; only a single database may he used by any program; persistence only applies

ta specifie types-such as file and relation; there is a lack of support for concurrency

control and transaction management.

The language OBPL [-t4, 58, -t5] is a successor of Pascal/R. lt is an extension

of the ~Iodula-2 programming language [69] (which is itself a successor of Pascal)

which permits the modeling of a relational database. Although the language supports

arrays, records and variant records, the most important bulk data type is the set..-\ll

elements of a set must have the same type, and the number of elements in a set may

vary over time. Sets may have a key associated \Vith them. These keyed sets have

the property that no two elements of the set can share the same key value. Relations

may be modeled as keyed sets of fiat records. :'Iested relations may also be modeled

by a combination of these type constructors. First-order predicates may be used for

manipulating sets. These predicates are a part of selectors and constructors. An

example of a selector is:

•
1.2. SURVE}' OF D.4l:-\.B.-\SE PROCR.-tl\/AlllVG LA.1VGU.4.GES 5

•

•

EACH e in S: pCel, ... ,en)

This specifies the subset of S \Vhose elements satisfy the predicate p. This may he

combined with the iteration construct FOR as follows:

FOR EACH e in S: p(el, ... ,en) DO ... END

The constructors extend the notion of selectors and provide the power of a deductive

database [45]. DBPL is a type complete language. The bulk types that \Vere mentioned

above can consist of elements of any type, and there are no restrictions on how sorne

type may be used. For example, any type may be passed ta a procedure. As weIl.

persistence is orthogonal to type. The implementation of persistence is based on the

module concept of ~Iodula-2. The variables that are in the outermost scope of a

module that is declared as DA.TABA.SE are persistent. OBPL also has facilities for

concurrency control and transaction management, and can access multiple databases

in a single program. DBPL programs are strongly typed and statically checked. This

helps the programmer by signaling errors at compile time instead of at run time. Thus,

many of the weaknesses of Pascal/R have been resolved in DBPL.

Database programming languages have aIso been created by extending a relational

database system. The language RIGEL [56] is built on top of I~GRES. rts type system

includes relations, views and tuples. In arder ta manipulate these, the notions of bind

expressions and generators have heen singled out as fundamental. The following

example will be used ta explain these concepts.
• 1.2. SURVEY OF D.~1:4.B.4SE PROGRA.AI1"II1VG LA.l'lGUA.GES 6

•

•

FOR T in RELATION WHERE T. ATTRIB = "CONSru DO ... END

Here, the generator is the -\VHERE' clause. It generates a sequence of values. The

bind expression is ~T in RELA.TION'. It binds the iteration variable, T (a tuple vari

ableL ta the sequence of values provided by the generator in turne There is also the

colon operator.

T.ATTRIB : T in RELATION

The right operand is a bind expression. In this case it binds the tuple variable T

to each tuple of REL.-\TION in turn, although more complicated expressions may be

used. The left operand is an expression specifying the value ta he returned by the

operator. In the example, the ATTRIB field of REL.-\TION will be returned for each

binding of the iteration variable T. The whole expression is then a generator as it

produces a sequence of values. This is convenient as it allows relations ta be passed

as arguments to a procedure. This is actually accomplished by passing a generator

to the procedure. The procedure can then access the sequence of values which the

generator produces. This is in fact similar to the way DBPL works. The predicates

used in that language are generators. This general notion of bind expressions and

generators leads to a consistent fonn of iteration in RIGEL. Loops over relations.

arrays and files are aIl constructed by means of these two mechanisms.

RIGEL supports a data abstraction facility that is based on the modules concept of

~Iodula [69]. The module has three sections. The public section is where the interface

of the module is specified. The implementation of this interface is in the private

section. There is also an intialization section. Updates and views are also available.

Views may he updated, but this is limited and requires extra effort on the part of

the programmer. The ambiguities arising in view updates are weIl recognized [24]~

however, the designers of RIGEL considered this to he a useful feature that should

not be omitted.

The POSTGRES DBPL [63, 62, 65) is an extension of the IXGRES relational

database system. Its query language POSTQUEL derives from QUEL. The system

is designed ta address a class of applications which involve large amounts of data,

complex structured data and sophisticated interrelatianships amongst the data. In

order ta service these requirements POSTGRES contains data, abject and knowledge

management facilities.

The POSTQUEL query language extends the functionality of a relational query

language. It supports user defined functions and operators, abstract data types, ar

rays, transitive closures and time travel.

• 1.2. SURVEY OF D.A.T:-\BASE PROGR.-\AL.\IING L.-\lVGU.-\GES 7

•

•

The types that are available in POSTGRES are the base types (integers, character

strings, etc.), arrays of base type elements and composite types. An abstract data type

facility allows the programmer ta define new base types. The POSTGRES data model

is based on the notion of a cIass. A cIass is created by specifying a name for it and a

list of attributes and their types. Each abject has a unique and permanent identifier

assigned ta it. The keyword inherit may be used to indicate that the attributes

of another c1ass be included as attributes of the new class. :\tlultiple inheritance is

supported. There are three types of classes. Real classes have instances that are

stored in the database. Instances of derived classes are not actually stored in the

database, but are calculated when needed. This is how views are implemented in

POSTGRES. Instances of a versioned class are only stored differentially, with respect

to the parent c1ass, in the database.

~Iany object-oriented features are present in POSTGRES. Classes and inheritance

have already been mentioned. Behaviour is not encapsulated within the class however.

A. method is a functian that has a class name as an argument. It becomes a method of

the class indicated by its argument, and is avaiIable to aIl the subclasses of that class.

POSTGRES also has a ruIe rnanagement system. This is used for a variety of

purposes including enforcing integrity constraints, view management, triggers, and

version control.

The POSTGRES storage system does not use write-ahead logging. Instead, it

uses a no-ovenurite storage manager. Updates do not erase the previous records

which remain in the database. The system has to make a distinction between records

that are actually part of the database, and those that have resulted from aborted

transactions. This approach simplifies crash recovery since aIl the records are still

in the database. There is no need ta access records from a log file. :\ problem \Vith

this approach is that at the end of every transaction the affected memory pages must

be saved to disk in case of a system failure. This is more expensive than writing

out to a log file. The no-ovenvrite storage manager admits the possibility for time

travelo This is the ability to pose queries on historical data previously contained in

the database. The historical data is actually still in the database because of the no

overwrite architecture. These historical records are maintained seperately from those

of the 'current' database in a history database.

• 1.2. SURl/EY OF D.-\T.4.B.-\SE PROGRA.;.\IAIIlVG L.:\iVGU.-\GES 8

•

•

1.2.2 Persistent programming languages

It is very common for a computer application ta require sorne data ta persist beyond

its execution. If it is only a small amount of data that needs to be saved, then the

file system may be used. If the application deals \Vith large amounts of data, then

a database management system may ease the burden of its storage and retrieval.

A problem \Vith these approaches is that the canventional programming language

constructs (e.g arrays and records), do not correspond ta those for persistent storage.

(e.g the abstraction of a file or of a relation). The programmer must map the data

frool the forms used in primary memory ta those used on the persistent store. lt has

been estimated that about 30% of the code in a typical application is dedicated to

such tasks [6]. Another disadvantage of this translation is that the typing mechanisms

provided by the programming language ta aid the developer are usually lost across this

mapping. Persistent programming languages obviate this problem by eliminating the

need for this mapping. In (6], the foUowing properties of persistent data are tabulated.

L persistence independence: the persistence of a data object is independent of ho\v

the program manipulates that data object.

2. persistence data type orthogonality: aU data abjects should be allowed to persist.

3. The choice of ho\v ta provide and identify persistence at a language Ievel is

independent of the choice of data abjects in the language.

The second property is a consequence of the principle of data type completeness which

is essentially that all data types have equal rights.

The first successful persistent programming language ta be develaped is PS-aigoi

[52, 7, 6] which derives from S-aigoi [51, 22}. The data types that are available in

PS-aigoi are the usuaI primitives such as int and real (a pic type is aiso included for

t\VO dimensional drawings) as weU as the composite types vector and pntr. A vector is

a dynamically resizable array which can hold elements of a single but arbitrary type.

:\. pntr is an infinite union type of aIl structures. It is essentially an untyped pointer.

A structure consists of a set of fields in which data of any type (including procedures

which are first-class types in PS-algol) may be stored. \Vhen a pntr is dereferenced

it is projected onto a particular type. The system checks dynamically at ron time ta

make sure that this type corresponds to that asserted by the program. This technique

allows the rest of the program ta be typed checked statically.

• 1.2. SURVEY OF Dl·rl:-\B.-\SE PROGR.-4l\L\II1VG LA.1VGU.-\GES 9

•

•

The implementation of persistence in PS-algol is accomplished \Vi th minimal change

to the S-algol compiler. The functionality is achieved by a collection of procedures.

These provide facilities for opening and closing a database, for transaction manage

ment and for associative lookup of variables. Table LIon the following page sum

marizes this interface. :\ table is a directory structure that stores pointers to abjects

in the persistent store indexed by their name. There can be many of these tables.

and concurrent access to them by several programs is permitted. Data automatically

moves between memory and the persistent store. The system deduces which objects

persist by reachability.

:\s previously mentianed, procedures in PS-algol are first-class. Thus, they may

he iocluded in structures. In this way, code, as well as data, may be moved to the per

sistent store. Since the PS-algol compiler is itself a procedure, it may aiso he placed

in the store. This admits the possibility for linguistic reflection-the ability of a run

ning program ta create new program fragments and execute them. Source code for a

procedure can be passed to the compiler procedure. It will retum a compiled version

of the procedure that may then be used by the currently executing program. Contin

ued research with orthogonally persistent languages has led to the discovery of new

paradigms that can not he made available by conventional programming languages.

\Ve mention the notions of hyper-programming and persistent schema evolution, but

do not investigate them. The reader is referred to [54] for further details. The languagE'

• 1.2. SURVEY OF D.A'l:-\B.4SE PROGR.-\J.vL\IING L.-\lVGU.-\GES 10

1 Procedure Inputs Return Description

1
Basic functionality

open.database string name pntr open a database

string mode

string user

string password

close.database patr root nia close a database

get.root pntr database pntr get the root of the db

set.root pntr old.root nia set the root of the db

• pntr new.root

commit nia nia commit the transaction

abandon nia nia abandon the transaction

Associative lookup

table nia nia create an empty table

lookup pntr table pntr look up a variable in

string name a table

enter pntr table putr add an entry ta a table

pntr value

string key

scan pntr table pntr apply a procedure ta

putr value every entry in a

proc user table

Table l.1: PS-algol procedural interface to the persistent store

•

Napier88 [25, 53] is a successor ta PS-algol in which aIl of these advanced features

are available.

The programming language Java has recently gained immense popularity. Incor

porating persistence iota Java would make this tecbnology available to a very large

number of programmers. Not surprisingly then, the possibility of adding persistence

to Java bas been investigated [8]. A. number of properties must be present in a pro

gramming language in order for it ta be amenable ta persistence. In [54] it has been

indicated how these are indeed provided by Java. The properties listed in this article

are

• 1.2. SURVEY OF DAT:4.B.:-lSE PROGR..--\~I~IING L.4.1VGU.4.GES Il

•

•

• "persistent store with roots"

• "reachabilityand referential integrity"

• ~'code as data"

• "an infinite union type with dynamic injection and projection"

• "two type magic procedures1l

"one to find a type representation of a value l
'

L'one to convert a sequence of bytes into a language value"

The project concerned with the implementation of persistent Java, originally called

PJava, is now called PJama..-\ prototype implementation is currently available.

1.2.3 Object-oriented languages

An object·oriented database management system (OODB~[S) is a programming sys

tem which incorporates the facilities of a DBNIS \Vith the object-oriented computing

paradigm. In almost every case, an OODB~[S is a persistent object-oriented pro

gramming language. Due to the copious amount of literature devoted to this topie,

we treat it separately here. In The Object-Oriented Database System Manifesto [10],

the 'golden mIes' outlining the properties that an OODB~[S should have are stated.

These mIes may be grouped into two sets; those whieh deseribe DB~IS features, and

those which address object-oriented features. These are shown in table 1.2. There

1.2. SURl/EY OF D..-rr:-\.B..-\SE PROGR:4A[).,[ING L.-\.lVGUA.GES• DB~lS features Object-oriented features

12

Thou shalt remember thy data

Thou shalt manage very large databtues

Thou shalt accept concurrent U6ers

Thou shalt recover {Tom hardware and software laÎlures

Thou "hait have a simple way of querying data

Thou shale support comple: objects

Thou "hait support object identdy

Thou "halt encapsulate thine ob]ecu

Thou "hait support types or classes

Thy classes or typu "hall inherit {Tom their ancestoN

Thou "halt not bind prematurely

Thou "hait he computationally complete

Thou "halt be e:tensible

•

•

Table 1.2: The golden rules

are sorne additional rules and suggestions as weIL In particular, we mention the very

last rule of the manifesto: Thou shalt question the golden ru/es.

The ObjectStore [39] OODBNIS is based on the C++ programming language. lt

is available as a C++ library interface, but ObjectStores's extended C++ compiler is

a more tightly integrated version1• This system offers aIl of the features that are to he

expected from a DBNIS-persistent storage, query facility with internaI optimization,

transaction management, distributed data management, and provisions for ensuring

data integrity. Access ta persistent data is seamiess to the programmer. This is

because the system was designed so that persistence is orthogonal ta type. lndeed, not

only abjects and structures2 (which may contain pointers to other entities), but even

primitive data such as integers, may persist. The movement of data between memory

and the persistent store and the necessary locking involved is handled transparently

by the system. The keyword persistent is provided ta qualify the storage dass of a

variable as persistent.

persistent<db> hockeyteam* montrealCanadiens;

In this example the variable montrealCanadiens is persistent and belongs to the data

base pointed to by db. This variable may then be manipulated in subsequent code in

the same manner that variables are usually handled in regular C++ programs. This

has many favourable consequences: procedures do not have to he concerned with

whether they are accessing persistent or transient data, the same code will work for

lAC library interface to ObjectStore is aIsa available.
2The 'structure' is the C equivalent ta "records' in Pascal.

bath; no translation is necessary to bring in data from the persistent store; there is

a single type system that is statically checked. The resulting close integration \Vith

the C++ programming language aiso yields its share of benefits: the system is easy

ta learn for programmers already familar with C++; the language is computationally

complete; existing C++ libraries can access persistent data, often even without the

need ta recompile.

ObjectStore offers a number of bulk types for managing large amounts of data.

These are provided via a class library, and offer a high-Ievel interface. These collec

tions include ordered lists, sets and bags. For better performance, structures such as

hash tables and B-trees may he used. However, this can be handled transparently by

the library. 1t will pick an appropriate representation in response ta hints provided by

the programmer as to the size and usage patterns that are expected. The representa

tion may even change over time in response to an increase in the size of the collection.

The programmer, once again, must provide hints for this to happen. The cIass library

that provides this functionality consists of two class hierarchies. One of these contains

class definitions for lists, sets and bags. ~Iethods are available for operating on these

structures in the usuai ways. The second class hierarchy specifies the representations

(hash table, B-tree, etc.) of the interfaces found in the first hierarchy. Although these

classes are available ta the programmer, it is intended that the system pick the most

appropriate respresentation of a type based on hints that are provided by the user.

The foreach iteration construct is provided for sets.

Queries in the extended C++ version of objectStore are contained between the

delimiters '(:' and ':)'. These may be nested arbitrarily. Selection predicates consist

of boolean conditions that are placed within these delimiters. For example,

•

•

1.2. SUR\lEY OF D.4T.-\B:\SE PROGR.~AL",IING L.4.1VGU.4.GES 13

•

superStars = montrealCanadiens [: points> 100 :];

A.n important goal of the ObjectStore system is efficiency. This applies, in par

ticular, to a c1ass of applications that deal with large amounts of data but only in

small chunks. The repetitive accessing of data in small quantities followed by com

putation is known as fine-interleaving. [t is required that such access to data he as

fast for persistent data as it is for transient data. This problem is essentially that

the dereferencing of a pointer should be fast regardless of the type of the data that is

pointed ta. In arder to accomplish this, it is necessary that the code for this operation

compile ta the same machine instructions regardless of the data's persistence. This is

done by taking advantage of the virtual memory system pravided by the underlying

operating system. ObjectStore marks certain pages of the process' address space 50 as

to not allow access. \Vhen the program attempts to dereference a pointer ta persistent

data, a memory fault occurs. This is caught by ObjectStore which then retrieves the

data and places it in a cache, which is also in the process address space. The next

time that the pointer is dereferenced, the targetted object will be found in the cache.

As mentioned, this operation compiles to the same machine code, essentially a load

instruction, regardless of the Level of persistence of the data.

.-\. few of the other features included in ObjectStore wiII now be mentioned briefty.

Transactions are specified by the programmer by means of the begin and commit

methods and provide aU-or-none semantics. Locks are handled transparently by Ob

jectStore. Nlodifications are logged to permit recovery in the case of a system failure.

Support for versioning is availabLe. It is orthogonal to type. This implies that any

instance of any abject may be versioned. As weIl, the manipulation of such a variable

is carried out in the usual way. The same code will work for bath versioned and

non-versioned data.

•

•

1.2. SUR\lEY OF D.A1:{BASE PROGR..{AIAIING L.-\l'lGU.4.GES 1-1

•

Another full-featured OODBNIS is the O2 system {27, 12]. At the core of the system

is the 02Engine which is responsible for the storage and management of objects. Two

types of interfaces permit access ta the engine. Language interfaces allow access via

regular programming languages. C, C++, Basic and Lisp are supported at this time.

The other interface is the O2 environment.

The 02Engine has a three layer architecture. The upper layer is the schema man

ager. lt is responsible for managing classes, methods and global names. The middle

layer is the object manager. It includes a mechanism for the garbage collection of

objects and for determining which abjects are persistent through reachability. lt also

handles indexes and clustering of objects for efficient storage. The bottom layer is the

storage manager, which is based on the \Visconsin Storage System [20].

The 0'2 environment consists of the O'2C programming language, the 02Query

query Language and the 02Look user interface generator. The query language is sim-

ilar to SQL. Queries consist of three parts-a select clause specifying which attributes

of a class are wanted, a /rom clause indicating the objects the query is on and a where

clause that filters the result based on a provided predicate. The 02C programming

langauge is a complete programming language that includes 02Query as a subset.

User interfaces can he rapidly developed with 02Look, often with a single statement.

Ready-made and customizable presentations ease this task considerably for the pro

grammer. A graphical programming environment called O2Taols is aise included.

This is itself an 02C application. lt provides browsers for the database and schema

(Le. the class definitions) as well as a powerful dehugger.

. The O2 data model consists of values and classes. Values are the primitive types,

but the constructors t'Upie, List and set can be used to construct new types. 80th

values and classes may persist, and a variable can be made persistent at any time.

The manipulation of a data object is independent of its persistence.

Encapsulation is provided at three different levels. There is the usual notion of

encapsulation for classes in which the behaviour of a c1ass is specified by methods

belonging to that class. There is also a notion of schema encapsulation. A schema

is just a set of class definitions. Sorne of the classes in a schema may be exported

(made public) so that they can be used in ather schemas. This is for large scale

programming. The final farrn of encapsulation applies to databases. A method's

definitian may require it to run against a database that is not the current database

being used by the application. lnteroperability between heteragenous databases is

based on this feature.

Several other OODBNfS have been implemented. For completeness, we mention

sorne of the more prominent ones, but without investigating them: GemStone [55}~ Iris

[28, 29], Ontos [60}, Orion [35, 37], and Starburst [42]. Table 1.3 on the next page is

taken from [60}. It summarizes the main features of the ObjectStore, O2 and ONTOS

systems.

•

•

1.2. SUR\/EY OF D.4T.-lB.4SE PROGR.4AL\II1VG L.41VGU.4GES 15

•
1.2.4 Knowledge-base management systems

Knowledge-base management systems (KB~IS) combine the traditional features of a

DB~[S with the logic programming paradigm. In sharp contrast ta the imperative

• 1.2. SURVEY OF DA'l:-1B.A.SE PROGR..4.J.\IJ.\IING LA.1VGUA.GES 16

Features ObjectStore

page server architecture +
SQL-like interface .

graphicaI schema designer +
graphicaI browser +

graphicaI data editor .

debugger +
C++ interface +

O2 ONTOS

+ +

+ +
+ +
+ +
+ +

+
+ +

•
easiness of existing C and C++ program migration .

persistence at the leveJ of objects rather than at the class level

metaclass support .

indexing•...

inverse data members .

explicit object deletioD instead of garbage collection .

dynamic adding of new classes .

data aggregate support .•....................................

query optimization .

conventional transactions .

nested transactions .

long transactions .

optimistic transactions .

fault recovery•...................•.......

cooperative group mode! - .

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

•

Table 1.3: Features of ObjectStore, O2, and ONTOS

style of programming, in which one specifies how to compute a task, logic program

ming involves declaring what is to be computed. The logic programming language

Prolog has achieved considerable popularity. Attempts have been made to combine

database features with Prolog [18, 14, 32]. The usual approach taken is to create an

interface between Prolog and a relational DB~IS. This typically involves tuple-by

tuple interactions between the interpreter and the database, and is therefore rather

inefficient [16]. ~/Iore tightly integrated systems are required in arder for KB~[S ta

become cammercially viable. The language Datalog [1 i] is a database query language

based on Prolog, but designed to be more amenable to integration with databases.

A Datalog program consists of a set of facts and rules. An exarnple, taken from

[6i, page 103], is shown in figure LIon the following page. Items such as parent(X, Y)

are called (positive) literais. In this case, parent is a predicate symbol, and X and

Y are terms. A literai may be negated (e.g. -'parent(X, Y)). Each of the statements

shown in the example are known as Horn clauses3 . The portion to the left of the i.:_'

symbol is known as the head of the clause, and that to the right as the body. The

clause is interpreted as follows: "if body then head'. The meaning of the first clause in

our example is thus that X: and Y are siblingg if there is a Z such that Z is the parent

of .K, and Z is the parent of ~ and X is not Y". A. Horn clause that has a non-empty

body is known as a rule. If the body is empty, then the clause is a facto Facts and

mIes are forros of knowledge, and it is these that comprise a Datalog program.

Datalog was developed for use \Vith relational databases. In our example, the

predicates sibling and cousin are derived from parent \Vhich must be known. The

parent predicate is stored in a relation of the same name. Every tuple of this relation

represents a fact indicating a child-parent association. Predicates which are stored

explicitly in the database are called extensional database predicates. In contrast, the

sibling and cousin predicates are not stored in the database, but are computed when

•

•

1.2. SURVEY OF DA.'1:-tBA.SE PROGRA.l"Il\I!lVG LA1VGU.-\.GES 17

•
3Formally, a Horn clause is the logical disjunction of literais, at Most one of which is positive. It

is easily seen that the clause "1 V '" V ~n Vq is logicallyequivalent to Pl /\ .•. /\ Pn -+ q.
"Note that we have implicitly assumed that the variable Z, which appears only in the body of the

clause, is existentially quantified. In fact, in this case it is also correct to assume that all variables

are universally quantified. In general, however. the rules governing the quantification of variables

can affect the semantics of a logic program [·U).

• 1.2. SURl/EY OF D.A1:4B..4.SE PROGR..·L\/J,IING L.-\lVGUAGES

sibling(X,Y) :- parent(X,Z) & parent(Y,Z) & X =/; Y.

cousin(X,Y) :- parent(X,Xp) & parent(Y!Yp) &: sibling(Xp, '(pl.

cousin(X,Y) :- parent(X,Xp) & parent(Y,'i"p) & cousin(Xp, Yp).

Figure 1.1: Datalog program

18

•

•

necessary. These are called intensional databa.se predicates. This is similar ta the

distinction between relations and views in a relational system.

Datalog is a simplified logic programming language. Certain features have been left

out so that the language could be optimized for use \Vith large quantities of data. ~Iany

of these features have reappeared in ·extensions' to datalog which we now consider.

One of these is in fact included in our example-built in predicates such as Jr #: Y.

These may be thought of as extensional database predicates, although instead of being

èontained in the database, they must be computed. This presents a safety problem.

It is necessary that the set of derivable facts be flnite. In arder ta guarantee this,

sorne restrictions-'safety rules'-are placed on the variables in clauses with built-in

predicates.

Another extension ta Datalog is the use of negated predicates in the body of a

clause. These are therefore no longer Horn clauses. This also raises a safety problem

as the complement of a flnite set need not be finite. Indeed, it is not always clear

\Vith respect to which universe the complement is to be taken. Datalog~t Stratified

Datalag~ and Inflationary Datalog-' are three different systems which attempt ta deal

with negation in Datalog [17].

One of the differences between Prolog and Datalog is that the terms appearing in

a literai may only represent variables and constants. In Prolog. a term may aiso he

a function. An extension ta Datalog is ta allow function symbols. The LDL system,

for example, supports tws.

Finally, as previously mentioned, support for complex types is often required by

modem applications. Thus another extensions ta Datalog is to include bulk type

constructors that may be used as terms. In [3], an object-oriented extension to Datalog

is presented. The features included are methods, classes, inheritance, overloading and

late binding.

It has already been noted that POSTGRES includes facilities for logic program

ming. Three other existing database systems that use logic as a query langauge are

NA.IL! [50], LDL [19J, and LOGRES [15].

•
1.3. l\/OTI\;:4.TIOJ.'l FOR THE THESIS 19

•

•

1.3 Motivation for the Thesis

The computation is the procedural abstraction mechanism provided by the relational

database programming language jRelbc. The purpose of this thesis is to document

their design and implementation. In arder ta minimize the number ofdifferent concepts

and ta keep the language unified, computations are designed to resemble relations as

closely as possible.

A computation may be thought afin two different ways. Firstly, it may be regarded

as a procedure having a set of parameters and local variables which executes a black of

code when called. This view, however, obscures the similarity between computations

and relations. An alternative perspective is to regard a computation as expressing

a constraint [48}. As a simple example, consider the constraint expressed by the

following:

:\.PHORIS~I: Happiness 15 Peace AND Quiet5
•

Here, Happiness, Peace and Quiet are boolean variables. Given values for any

two of these, the constraint implies that of the third. Another \Vay of expressing this

is ta list all assignments of these variables that satisfy the given constraint, as shown

in figure 1.2 00 the next page.

Thus, the aphorism can he expressed either by a rule, or by a table. Herein

lies the idea which links the two differeot views of a computation. "Vheo creating a

computation, the programmer actually \vrites a black of code. But by thinking of the

code as embadying a constraint, the computation may be thought of as a table, that

is, as a relation. In the fallowing chapters it ,Vill be shawn haw the relational operators

SThis aphorism is, of course, inspired by the great moral teachings of Snoopy.

1.3. LvIOTIVA.TION FOR THE THESIS 20• :\PHORIS~I (Happiness Peace Quiet)

True True True

False True False

False False True

False False False

Figure 1.2: Expressing a constraint \Vith a relation, part 1

•

•

PRI~IES (N P)

1 2

2 3

3 ~

4 7

5 Il

Figure 1.3: Expressing a constraint with a relation, part 2

have been extended to allow their arguments to he computations. Indeed, the jRelLx

synta,,< for manipulating relations and computations coincide.

In the previous example, the table corresponding ta the constraint was finite. This

need not be 50. Consider the following:

PRI~IES: P is the Nth prime.

The table for encapsulating this constraint is infinite. It is shawn in figure 1.3. ~ote

that given a value for N, the corresponding value for P (the Nth prime) may he

deduced, and vice versa.

A. caU to the computation PRI~IES could pass as inputs a set of prime numbers.

The computation would then return the indices inta the sequence of prime numbers

corresponding to those provided. .-\lternatively, if a set of integers is passed to the com

putation then the corresponding prime numbers are returned. Hence, computations

may he used in several ways-they are symmetrical with respect to their paramet

ers. Any subset of the parameters may serve as inputs for a given computation caU.

The complement set of parameters will he calculated by the computation. In prac-

tice, however, sufficiently many input parameters must he provided 50 that the output

values may be deduced from the constraint embodied by the computation.

Computations have also been used to model states and instantiation. :\ subset of

the features available in object-oriented systems are present. The model of instanti

ation differs from that offered by object-oriented programming languages. It is based

on the natura! join operator of the relational algebra. Behaviour may be encapsulated

within the stateful 'objects'.

• 1.4. OUTLINE OF THE THESIS 21

•

•

1.4 Outline of the Thesis

This introductory chapter bas indicated the intent and purpose of this thesis, and

has surveyed existing database programming languages. The next chapter introduces

the relational model while presenting jRelbc in a tutorial-like fashion. Chapter 3

introduced the notion of a computation and also provides a tutorial on how they are

~sed in jReIL"<. The next chapter documents the implementation of computations.

Finally, chapter 5 summarizes the thesis and speculates about possibilities for future

work.

•

•

•

Chapter 2

Overview of jRelix

The purpose of this chapter is to acquaint the reader with jRelix ta the extent that

the remainder of the thesis will be intelligible to him or her. jRelix is a relational

database programming language. At its core is a database management system which

is responsible for organizing and storing data. In this tutorial discussion, two types

àf syntax are discussed: langauge expressions and statements as weIl as housekeeping

commands.

Section 2.1 lays the foundation for the rest of this chapter by explaining precisely

what relations and domains are. High-Ievel programming features are included for

manipulating the stored data. The operators provided falI into two categories: the

relational algebra and the domain algebra. These two tapies are the subjects of sections

2.2 and 2.3. The update statement is covered in section 2.4. Finally, section 2.5

discusses nested relations.

2.1 Relations and Domains

The jRelix database programming language is based on the relational modeL The

relation is the ooly data type available to the user. Figure 2.1 on the next pagel

illustrates how a relation may be viewed as a table having rows and columns. The

rows are referred to as tuples, and their ordering is not important. Each tuple of

the cigars relation describes one type of cigar. The columns are headed by a label.

l Priees listed are for boxes of ten cigars, and are only approximate.

22

• 2.l. RELATIOIVS .<\lVD DOAIA.1NS 23

cigars (BRAND COUNTRY SIZE PRIeE)

Cohiba Cuba Robusta 250

Cohiba Cuba Lonsdale 200

Hoyo de ~Ionterrey Honduras Double Corona 28

Romeo y Julieta Cuba Petit Corona 120

Fuente Dominican Republic Figurado 120

J\Iontecristo Cuba Petit Corona 125

~rontecristo Dominican Republic Lonsdale 65

Figure 2.1: A fiat relation

•

•

Therefore, the ordering of the columns is aiso immateriaI, as they may be referred to

by their labeL The technically correct term for label is attribute. AIl values found

in sorne column are taken from a fixed pool, or domain, of possible values. In our

example, the first three columns have entries consisting of character strings, and the

1,ast contains only integers. The primitive types supported by jRelix are summarized

in table 2.1 on the following page. jRelLx does not make a strong distinction between

attributes and domains. Rather, the two are inextricably tied into one entity simply

called domain. Thus we have

Definition 1 A domain is a named set consisting of ail elements of sorne primitive

type.

In the remainder of this thesis the term domain will bear this meaning.

For instance, if SHORTS is defined ta be a domain of type short, then SHORTS

is the name of a set of all short integers. ~Iore precisely, since short integers are 16 bit

quantities in jRelix, SHORTS is the set of all integers from -32i66 ta -32767 together

with the two special null values DC and DK. See [30] for additiooal information on

null values in jRelix.

A relation is then defined as follows.

Definition 2 A relation on a set, D, of domains is a s'Ubset of the cartesian product

of the domains in D.

The syntax for declaring a domain in jReILx is

•

•

2.1. REL.4TI01VS .A.1VD DONIA.INS

Type Shorthand Size

boolean bool 1 byte

short short 2 bytes

integer intg 4 bytes

long long 8 bytes

float rea! 4 bytes

double double 8 bytes

string strg variable

text text variable

Table 2.1: Primitive types in jRelix

>domain BRAND string;

>domain COUNTRY string;

>domain SIZE string;

>domain PRIeE intg;

Figure 2.2: Domain declarations

1Syntaxl

OomainDecl :a "domain" IOList Type ";11
IDList :a Identifier C",II Identifier).

24

The IDList specifies the list of domains that is being declared. It is possible to

declare several domains at once provided they are aIl of the same type. Type can be

any of the primitive types supported by jRelix2 •

Sorne example domain declarations are given in figure 2.2. In the following figure

are examples of the sd command which is used either to show ail the domains currently

defined in the system, or ta show a specifie domain. The synta.x for this command is

•
ISyntaxl

IIsd" (Identifier)? Il.11,

:!Appendix A on page 116 contains the complete jRelix syntax.

• 2.1. REL..4.TI01'lS ..o\l'lD D01\L'liNS

>sd BRAND;

--------------------------- Domain Entry ---------------------------
Name Type NumRef Dom-.t.ist

BRAND s~rinq o

>sd;

--------------------------- Domain Table ---------------------------
Name Type NumRef Do~~is~

PRICE in~eger 0

SIZE string 0

BRAND string 0

COUNTRY string 0

Figure 2.3: Command sd

The syntax for the declaration of a relation in jRelLx is

\Syntaxl

•
RelationOecl
Initialization

ConstantTupleList
ConstantTuple
Constant

:- nrelationn IOList "(n IDList Il)'' (Initialization)?
:_ "<_If n{" ConstantTupleList n}1I

1 Identifier
:- ConstantTuple ("," ConstantTuple)*
:_ 11(" Constant (U,1t Constant). n)"
:= Litera!

It.n
J

Il.''
t•

The first IDList in RelationDecl specifies the relations that are ta be created.

AIl of these will be defined on the same domains and will he initialized identically.

The IOList within parentheses is the list of domains on which the new relation(s) will

be defined. Initialization is optionaL

..oUi example of the creation of a relation is given in figure 2.4 on the next page.

In the Collowing figure are examples oC the sr command which is used either ta show

information about all the relations currently defined in the system, or ta show inform·

ation about a specifie relation if the optional parameter Identifier is provided. The

pr command, which is used to print a relation on the screen, is also demonstrated.

The syntax for these commands are

ISyntaxl
"sr" (Identifer)?
upr" Expression ";"

•

•

2.1. RELATIONS .41VD DO~I.AINS

>rela~ion cigars(BRAND, COUNTRY,. SIZE, PRICE) <- {

(-Cohiba-, -Cuba-, -Robusta·, 250),

(-Cohiba-, -Cuba-, -Lonsdale-, 200),

(-Hoyo de Monterrey-, -Honduras-, -Double Corona-, 28),

(-Romeo y Julieta-, -Cuba-, -Petit Corona-, 120).

(-Fuen~e-, -Dominican Republic-, -Figurado·, 120),

(-Mon~ecris~o-, -Cuba-, -Petit Corona-, 125),

(-Montecristo-, -Dominican Republic·, -Lonsdale-, 65)

} ;

>

Figure 2.4: Creating relations

------------------------------ Ral.~~on Table ------------------------------
Ift'Uple.

26

rel.~1oft 7

.----------------------.-------_._------_.._--.----------------------.---_.--------.
1 IRAHD 1 sua t PRIeE

•

CO~ 1 CUb& t.crudal. :ZOO

Cobib& 1 CUb& Robusta 250

""ente 1 Doainic:an hpublic: Flr;ur&do 120

Jfcya de IIoDterrey 1 Ifonduru Double Corona 28

IfOntecrtato 1 C\Ûl& Petit Corena 125

IIon~ecriato 1 Doai.nican hPUblic: t.cMdale 65

Rc.eo Y JUlieta 1 C\Ûl& Peti t Corena 120

Figure 2.5: Commands sr and pr

• 2.2. RELATIONAL A.LGEBRA

>rel&eion 4,.cigarIBRAND. COUNTRY. SItE. PRIeE) c

{ ('Padran·. •Nicar~·. ·Corona Gerda·. 721};
>ciqars c+ &_ciqar;
>pr cigars;

27

1 BRAND

1 Coh.i~

1 Cohi~

1 ruent.
1 Hoyo cs. Kone.n-v
1 Kont.cristo

1 !tollt.cristo

l "&eUon
1 RcaleO Y .1Uliua

1 COUNTRY

J CUba

1 CUba

1 Dominican Republic
1 Konduru

1 CUba

1 Dominican Republic
1 N~c:arlll4U&

1 CUba

1 SUS

1 r.o~dal.

1 Robuno

1 riqurada

1 Double Corona
1 Petit Corona
1 Lansdale
1 Corona Garda

1 Petie Corona

1 PRIe!

1 :!OO

1 250

1120

1 28

1125

1 65

172
1 120

•

relation ciqars ~ 8 tupl••

Figure 2.6: Assignment and incremental assignment

jRelix provides two assignment operators, one for regular assignment and another

for incremental assignment. The assignment operator creates a relation with the name

specified to the left of the operator and with the same domains as the source relation.

The data of the source relation is then copied to it. If a relation with the same

àame as the destination aIready exists in the system, then it is first removed. The

source relation is not affected by the assignment operator. The incremental assignment

behaves identically ta the assignment if there does not already exist a relation with

the name specified on the left of the operator. If such a relation does exist then the

destination relation becomes the union of the source and destination relations provided

that bath of these relations are defined on the same set of domains. If their domains

do not coincide an error is reported. The syntax for these operators is shawn below.

Examples of how ta use these are provided in figure 2.6.

\Syntaxl

Assign :- Identifier "(_1. Expression
IncAssign :- Identifier "(+" Expression

".11,
".11,

•
2.2 Relational Algebra

The relational algebra consists of a set of functional operators which act on either

one or two relations and produce a relation as a result. This cIosure property of

the relational algebra permits many operators ta be chained tagether. In this way,

intricate queries of a database may be posed tersely.
• 2.2. RELA.TION.4L .-\LGEBRA.

2.2.1 Unary operators

28

•

jRelbc supports four unary operators. These are projection, selection, T-selection and

QT-selection. AIl of these operators require a relation as input and produce a relation

as output. In all cases, the source relation is not affected by the operator.

Projection

ISyntaxl

Projection :- 11[" (IDList)? "]" "in" Expression ";"

The project operator returns a subset of the source relation consisting of the do

mains which are named in the projection list, IDList above. The source relation is

the result of the Express ion, which may be an arbitrary relational expression.

\Examplel

Retrieve the brand and size of all cigars in the cigars relation.

>brands <- [BRAND.SIZEI in cigars;

>pr brands;

+----------------------+----------------------+
1 BRAND 1 SUE

+----------------------.----------------------+

>

+----------------------+----------------------.
rela~ion bran~ ha. 8 ~uple••

1 Cohiba

1 Cahiba

1 Puen~.

1 Roya d. Monterrey

1 Montecristo

1 Kontecris~o

1 Padron

1 Rameo y Julieta

1 Lonsdale

1 Robus~o

1 Figurado

1 Double Corona

1 Lonsdale

1 P.ti~ Corona

1 Corona Garda

1 Peti~ Corona

Figure 2.7: Projection

• 2.2. REL.ATI01VAL A.LGEBR.-l

Selection

1Syntax 1

Selection := " vhere lt SelectClause "in" Expression
SelectClause := Expression

Il.11,

29

The select operator returns a subset of the source relation consisting of those tuples

which satisfy the conditions of the selection clause. The source relation is the result

of the Expression in Selection.

1Examplel

Retrieve aIl Cuban cigars from the cigars relation.

>cu.bans <-h.l'. COUNTRY.·e:ub4l" Ln ci;ar.:
"pr Cl.;ar.:• 1 81Wm

1 Coh.1.œ

1 CQh.l.œ

1 !ofenteeruta
1 Rceeo y JUli.t&

1 COUNTRY 1 SItE

1 t.onsdale

1 Robusta

1 Peu t Corona
1 Petl. t Corona

1 PRIa

1 100

1 150

1 125
1 110

Figure 2.8: Selection

T-Selection

1 Syntaxl

Projection :- n(n (IDList)?
SelectClause :a Expression

Il]'' "where" SelectClause lIin" Expression Il.11,

•
The T-selector combines the two preceding operators inta one. It is considered as

an operator in its own right, iDstead of simply as a selection followed by a projection,

because it possible for bath of these tasks to be accomplished in a single pass of the

data. It is worthwhile for the user ta he aware of this issue in arder to write more

efficient code.

• 2.2. RELA.TI01VA.L A.LGEBR.A

1Example 1

Retrieve the brand and size ofall Cuban cigars round in the cigars relation.

>cubanBrands <- [BRAND, SIZE] where COUNTRY=-Cuba- in cigarsi

>pr cubanBrands;

+----------------------+----------------------+

30

1 BRAND 1 SIZE

+----------------------+----------------------+
1 Cohiba

1 cohiba

Montecristo

Rameo y Juliet.a

Lensdale

Robuste

Petit. Corona

Petit Corona

•

•

+----------------------+----------------------+
relat.ion brands has 4 tuples

>

Figure 2.9: T-Selection

Array syntax

There is a syntactic sugar for a special case of the T-select statement in which the

select clause consists of a conjunction of comparisons for equality and the projection

list consists of all domains not mentioned as part of the selection. This is called

the array syntax because it resembles the arrays provided by other programming

languages. The syntax is

/Syntaxl
arraySelect :a .. Cu (Identifier)? C. (Identifer)?). If]"

For example, the following two statements are equivalent.

cubans <- cigars [, "Cuba", ,l;

cubans <- [BRAND, SIZE, PRICE] where COUNTRY=IICuball in cigars;

This works like a positianal notation. The commas have created four slots which

correspond ta the four domains of cigars, from left ta right. This works by selecting for

equality on all values that are provided. In this example, only one value is specified

entries under the second domain, COUNTRY, must have the value "Cuba". In general,

any number of values may be supplied. This particular example can be simplified even

further ta

• 2.2. RELATIONAL ,ALGEB&4. 31

•

•

cubans <- cigars[, "Cuba"];

That is, the trailing commas can be left off and will he inferred by the system.

QT-Selection

Support far the QT-selectar has not yet been included in jRelLx, althaugh the

parser has been programmed to recagnize the syntax for it. N[ore information on this

aperator can he found in [47}.

2.2.2 Binary operators

jRelLx supports 19 binary operators. AlI of these aperators require two relations as

input and praduce a relation as output. In aIl cases, the source relations are not

affected by the operator. The domains which are common ta bath source relations

are called the join domains. The binary operators are classified inta two groups: the

Jl-joins and the q-joins. The syntax for these aperators is

!Syntaxl

JoinExpression :a Expression JoinOperator Expression
1 Expression If (" ExpressionLis't ": Il JoinOperator
(":")? ExpressionList n]" Expression

Jl-joins

The JL-joins, of which there are 7, correspond ta the binary set operations of union,

intersection and difference. Except for the difference joins, the result of their applica-

• 2.2. RELATIONAL .4LGEBRA.

Jaïn Syntax Description

natura! join ijoin or natjoin center

union jaïn ujain left U center U right

left jain Ijoin left U center

right joïn rjain center U right

left difference jain dljain or djain left

right difference join drjoin right

symmetric difference jain sjoin Ieft U right

Table 2.2: Summary of tt-joins

32

•

•

tion is a relation which bas as its domains the union of the domains of the two input

relations.

The tl-joins are summarized in table 2.2. JoinOperator may be any one of these.

In the case where the two relations resulting from the expressions have no common

domains, the user may specify which domains farm the join domains. This is the pur

pose of the two ExpressionList elements in the second fonn of the JoinExpression

shown above.

The tL-join operators can be defined in terms of what are called the lert, center,

and right components of the join. Given two relations R, defined on sets of domains

X and Y, and S, defined on sets of domains Y and Z, these components are defined

as follows:

left(R, S) = {(x, y, DC)I(x, y) E R /\ \:1:: E Z, (y, =) ~ S}

center(R, S) = {(x, y, =)1 (x, y) E R 1\ (y, =) E S}

right(R, S) = {(DG, y, z) IVx E ..\"'t (x, y) ~ R /\ (y, z) E S}

As mentioned, the variables X,Y, and Z represent sets of domains in the above

definitions. The ooly restriction is that the sets X, Y and Z have empty intersection.

The ijoin is aIso known as the natura! join, and it corresponds ta the intersection

operation on sets. The natural jaïn of t,,·o relations, R and S, is equal ta center(R.S).

• 2.2. REL.4TIONA.L A.LGEBR.-\

.----------------------+----------------------.-------------.

33

1 BRAND 1 SIZE: 1 QTY

+----------------------+----------------------+-------------.
Cohiba Robusto 5

Fuente Figurado 15

Hayo de Monterrey Double Corona 30

Partaqas Double Corona 15
+----------------------+----------------------+-------------+
relation orders has 4 tuples

Figure 2.10: Relation orders

The relation orders shawn in figure 2.10 will he used ta illustrate this operator.

1Examplel

1 C::ftlDa 1 llCll\lSeo

1 1'11111\1:_ 1 'Li\lrldo

1 Hcyo tJe IICIntetrey 1 oolibl. Corona

1 ~lalIUl:an ll~'lDhc: 1 ::0

1 Honduna i a• l'Ulm 1 n:r: 1 CClNMty

I~

j PIUCZ 1 qry

1 ~

: ~ 5

1 10

•

Figure 2.11: ~atural joïn

The other ~-join operators are not pertinent to the remainder of this thesis. \Ve

refer the reader to [47] for a discussion of these operators.

O'-joins

The O'-joins, of which there are 12, correspond to the set comparison operators such

as 'is a subset of?' and 'equalsT. The result of their application is a relation whose

domains are the symmetric difference of the two sets of domains of the two input

relations. The JoinOperator of the syntax section shown earlier in this subsection

cau also be any of the CT-joins which are summarized in table 2.3 on the next page3
•

3The table only lists 7 u-joÏDSt when in fact there are 12. The live that are missing correspond

to the logical negation of entries 2 though 6 in the table. The first entry, called natural composition.

is in fact the logical negation of the last entry. [t is included in the table because it is e:<ceptionally

usefuL

• 2.3. D01\tIAIN A.LGEBR.A

Join Synta,,< ~Iathematical

operator

natural composition icomp or natcomp ~

equal joïn eqjoin -
greater than or equal join gejoin or sup or div :J

greater than join gtjoin :J

less than or equaJ jain lejoin or sub C

less than jain Itjoin C

empty intersection join iejoin or sep ra

Table 2.3: Summary of a-joins

34

•

•

As of this writing, a-joins are not implemented in jReIL,,<, although they are sup

ported by Relix and will saon be included in jRelL"<. For this reason, their use will

not he demonstrated. See [471 for more details on cr-joins in RelLx.

2.3 Domain Algebra

The operators of the domain algebra can he classified into two groups, horizontal and

vertical. The following two sections discuss these, respectïvely.

2.3.1 Horizontal operations

The example of figure 2.12 will be used to explain the horizontal operations of

the domain algebra. The first statement is a declaration of the virtual domain SUB

TOTAL. In the following statement, this new domain is included in a projection list

just as regular domains are. The relation resulting from the joïn of cigars and orders

(which was shown in figure 2.11 on the preceding page) does not contain a column

labeled SUBTOTAL. Therefore, the system automatically creates this column and fUis

it in with values corresponding ta the expression provided in the "let' statement for

SUBTOTAL. This extra column is shown in figure 2.13 on the next page outside of

the parentheses, which contain only the regular domains. In each tapie, the value for

SUBTOTAL is equal ta the product of the values for PRICE and QTY, as prescribed

• 2.3. D01\fAI1V ..\LGEBRA.

>let SUBTOTAL be PRIeE * QTY;

>bill <- [BRAND, SUBTOTAL] in (cigars ijoin orders);

>pr bill;

+----------------------+-------------+

35

1 BRAND 1 SUBTOTAL

+----------------------+-------------+
Cahiba 1250

Fuente 1800

Hayo de Monterrey 840

+----------------------+-------------+
relation bill has 3 tuples

Figure 2.12: Actualization of a virtual domain, part la

(BRAND SIZE COUNTRY PRIeE QTY) SUBTOTAL

Cohiba Robusta Cuba 250 5 1250

Fuente Figurado Dominican Republic 120 15 1800• Hoyo de ~Ionterrey DoubleCorona Honduras 28 30 840

Figure 2.13: Actualization of a virtual domain, part lb

•

by the virtuai domain declaration. Thus, when the print statement of figure 2.12 is

executed, the relation bill is indeed as shown in that figure.

In summary, ta make use of the domain algebra, i t is necessary to declare a virtual

domain beforehand. These virtual domains may then be actualized in any number of

relations. In arder to accomplish this, the user simply includes the virtual domains

in the projection list of a relational algebra statement. The resulting relation will, as

usuaI, be a relation defined on the domains which are specified in the projection lîst.

In the case of regular domains, the entries are copied over fram the source relation.

However, in the case of virtual domains, the source relation is not defined on the

domain and, therefore, the data under this column in the destination relation must

he calculated and then filled in. Once this has been dane, actual data exists under

the domain in the destination relation. 'vVe thus say that the virtual domain has been

actualized.

ISyntax)
HorizontalDecl :a IIlet" Identifier "be" Expression ";"

The horizontal operators may be grouped according to their ~arity'. Constants are

really just operators of zero-arity. There is only one ternary operator, the if-then-eise

construct. Predefined functions can be thought of as operators of arbitrary arity. In

fact, it is a very fine Une which separates operators from functions-l.

•

•

2.3. DOlvIAllV .4LGEBRA.

Constants

1Examplel

>let ONE be 1;

>let TRUE be truei

Figure 2.14: Constant virtual domains

Unary Operators

1Examplel

>let MINUSONE he -ONE;

>let FALSE be not TRUE;

Figure 2.15: Unary virtual domains

Binary Operators

1Examplel

36

•
(>let SUBTOTAL he PRrCE * QTY;]

Figure 2.16: Binary virtual domains

4The difference is a syntactical one. The arguments of a function are enclosed in parenthesest

where as those of an operator are not.

•

•

2.3. DONI..4I1V A.LGEBRA

Conditional Expression

1Examplel

(>let ABSVALX he if X >= 0 then X else -X;)

Figure 2.17: Conditional virtual domains

Predefined Functions

1Example 1

(>let ROOTX he sqrt (X) ;J

Figure 2.18: Predefined fUDctions in virtual domains

2.3.2 Vertical operations

37

•

vVith the horizontal operators of the preceding section, the actualization of a virtual

attribute in each tuple of a relation anly involved values in the current tupIe. This

is not true of the vertical operators of the damain algebra. The actualization of these

operators depends on values round across several tuples of the source relation.

ISyntaxl

VerticalDecl :- "let" Identifier "be" VerticalExpr U;"
VerticalExpr :- "r ed" AssoCommuOperator "of" Expression

1 Itequiv" AssoCommuOperator "of" Expression
"by" ExpressionList
1 IIfun" OrderedOperator "of ll Expression
"orderll ExpressionList
1 II parli OrderedOperator "of" Expression
("order ll ExpressionList "by" ExpressionList

1 IIby" ExpressionList "arder" ExpressionList)

The vertical operations faIl into four categories: reduction, equivalence reduction,

functional mapping and partial functional mapping. Gnly the first two of these will

be discussed here. wlore information on this may be found in [47].

• 2.3. D01VIAIN .4LGEBRA. 38

•

•

Reduction

The reduction operator works by looping over the tuples of the input relation while

keeping an accumulator. At each tuple, the value of Expression is combined with

the accumulator by means of the operator specified by AssoCommuOperator. The end

result is then inserted as the value of the actualized domain in every tuple of the

input relation. Because the notion of relation abstracts over the order of its tuples,

the AssoCommuOperator must be commutative for the result ta be well-defined. The

need for associativity is aIse apparent. Indeed, regardless of the abstraction over

the ordering of tuples, without associativity the result of a reduction would not he

well-defined for relations having more than two tuples.

1Examplel

>let COONT be red + of 1;

>let AVGPRICE be {red + of PRICE)/COUNTi

>let TOTAL be red + of SUBTOTALi

Figure 2.19: Reduction

Figure 2.20 on the following page illustrates the actualization of a reduction oper

ator. It builds on that of figure 2.12 on page 35 ta calculate the total cast of the order

far cigars. The example aIso illustrates how virtual domains may themselves depend

on virtual domains. The first statement is a declaration of TOTAL. In the following

statement, this new domain is included in a projection list just as regular domains

are. The relation resulting from the join of cigars and orders (which was shown in

figure 2.11 on page 33) does nat cantain a column labeled TOTAL. Therefore, the

system automatically creates this column and fBIs it in \Vith values corresponding to

the expression provided in the 'let' statement for TOTAL. This extra column is shawn

• 2.3. D01\tlAlN .4.LGEBRA

>let TOTAL be red +of SUBTOTAL;

>bil12 <- [TOTAL] in (cigars ijoin orders) ;

>pr bill2;

+-------------+
1 TOTAL

+-------------+
1 3890

+-------------+
relation bill2 has 1 tuple

39

•

•

Figure 2.20: Actualization of a virtual damain, part 2a

(BRAND SIZE COUNTRY PRICE QTY) SUBTOTAL TOTAL

Cohiba Robusto Cuba 250 5 1250 3890

Fuente Figurado Dominican Republic 120 15 1800 3890

Hayo de);Ionterrey DoubleCorona Honduras 28 30 840 3890

Figure 2.21: Actualization of a virtual domain, part 2b

in figure 2.21. Since the expression ta calculate TOTAL depends on SUBTOTAL. this

virtuai domain is shawn as weIl. Thp, system will resoive such dependencies ta any

depth. In each tupIe, the value for rD TAL is equal ta the SUffi of ail the values for

SUBTOTAL, as prescribed by the virtual domain declaration. Thus, when the print

statement of figure 2.20 is executed, the relation bi1l2 is indeed as shawn in that figure.

Equivalence Reduction

Equivalence reductian works in much the same \Vay as reductian except that the

tuples of the source relation are grouped according ta a ;'by' clause, which is an

ExpressionList. AIl tuples that agree on aIl the expressions in Expressionlist are

considered 'equivalent'. The reduction is carTied out as usual within these groups.

1Example(

>let COUNTBYBRAND be equiv + of l Dy BRAND:

>let AVGBYBRANO be (equiv + of PRICE by BRAND) ICaUNTBYBRAND;

Figure 2.22: Equivalence reduction

(Constant operators J

/ (Unary operators J

~ (--H-O-riz-O-n-tal-o-pe-ra-ti-·o-ns-J - (Dinary operators J

/ ~ (Temary operator J(~ry.~~
(Predefined runctions)

(Domain A1gebra J

2.4. UPDATE STA.TEl'vIENT 40•

•
~ (Reduction J

-------.....~ (Equivalence reduction J
------ (Vertical Operations J

"'- '- Functional mapping

~ Partial runctional mapping

Figure 2.23: The domain algebra

Figure 2.23 provides a summary of the domain algebra.

2.4 Update Statement

The update statement may be used to add, delete or modify entries in a relation. The

syntax for the update statement is

•
\Syntax!

Ifupdate lt Identifier (ltadd'f 1 "deletelf) Expression Il;1f 1

lIupdate" Identifier "change ll (StmtList)? (UsingClause)?
UsingClause :- lfusingU (JoinOperator)? Expression

Il.11

•

Identifier is the name of the relation that is to be updated.

Figure 2.24 on the next page demonstrates the use of the update statement. The

relation orders from figure 2.10 on page 33 will be used. The first form of the update

statement allows tuples to be added or deleted from a relation. Adding tuples in' this

way is equivalent to the incremental assignment operator. The result is the union of

the relation to be updated with the relation that results from Expression. The first

forro of the update statement may also he used ta delete a tuple. This works like the

left difference jaïn. The following are equivalent.

• 2.5. lVESTED RELATIONS --lI

•

•

update Identifier delete Expression;

Identifier <- Identifier djoin Expression;

The second form of the update statement may be used ta change entries in sorne tuples

of a relation. The purpose of UsingClause is ta specify the tuples of the relation that

will be updated. In the example, only the tuples that have BRAND set ta '~Cohiba"

àre updated. If JoinOperator is missing, then the natura! joïn is assumed. StmtList

is a list of statements specifying the changes that will he made ta the affected tuples.

2.5 Nested Relations

jRelix includes full support for nested relations. An important design goal of the

system, however, is ta present to the user a simple and elegant prograrnming paradigm.

Therfore, it is not desirable ta have separate definitions of both a fiat relation and of a

nested relation. Indeed, this would lead ta a convoluted synta.x for the programming

language in which fiat relations and nested relations would he treated differently. The

user would always have to keep this dichotomy in mind. It is preferable ta come up

with a definition which conceptually unites these two ostensibly disparate types of

relations.

Figure 2.25 on the next page illustrates how a nested relation may he thought

of by the user. The domain DEPT is a regular darnain of type string. EMP is

a compound domain. In the column underneath it are stored relations. There is~

however, a restriction on the type of relations that may be placed there-they must

• 2.5. LVESTED REL..tTI01VS

>relation newItem(BRAND, SIZE, QTY} <-

{ ("Montecristo", "Petit Corona'!, 2S) };

>update orders add newItem;

>update orders delete where BRAND = Il Fuente " in orders;

>update orders change QTY <- 12 using ijoin

where BRAND = "Cohiba" in orders;

>pr ordersi

+----------------------+----------------------+-------------+
1 BRAND 1 SIZE 1 QTY

+----------------------+----------------------+-------------+

relation orders has 4 tuples
+----------------------+----------------------+-------------+•

Cohiba

Hoyo de Monterrey

Montecristo

Partagas

Robuste

Double Corona

Petit Corona

Double Corona

12

30

2S

15

>

Figure 2.24: tJpdate statement

employees (DEPT E~[P

(~A~IE SAL)

stereo ~I. Gordon 35k

P. 1fcConnei 32k

T. .-\.nastasio 27k

J. Fishman .t4k

television J. ~Iedeski 35k

B. ~Iartin 38k

C. \Vood 32k

• Figure 2.25: .\ nested relation

ail have the same schema. In this case, the relations are defined on the two domains

NAME and SAL.
• 2.5. lVESTED RELATI01VS 43

•

•

Before giving the definition of a relation, we review what is meant by the term

domain.

Definition 3 A primitive domain, also called a simple domain, is a named set which

consists of ail elements of sorne primitive type.

This is the definition that was given earlier in the chapter. Domains may also be

created from existing domains. A. domain which is defined on a set of existing domains

is called non-primitive or compound. The domains on which it is defined forro the

type of the new domain.

Definition 4 A non-primitive domain, alsa called a compound domain, is defined ta

be a named power sef of the cartesian product of the domains that make up its type.

. Only a small extension ta the data definition language is required ta support

nested relations. First, the syntax must allow for the declaration of both simple and

compound domains.

ISyntaxl

DomainDecl :a "domain" IDList Type "; Il

IDList :a Identifier("," Identifier).
Type :a PrimType 1 .. (" IDList ")"

This differs from the syntax for domain declarations given previously only in that

the Type may be a parenthesized list of identifiers, as well as one of the primitive

types listed in table 2.1 on page 24. The list of identifiers is used when declaring a

compound domain, and it specifies the schema that a relation must have in order for

it to be a vaUd data entry for the newly declared domain. An example declaration is

provided by figure 2.26 on the next page.

Now that the definition of a domain has been stated, it is possible ta define a

relation.

5The power set of a set A is defined as the set of all subsets of A.

• 2.5. J.VESTED REL.4.TIONS

>domain DEPT, NAME string;

>domain SAL integeri

>domain EMP(NAME, SAL)i

Figure 2.26: Nested domain declaration

-14

•

Definition 5 A relation on a set, D, of domains is a subset of the cartesian product

of the domains in D.

This turns out to be precisely the same definition that was given earlier for Bat re

lations. AIl the hard work has been put into the definition of a domain. ConsequentlYt

it is possible to give a simple definition of a relation that unites nested relations with

fiat relations. Doing it this way is quite advantageous. lt is because we have a single

definition of relation, that the syntax of jRelL"{ requires so few alterations from the

original ReIL"{ syntax. This also permits jRelL,,< to continue to have only one data type

as ReIL"{ did, namely, the relation. AIl the operations in jRelL,,< apply ta and retum

relations, that is the ooly data type which is made available to the user. Having only

one data type pennits relational operators ta be cascaded thereby achieving much

expressivity with small amounts of code. This is an example of the principle that

"everything is a relation' at work. 'vVe will see this principle pushed even further when

computations are discussed.

The second extension to the data definitian language allows the declaration and

initialization of nested relations.

ISyntaxl

This is quite similar to its counterpart for fiat relations that was given earlier in

this chapter. The only difference is that a Constant can now be a parenthesized

ConstantTupleList as weil as a Literal. The "curly bracket r synta.x was extended•

RelationDecl
Initialization

ConstantTupleList
ConstantTuple
Constant

:a IIrelation" IDList n(" IDList n)" (Initialization)?
:a n(_ll n{" ConstantTupleList Il}n

1 Identifier
:- ConstantTuple (" 1 Il ConstantTuple).
:- "(" Constant (11.11 Constant). ")"
:- Literal 1 Il {" ConstantTupleList "}n

Il.11

•

•

•

2.5. lVESTED RELATIONS

>relation employees(DEPT, EMP) <- {

("stereo" 1 {

("M. Gordon", 35000) 1

(If P. McConnel", 32000) 1

("T. Anastasio" 1 27000),

("J. Fishman", 44000)

}) ,

(Il television Il ,

(If J. Medes ki ", 3 5000) ,

("B. Martin", 38 000) 1

("C. Wood", 32000)

})

} ;

Figure 2.27: Creating a nested relation

>let SeniorSalesman be [NAME] where SAL >= 38000 in EMP

>seniors <- [SeniorSalesmanl in employees;

Figure 2.28: ~ested domain algebra

45

•

in jRelix to support the initialization of nested relations. The definition is recursive in

order to support nested relations of arbitrary depth. An example is given in figure 2.27.

The inclusion of nested relations in jRelLx has led to an important enhancement

of the domain algebra. Put briefiy, the domain algebra has now been extended 50 as

ta include the relatianal algebra. This is perfectIy natural since the items which are

stored in a column headed by a compound domain are relations. It thus makes sense

to apply relational operators to these entities.

.~ e.~ample of the use of relational expressions within domain algebra statements

is provided in figure 2.28. The query determines those employees who have a salary

of at least 38000 dollars.

•

•

•

Chapter 3

User Manual on Computations

Support for procedural abstraction is available in jRelLx in the fonn of computations.

In arder ta make use of computations, the user must first define one. Section 3.1

describes how this may be accomplished. Once the computation has been declared, it

may then be invoked. Several methods are possible. These are covered in section 3.2.

A mechanism has been included in computations which permits the creation of objects

with state, having their proper accessor and mutator methods. This topic is explored

in section 3.3. Recursive computations are discussed in section 3.4. The following

section explains how computations may be used to verify constraÎnts. Finally, section

3.6 introduces the various utility commands pertinent to computations.

3.1 Creating Computations

An example of the declaration of a computation is shown in figure 3.1 on the following

page. The name of the computation is velocity. Its parameters, D, V and T, must

first be declared as domains, othenvise an error is generated. There are three ~alt'

alternate-blocks in this example. AH three of these satisfy the constraint \1" =DfT.

Given values for any two of these variables, the value of third is implied by the

constraint. Each ~alt' black contains the algorithm necessary for computing the value

of one of these variables in terms of the other two. Thus, in our example, the first

black calculates D when V and Tare providéd, and similarly for the other blocks.

A central design principle used in developing the notion ofcomputation is to make

46

•

•

3.1. CREA.TllVG C01\tIPUT.-\TIONS

>domain D,V,T float;

>comp velocity(D,V,T) is

{ D <- V*T:

} aIt

{ V <- DIT;

} aIt

{ T <- DIV;

} ;

>

Figure 3.1: Velocity computation

VELOCITY (0 V T)

1 l 1

2 l 2

2 2 1

34.1 5.5 6.2

Figure 3.2: Velocity computation as a relation

47

•

them resemble relations. In the previous example, uelocity embodied a constraint. ft

is the constraint that provides the link between viewing a computation as a procedural

abstraction mechanism is the usuai sense (i.e. a modular chunk of algorithmic code)

and viewing it as a relation. In figure 3.2, the relation corresponding ta velocity is

shawn. It is an infinite relation, every tuple of which satisfies the constraint V = DfT.

Furthermore, every triplet of values for D, V and T which satisfies the constraint

is included in this relation. 'vVe may think of the keyword comp as standing for

CONIPressed relation. The parameters of a computation become the domains of its

associated relation. We therefore use the terms parameters of a computations and

domaim of a computation interchangeably.

.-\n example of a computation which includes local variables is shawn in figure 3.3

on the following page. The keyword local is used to declare two integer variables, a

•

•

3.2. I1VVOKING COlvIPUT.-lTI01VS

>comp sum_squares(X,Y,Z) is

local a,b intg;

{ a <- X·X:

b <- y.y;

Z <- a+b:

} aIt

{ a <- X·X;

b <- Z-a:

y <- sqrt (b) ;

} aIt

{ a <- y.y:

b <- Z-a;

X <- sqrt (b) ;

} :

>

Figure 3.3: Sum of squares computation

and b, as local to the computation. They are ooly accessible within the 'aIt' blacks of

the computation. Local variables must have as their type one of the primitive types

provided by jReILx. These were listed in table 2.1 on page 24.

The formal syntax for the declaratian of a computation is

1Syntaxl

1t.1I

•

n)" "is" CompBody Il;11CompDecl
ParamList
CompBody
CompVarDecl
CompBlock

:- "comp" Identifier ,,(n ParamList
:- {Identifier ("," Identifier).)?
:- (CompVarDecl). CompBlock (nalt ll CompBlock).
:- ("local" 1 l'state'') IDList Type
:_ n{" (Statement Il;'')+ I,}n

•
The keyword state which appears abave will be described in section 3.3.

3.2 Invoking Computations

This section discusses the invocation of computations. This is accomplished without

additional synta.."(. Certain operators of the relational algebra have been overloaded 50

• 3.2. INVOKING COA-IPUT.4TIOIVS

>V <- where D=360 and V=4.0 in velocitYi

>pr V;

+---------------+---------------+---------------+

49

1 0 Iv 1 T

+---------------+---------------+---------------+
1 360.0 1 4.0 1 90.0

•

•

+---------------+---------------+---------------+
relation V has 1 tuple

>

Figure 3.4: Applying the velocity computation with a selection

that they may take computations as weIl as relations as their arguments. The main

issue at hand is how data is passed ta a computation.

3.2.1 Invoking a computation with a select expression

Data may be supplied for the input parameters of a computation by means of a

restricted form of the select expression. Figure 3.4 shows an example of this with the

velocity computation. Specifie values have been supplied for the parameters D and V.

This causes these two domains to become the input parameters, sa the third black is

excuted in order ta calculate T. The selection clause is restricted in this example as it

must always be when selecting from a computation. Gnly the ~and' and '=' operators

may be used.

3.2.2 Array syntax for computation invocation

As described in section 2.2.1 on page 30, jRelbc provides an array syntax which is

essentially syntactic sugar for aT-select expression. This may be used as a positional

notation for computation invocation. The expression

velocity(,4,90]

is equivalent ta a T..select statement whose projection list consists of only the first

parameter of velocity, and in which the second parameter bas the input value -1, and

• 3.2. INVOKING C01\IPUT.-lTIONS

>V <- velocity[,4,90]i

>pr Vi

+---------------+
1 D

+---------------+
1 360.0

+---------------+
relation V has 1 tuple

>

Figure 3.5: Array synta.'C for computation invocation

50

•

•

the third has the input value 90. Since the first parameter of the velocity computation

is D, the second is V and the third is T, the above expression is equivalent to

[0] where V=4 and T=90 in velocity .

Figure 3.5 demonstrates this.

3.2.3 Joïn of a computation with a relation

It has been explained how a computation may be thought of as a relation, perhaps an

infinite one. It therefore makes sense ta take the naturai join of a computation \Vith

a relation. The effect of this jaïn of a relation, such as DistnTime shawn in figure 3.6

on the next page, with the velocity computation is ta pick out a (finite) subset of the

tuples from the infinite relation corresponding ta velocity. The result is aiso shawn in

the figure.

When two relations are joined together, their common domains are called the joïn

domains. This terminology is retained when a computation is joined with a relation.

It has already been observed that the parameters of a computation can be thought of

as dOIl'ains of the computation. The joïn domains become the input parameters of the

computation. The remaining parameters become outputs. Thus, in our example, it is

the second 'ait' black of velocity that is selected for execution by the system.

The properties of the natural join stay intact under this generalization of the op

erator. For instance, the join still behaves like a tL-join in that the resulting relation is

• 3.2. INVOKING COlvIPUTA.TI01VS

>pr DistnTime;

+---------------+---------------+

51

1 0 1 T

+---------------+---------------+

+---------------+---------------+
relation DistnTime has 3 tuples

>V <- velocity ijoin DistnTime;

>pr Vi
•

1 50.0

1 60.0

1 360.0

1 17.0

1 3.0

1 90.0

+---------------+---------------+---------------+
1 0 Iv 1 T

+---------------+---------------+---------------+
1 50.0

1 60.0

1 360.0

1 2.9411764

1 20.0

1 4.0

1 17.0

1 3.0

1 90.0

•

+---------------+---------------+---------------+
relation V has 3 tuples

>

Figure 3.6: Applying the velocity computation with an ijoin

• 3.2. INVOKING COlvIPUTATIONS

>computation JoinComp(A,B,C) is

{ C <- A ijoin B;

} ;

>JoinComp(in cigars, in orders, out result);

>sr result;

------------------------------ Relation Entry ------------

Name Type Arity NTuples Sort

result

>

relation 5 3 o

•

•

Figure 3.7: Stand-alone computation calI

defined on a set of domains consisting of the union of the domains of its two arguments.

The relation that is joined \Vith the computation is unaffected by the operation. Sa

the operator remains functionaL Finally, the natural join operator is still commutative

and associative.

3.2.4 Stand-alone invocation of computations

Computations may also he invoked by means of a top-Ievel caU. The previous in

vocations involved generalizations of relational algebra operators and were a part of

relational algebra expressions. The stand-alone invocation is a top.-[evel statement.

The keywords in and out are used to specify the input and output parameters of the

computation. Figure 3.7 illustrates this for a simple computation \Vhich calculates the

naturaI join of its first two parameters. The calI specifies that the first parameter is

an input and has value cigars. This must he a valid relation \Vithin the scope that

the caU is made in, otherwise an error is reported. Similarly, the second parameter

is an input and the value passed in is the relation orners. The third parameter is an

output. The relation returned by this output will he called result and will he placed

in the scope that the caU is made in. The sr command demonstrates chat the result is

indeed in that scope.

• 3.2. INVOKING COA'IPUT.4.TIONS

>comp s~root(X,R) is

{ R <- sqrt(X)

also

R <- -sqrt (X),;

} ;

>

Figure 3.8: Aiso operator

3.2.5 Multivalued computations

53

•

•

An output parameter of a computation may be assigned multiple values for each set

of inputs. This is accomplished with the also syntaxe Figure 3.8 illustrates this \Vith a

computation which calculates square roots. For every value of the input parameter. X,

there are two values for the output parameter, R; the positive root, and the negative

root. The 'also' statement may only be used between assignment statements, and the

l-value (the identifier ta the left of the '<-' symbol) of these must be the same. Due ta

the implementation, a further restriction is enforced. The 'also' statement may accur

at most once in any 'aIt: black, and, if used, must occur in the last statement of the

black.

3.2.6 Properties of computations

We now summarize the main properties of computations.

• Computations are the procedural abstraction mechanism pravided by jRelLx.

In arder to keep the language simple and unified, they have been designed to

resemble relations as closely as possible. Once declared, they are used in the

same way as relations.

• Computations are symmetric with respect to their parameters. A parameter of

a computation can serve as bath input or output, depending on how it is called.

There must, however, be an "ait' black which corresponds to the set of input

parameters provided.

• Computations are intended ta embody a canstraint. The cade in the various

'alt' blacks should reflect this. Hawever, ensuring cansistency among the 'ait'

blacks is left to the user and is not enforced by the system.

• 3.3. STA.TEFUL C01\IPU1:-tTIONS 54

•

•

• Computations do not use a positional form of parameter passing as is common

with procedural abstraction facilities in other programming languages. Instead,

the name of the parameter must match the name of the data item being passed

to the computation. This is a consequence of the design choice of modeling com

putations after relations. The relational algebra operators use name equivalence

in determining join domains and in selection clauses. This therefore continues

to be true when these operatars are generalized ta permit their arguments to

be computations. To alleviate this restriction, the anay synta,,< may be used as

a positional syntax. The extended notation for join operators that permits the

user to specify the join attributes explicitly may also be used. See appendLx A

on page 116 Cor the complete jRelLx syota=<.

3.3 Stateful Computations

Computations have been designed to incIude a facility which allows the user to create

objects with state. We want to avoid the object-oriented solution of a separate entity,

the class which contains state, and see if we can do it aIl with computations, a single

construct. lt is aIso possible to define accessar and mutator methods for these objects.

Figure 3.9 on the following page illustrates the concepts with a bank account

example (ba stands for bank account). The abjects are bank accounts. Each of

these contains a stateful variable reflecting the current balance in that account. This

variable is called bal and is declared with the keyword state, to indicate that it is a local

variable whose value will he remembered between caUs. There are two computations

nested inside of ba. These are methods of the class ba. ~ote that the two nested

computations have the same name as the Cormal parameters. This implies that these

parameters are outputs for the only ~alt' black of ba. The nested computations will be

exported when ba is called. That is, the relation that will result from the invocation

of ba will contain the domains DEPOSIT and BALANCE, bath of type computation.

•

•

3.3. STATEFUL C01'vIPUTA.TI01VS

>domain DEP,B intg;

>domain DEPOSIT camp (DEP) i

>domain BALANCE comp(B};

>comp ba(BALANCE, DEPOSIT} is

state bal intg;

state oldbal intgi

{ camp DEPOSIT(DEP} is

oldbal <- bal;

bal <- bal + CEP;

} alt

{ DEP <- bal - oldbal;

} i

camp BALANCE(B) is

{ B <- bal;

} ;

bal <- 0;

} ;

>

Figure 3.9: Declaration of a bank account class

55

•

).tIore specifically, the type of DEPOSIT is computation on DEP, and the type of

BALANCE is computation on B.

The example also illustrates the declaration of domains of computation type. In

the columns of the result relation headed by these domains, the computations defined

within ba will he stored. This relation is thus a nested relation, although, instead

of having relations nested within a relation, there are computations stored within a

relation.

The declaration of ba does not create any abjects, it is a class declaration. In order

ta inst;mtiate abjects of this class, an ijoin or a select expression must be used ta caU

the ba computation. This is demonstrated in figure 3.10 on the next page. Two bank

accounts are created in this example. Each will have their own copy of the variable bal.

The last statement in the figure demonstrates Ilow the client Suz canm~ a deposit of

$100. Since this operation will change the relation accounts, the non-functional update

•

•

3.4. RECURSIVE COAIPUT.4TIONS

>domain ACCNO intg;

>domain CLIENT string;

>relation accts(ACCNO, CLIENT) <

(1729 , .. pat Il) ,

(4104, "suz")

} i

>accounts <- accts ijoin bai

>update accounts change DEPOSIT(100)

using where ACCNO = 4104 in accounts;

>

Figure 3.10: Instantiation of bank account objects

>comp transfer(FROMACC,TOACC,AMT) is

(update accounts change DEPOSIT(-AMT)

using where ACCNO=FROMACC in accounts;

update accounts change DEPOSIT(AMT)

using where ACCNO=TOACC in accounts;

} ;

>transfer(in 1729, in 4104, in 50);

Figure 3.11: Transfer of money between bank accounts

56

•

statement must be used. The computation stored in the column labeled DEPOSIT

is the DEPOSIT method of the class ba. 1t is called using the stand-alone invocation

syntax.

The example shown in figure 3.11 demonstrates how a binary operation may

be implemented. The trans/eT computation removes AJ.\1T dollars from account

FROMACe and adds it to account TOACC. Each of these actions is accomplished

by calling the DEPOSIT method of the class ha.

3.4 Recursive Computations

Computations may be recursive. The example of figure 3.12 on the next page demon

strates this with a computation which computes factoriaIs.

•

•

3.4. RECURSIVE COi\IPUTATIONS

>domain M~N intg;

>comp factorial(M~ N) is

{ if (M = 0) then

N <- 1;

else

{ N <- M * factorial[M-l};

} ;

} ;

>R <- factorial(6];

>pr R;

+-------------+-------------+

57

lM 1 N

+-------------+-------------+
1 6 1 720

•

+-------------+-------------+
relation R has l tuple

>

Figure 3.12: Recursive computation

• 3.5. CON8TRAINT 'v'ERIFICA.TI01V

>pr Ri

+---------------+---------------+---------------+

58

1 D Iv IT
+---------------+---------------+---------------+

6.0

6.0

360.0

3.0

3.0

4.0

2.0

3.0

90.0

+---------------+---------------+---------------+
relation R has 3 tuples

>CV <- velocity ijoin Ri

>pr CV;

+---------------+---------------+---------------+

+---------------+---------------+---------------+

+---------------+---------------+---------------+

•
1 0

6.0

360.0

Iv

3.0

4.0

1 T

1 2.0

1 90.0

•

relation CV has 2 tuples

Figure 3.13: Constraint verification with a computation

3.5 Constraint Verification

Computations may be used to verify if the data entries of a relation satisfy a constraint.

This occurs when a cali is made in which all the parameters are inputs. The example

in figure 3.13 demonstrates this. The relation R is defined on the same domains as

the velocity computation. The relation CV is the relation that results from the jaïn of

R with the infinite relation that corresponds to velocity. Since the tuples in this latter

relation consist, exclusively, of those which satisfy the constraint V = DI T, only those

tuples of R which satisfy this constraint are found in CV:

There is a feature in jRelix which is useful in this context. An empty projection

clause in a relational expression returns a relation defined on the system domain .boal

having a single tuple. This relation will contain the boolean value true if the relation

to which the project operator applies is not empty, otherwise, it \Vill contain {aise.

• 3.6. COlvlAiI.A1VDS

Thus for the following two equivalent statements,

CV2 <- velocity(6,3,2];

CV2 <- 0 where 0=6 and V=3 and T=2;

the relation CV2 will contain the value true.

3.6 Commands

59

•

•

The commands for displaying information about and deleting relations have been

overloaded to apply ta computations. In addition, there is the sc command which

applies exclusively to computations. Figure 3.14 on the next page illustrates these

commands.

Print Relation

The pr command prints the contents of a relation. \Vhen applied to a computation.

it displays the source code of the computation.

Show Relation

The sr command is used ta display information about a relation, view or compu...

tation. The Type field indicates which of these three possibilities the argument to the

command happens to be. If no argument is provided, information is provided for aU

existing relations, views and computations.

Delete Relation

The dr command is used ta delete a relation, view or computation.

Show Computation

The sc command applies to computations exclusively. lt displays information

about the 'aIt' blocks of a computation.. The format used is

[Input Parameter List 1- > [Output Parameter List l

• 3.6. COAtIAIA.1VDS

>sr velocitYi

------------------------------ Relation Entry ------------

Name Type Arity NTuples Sort

60

velocity computation 3 o o

•

•

>sc velocitYi

velocity (0, V, T)

VT -> [0

0 T -> [V

0 V -> (T

>pr velocity;

comp velocity(D,V,T) is

(o <- V*T;

} aIt

{ V <- DIT;

} aIt

{ T <- DIV;

} ;

>

Figure 3.14: Commands for computations

•

•

•

Chapter 4

Implementation of Computations

In this chapter, the implementation of computations is described in considerable de

tail. In arder to accomplish this, sorne aspects of the jRelix system must first be

covered, such as the format of the data dictionary bath on disk and in R.o\~[, and

the way nested relations are implemented. These and other related tapics are ad

dressed in section 4.1. jRelix relies on the Javacc compiler compiler and on JJTree.

a tool which generates syntax trees while parsing statements. Section 4.2 explains

how this is done. An important issue which arises when including a mechanism for

procedural abstraction in a programming language is how the environment model for

storing variables is coupled with procedures. There are, in fact, several possibilities.

Environments form the subject of section 4.3. The next two sections describe how

computations are created and how they are invoked. Details of the implementation

of stateful computations are covered in section 4.6. The following section describes

the manner in which computations are stored, bath in Ri\.~I and on disk. Finally, the

implementation of recursive computations is discussed in section 4.8.

4.1 Overview of the jRelix Implementation

One of the most important design principles of the jRelLx system is that there be

only one data type-the relation. The syntax of the language reflects this philosophy.

Indeed, there is no way to declare primitive types snch as integers or strings. Other

than for regular and virtual domain declarations, which can not store data, only

61

Table ..1.1: System relations

4.1. OVER\lIE~V OF THE JRELIX L\IPLEl\IENT.-tTION 62

1 Description

.rel .rel-Ilame name of a relation

.rel .tuples number of tuples in the relation

.rel .attributes number of domains of the relation

.rel .rvc is a relation, view or computation

.rel .sort number of domains relation is sorted on

(for implementation purposes only)

.dom .dom-Ilame name of a domain

.dom .type type of the domain

.dom .count reference count for domain

.rd .relJlame name of a relation

.rd .domJlame name of a domain

.rd .position index of the domain in the relation

1 Relation 1 Domain

•

•

relations, views, and computations may be created. lt is intended that the last two

items on this list also be thought of as special types of relations by the user. A view

can he thought of as a virtua! relation that only cornes into existence when it is used,

for instance in a pr commando .-\ computation can he seen as an infinite relation.

Calling a computation by either an ijoin or a select statement is like selecting a finite

number of tuples from the infinite set of tuples contained within it. Of course. in the

implementation, a computation cannat store an intinite amount of data, but instead

evaluates one of its r.alt' blacks to produce a result. This is, nonetheless, a fruitful

way of viewing computations. The syntax of jRelhc supports this approach in as much

as a view or a computation may be used anywhere that a relation cano Onlyat the

semantic level are sorne restrictions enforced. Fortunately, these restrictions are few

in number, and eliminating them is a tapie of current research.

•
4.1.1 Data dictionary

The jRelLx system keeps information about aIl the domains and relations that exist

at any given moment in the fonn of system relations. On disk, this metedata is split

up into three relations in accordance with good database design principles. The three

relations are .rel, .dom, and .rd. The convention used in previous versions of Relix

that system identifiers begin with a period is maintained in jRelix. This was useful

since Relix was originaly intended to run on UNIX machines-as a matter of fact,

the name Relix derives from the phrase RELational database on unLX-and in most

UNIX systems, files which begin with a period are hidden. jRelL,,< \vill run on any

system which supports the Java run-tîme environment, therefore, on sorne of these the

system files will not be hidden. The relation. rel contains information about relations,

views and computations, while the .dom relation keeps track of domains. The. rd

system relation provides the link between relations and domains. ~rore specifically, it

records which domains each relation is defined on. The domains of .rel, .dom and .rd

are summarized in table 4.1 on the preceding page. The example in figure 4.1 on the

next page will help clarify the situation. 1

These system relations are intended for internaI use by the system only. Certain

~elds, such as .roc, are implemented as integer constants and need ta be decoded.

The dictionary for doing 50 is the class Constants. The casual user should use the sr

command, not print the .rel table, ta find out what relations are currently defined in

the system. This command will not ordinarily display information about the sytem

relations-those that begin with a period. However, the user can toggle the 'show

system relations' mode. There is also a similar command ta toggle the 'show system

domains' mode that will cause the sd cemmand to show system demains.

•

•

4.1. OVERVIEW OF THE JRELLY lJ".IPLEn,IENTA.TION 63

•

1Syntaxl

ssr;
sscl;

The metadata about relations and domains is stored differently in R.-\~I. Only

two classes are defined for this purpose. They are the RelTable and the DomTable.

The DomTable is essentially just a hash table that contains Domain abjects keyed

on their name, and a few usefuI access methods. The Domain abject simply stores

information about a single damain: the name, the type, a reference count of the number

1The figure is not entirely accurate. Information on the system relations is aiso kept in the system

relations themsleves. For simplicitYt this is not shown in the figure.

• 4.1. OVERVIE"V OF THE JRELLY IAIPLEl\IE1VT:\TION

>domain BRAND. COUNTRY, srZE string;

>domain PRICE float;

>relation eiqars(BRAND, COUNTRY. SIZE, PRICE);

>pr .rel;

64

.----------------------+-------------+-------------+-------------+-------------.
1 • tuples 1 .attributes 1 .rve 1 .sort

+----------------------+-------------+-------------+-------------+-------------+
1 ciqars 1 0 1 4 1 14 1 0

+----------------------+-------------+-------------+-------------+-------------+
>pr .dom;

+----------------------+-------------+-------------+

+----------------------+-------------+-------------+

•
1 .dom..name

PRIeE

BRAND

COUNTRY

SIZE

1 . type

4

6

6

6

1 .count

1

l

l

l

+----------------------+-------------+-------------+
>pr .rd;

+----------------------+----------------------+-------------+
1 .position

•

+----------------------+----------------------+-------------+
cigars BRAND 1 0

cigars COUNTRY 1 l

ciqars PRICE 1 3

ciqars SIZE 1 2

+----------------------+----------------------+-------------+
>

Figure 4.1: System relations

4.1.2 Representation of nested relations

of relations which are currently defined on it, and code in the form of a synta..x tree

if the domain happens ta be virtual. Similarly, the RelTable is a hash table which

stores Relation abjects keyed on their name. In this case, however, the Relation class

is quite large because this is where the algorithms for implementing the relational

algebra are defined. But the basic information is also there: the name, the rvc, and

a syntax tree in the case of computations and views. An array of Domain abjects,

called domains, holding references ta the domains that a given relation is defined on,

is also kept since it is efficient ta have this information handy. So there is no need for

an in R.A~I version of the .rd relation, as this information has been absorbed into the

Relation class. Figure 4.2 on the following page depicts the situation schematically

for the cigars relation. A few system relations and domains have been included in the

figure. The Relation abjects have an array of pointers to Domain abjects. However,

only sorne of the pointers have been shown ta avoid complicating the picture.

•

•

4.1. Ov'ER\tlEvV OF THE JRELIX I}IPLE~IENT..\TION 65

•

The implementation of oested relations is built on top of fiat relations. \Vhenever a

domain of non-primtitive type is created, a relation of the same name, but prefi.xed

with a dot, is automatically created by the system. It is intended that this relation be

hidden from the user. That is, the implementation should oot concern the user, and

he or she should continue ta think about the relation in the simple manner described

in sections 2.1 and 2.5. The domains of this new relation are precisely thase which

make up the type of the domain which is being declared, as weIl as one additional

attribute called '.id'. This is the surrogate field which the system will use to link up

various components of the nested relation.

The relation employees from section 2.5 will serve as an example. In figure 4.3

on page 67 it is shawn how the declaration of the nested domain EMP bas led to

the creation of the relation .EMP which, of course, is initially empty. Figure 4.4 on

page 68 demonstrates how the creation of the nested relation employees, as sho\vo

in figure 2.27 on page 45, has caused tuples ta be added ta .E};{P. Under the EkIP

field of employees are stored the surrogates. For example, the surrogate in the tuple

containing "television" is 1017. BY linking this surrogate to those in the ~.id' field of

• 4.1. OVERVIE~V OF THE JRELIX I~IPLEl"IENTA.TIOJ.'l

Rt:lation .rel

Relation .dom

66

•

RelTable

DomTable

Relation .rd

Relation cigars

[[[[]IJ
ITIIJ

domain COUNTR'

domain BRAND

domain PRICE

Figure 4.2: In R.-\~I system metadata structures

• 4.1. OVERVIEvV OF THE JRELI.X I~IPLE1\JE1'lTATI01V

>domain EMP(NAME, SAL)i

>pr .EMP;

+----------------------+----------------------+-------------+

67

1 .id 1 NAME 1 SAL

•

•

+----------------------+----------------------+-------------+
+----------------------+----------------------+-------------+
relation .EMP has a tuples

>

Figure 4.3: Implementation of nested domains, part l

the hidden relation .EklP, it is round, for example, that the employees of the television

department are J. ~redeski, B. ~Iartin, and C. \Vood. AlI non-empty relations that

will be defined on the domain ElvlP will cause tuples to be added ta the relation

.EMP.

The surrogates2 are unique throughout the system 50 that there can never be any

éonfusion as to which tuples of the hidden relation correspond ta which top-Ievel

relation. This scheme is relatively simple and permits sorne optimizations, sorne of

which \Vere implemented in jRelLx. For more information on this see [30].

4.1.3 Storage of relations

The method in which the data of a relation is stored in RA.~·I is relevant to the

implementation of computations. The way in which the data is stored on disk does

not affect computations since the assumption is made that relations are small enough

to fit in RA~L The data of a relation would be loaded into R.-\~[before being used by

a computation. See [30] for more information on the persistent storage of relations.

The class Relation contains a field called 'data'. This field is an array of Java

Objects. In Java, Object is the ultimate ancestor of every class. Each object in this

anay is also intended ta he an array. The data of a relation is stored here in column

major format. The abjects will be arrays of the types indicated br the domains of

the relation. This proves to he an efficient mechanism bath in terms of storage and

2Surrogates are implemented as 64 bit integers.

• 4.1. OVERVIEW OF THE JRELIX Ii\IPLE!vIENTA.TI01V

>pr employeesi

+----------------------+----------------------+

68

1 DEPT 1 EMP

+----------------------+----------------------+

+----------------------+----------------------+

+----------------------+----------------------+-------------+

relation employees has 2 tuples

>pr .EMP;

•

1 stereo

1 television

1 .id

1 1016

1 1017

1 NAME 1 SAL

•

+----------------------+----------------------+-------------+
1016 J. Fishman 44000

1016 M. Gordon 35000

1016 P. McConnel 32000

1016 T. Anastasio 27000

1017 B. Martin 38000

1017 c. Wood 32000

1017 J. Medeski 35000

+----------------------+----------------------+-------------+
relation .EMP has 7 tuples

Figure 4.4: Implementation of nested domains, part 2

execution time. Operations that involve columns, such as projection, are implemented

by swapping pointers. The actual data of the relation does not need to he touched.

Also, arrays are implemented efficiently in Java. Java interpreters use system specifie

interfaces in order to optimize operations on arrays such as the copying of large blacks

of data from one array to another.

• 4.2. PA.RSI1VG.<\ JJTREE SYN1:O\X TREE 69

•

•

4.2 Parsing a JJTree Syntax Tree

Former versions of Relix were written in C and made use of Lex [40], a lexical ana

lyzer, and Yacc [34), a parser generator, for their front end. The combination of these

two tools produced a parser for the Relix interpreter. The front end of jRelix was

written using a similar tool, the JavaCC compiler compiler [57]. JavaCC conveniently

combines the two jobs of lexical decomposition and parser generation iota one. Only

a single source file is necessary. An additional tool called JJTree was also used [5i].

A source file containing the specification of the jRelL,,<: syntax aonotated with instruc

tions for JJTree is fed into JJTree which produces an output file which is then given

ta JavaCe for further processing. The result is a parser for jRelix, written in Java,

that also produces synta..x trees according to the annotations that were provided in the

source code. Figure 4.5 on the following page summarizes this process. The jRelix

interpreter traverses these syntax trees and responds accordingly. The syntax trees

for virtual domains, views and computations are kept in the system until the corres

ponding item, that is relation or domain, is explicitly deleted by the user. "Vhen jRelLx

is shut down these syntax trees are saved to disk using the Java abject serialization

mecbanism [23]. Figure 4.6 on the next page illustrates a syntax tree which is created

by JJTree for a simple jRelix statement.

The structure of each node in the synta..x tree is specified in the class SimpleNode.

Each node bas four public fields wbich are of interest to a systems programmer. These

are the name, type, opcode, and bits fields. The type field indicates what the node

represents. For example, the type could be "declaration', ~selection', or "identifier'.

These values are stored as integers. The class Constants defines aIl of these integer

constants. The opcode field is really just a subtype, and it is an integer as weIl. For

• 4.2. P.-\RSING.-\ JJTREE SYNT.4..X TREE 70

JJTree

JJTree source

JavaCC

JavaCC source

•

•

Parser for jRelix

Figure 4.5: Taols used ta create the jRelix parser

8
1 \

GG
1

8
Figure 4.6: JJTree syntax trees

• 4.3. ElVVIRONlvIENTS IN JRELIX

>debug;

>domain COUNTRY string;

Declaration:140:143:null:O

IDList:462:462:null:O

Identifier:230:230:COUNTRY:O

Type:450:457:null:O

>

Figure 4.7: Debug mode

71

•

•

example, if the type is 'declaration' the subtype could be 'computation'. The bits field

is used to pass extra information in a few special cases. The name field records the

name of the item which the node represents when this is pertinent. The user cao make

jRelLx dump the syntax trees of the statements it is interpreting by toggling the debug

mode.

ISyntaxi

"debugll Il;''

By default, debugging is off. Figure 4.7 shows an example of this. Five items,

separated by colons, are displayed per node. The first item is simply the identifier

for the type of the node. This is only included for human readability. It expresses in

english the meaning of the integer constant found in the next field. In the example

there are nodes of type 'Declaration" "IOList', "Identifier' and "Type'. The remaining

fields are the type, opcode, name and bits fields mentioned in the previous paragraph.

Consider the Identifier node. Its type and opcode are 230 which means identifier.

The name field is set ta COUNTRY which is the name of the item which this node

represents. The bits field is set to zero since it is not necessary to record any special

information for this type of node.

4.3 Environments in jRelix

This section examines the environment model for storing variables which is used by

many programming languages. The model is not an absolute one. Rather, it cornes

•

•

•

4.3. El'lvlR01VAtIENTS IN JRELI.X:

in severa! different flavours. These are introduced and explained \Vith examples in

arder to clarify the differences among them. Subsequently! a new model, termed the

static environment model, which is better suited to database programming languages

is proposed. Procedures are intimately involved \Vith environments for it is their

creation and application which cause the environment ta expand and then shrink.

It is also conceivable for the environment to expand when a thread of execution of a

program enters a ne\v block, but this is not the focus of the present document. In fact,

many programming languages do not expand the environment in such cases. jRelLx,

in particular, does not. It will aIso be shown how abjects with local state variables

hav~ng accessor and mutator methods can he modeled in programming languages

which provide these various environment models. Sorne of the discussion in this section

is modeled on that of [2, pages 184-199].

4.3.1 The environment model

An environment is an abject which holds bindings of variables ta their values. These

variables may represent primitive data such as an integer, or complex data like an

abject or procedure. It is not sufficient for environments ta simply associate narnes

with values. A programming language which supports the concept of nested scopes.

for instance, permits variables \Vith the same name ta exist concurrently as long as

they are in different scopes. In terms of an environment, we say that the variables are

hound in different frames of the environment. .-\n environment consists therefore of

many frames which are linked together by means of parent pointers. For instance in

figure 4.8 on the next page, a look up of the variable 'a' in frame f3 \vill return the

binding that is round in the frame f3. The binding of ta' in fi is said ta he shadowed

by that in Cl. A. look up of ta' with respect ta frame f4, however, \Vould force the

system to follow the pointer from f4 to f2 because "a' is not in f·l. As there is no

hinding for ta' in f2, the search continues in f2's parent frame which is fi. Finally a

binding for 'a' is found and can he retumed. In figure 4.8, the two bindings for 'b'

can never shadow each other since neither of the frames to which they belong is an

ancestor of the other. It is therefore correct ta think of an environment as providing

places for variables ta be stored, not just names. 1t is c1ear, then, that a ,"ariable. by

• 4.3. ENVIRONAIENTS IN JRELIX

fi

a:

/
f2

b:

/

f5

73

a:

t3 f4

b:

f6

•

•

Figure 4.8: Variable look ups in an environment

itself, is utterly useless. It only acquires meaning when coupled with an environment.

Any statement of a program must be evaluated with respect to sorne environment.

There is a "global' frame that is initially created by the system. This is the cornmon

ancestor of all the frames that will ever exist during the execution of a program. ~e\V

frames are created when a thread ofexecution enters a new scope. A. procedure caU or a

new block of statements are the typical causes of this. It is the latter case that concerns

us here. \Ve will first consider the rules for procedure declaration and application

used by common programming languages~ such as PASCA.L [33] and SCHE~IE [1] (a

statically bound dialect of LISP). They are as follows:

A. procedure is created by evaluating a declaration relative ta an environ

ment. The resulting procedure object is a pair consisting of the code of the

procedure, as well as a pointer ta the environment in which the declaration

\vas evaluated. A. binding of the procedure's name ta the newly created

procedure abject is then placed in this environment.

To apply a procedure, a new frame is created in which the procedure's

formai parameters are bound to the values specified in the calI. This

new frame is attached ta the environment by setting its parent pointer to

• 4.3. E1VVIRONAtIENTS I1V JRELLX

max:l

~ t
CO

Figure 4.9: ~Iax computation, part l

point ta the frame indicated by the environment portion of the procedure

abject. The code of the procedure abject is then evaluated relative ta this

new environment.

74

•

•

This method is called static binding or lexical scoping. Figures 4.9 and 4.10 on

the following page illustrate these rules for a simple example program.

Program 1

computation max(a, b, c) is
{ if Ca <= b) then

{ c <- b;
}

else
{ c <- a;
};

};

The declaration of this procedure in the global environment results in a binding of

max ta a procedure abject pair. In the diagrams that follow, the circ1es represent the

code portion of the procedure abject pair, while the squares denote the environment

pointer. Note that in figure 4.9 this pointer has been set ta the environment in which

max was declared. Figure 4.10 shows the state of the environment just after the

follawing caIl to max.

C <- max[2,31;

.-\, new frame has been created, and in it ~a' and ~b· are bound ta the values that \Vere

supplied in the invocation of max. The new frame has the global environment as its

• 4.3. E1V\,1R01V}v[E1VTS IlV JRELIX

max:-

75

• t
CI]

•

a:2

b:3

Figure 4.10:).iIa..x computation, part 2

parent frame because that is what the environment portion of the procedure object

for max specified.

Alternatively, a slightly different set of roles couid be used:

A. procedure is created by evaluating a declaration. A binding of the

procedures name to the newly created procedure abject is then placed in

the current environment.

To apply a procedure, a new frame is created in which the procedure~s

formai parameters are bound to the values specified in the call. This new

frame is attached to the environment by setting its parent pointer ta the

current environment in which the procedure call is made. The code of the

procedure is then evaluated relative to this new environment.

This method is called dynamic binding, because the unbound variables of a proced

ure get their values from the environment in which the procedure was called, instead

of that in which it was declared. This is a consequence of the manner in which the

parent pointer of the new frame is set-namely, it points to the environment in which

the procedure calI is made. \Vith static binding, a pointer to the environment in which

the procedure is declared is stored, and is Iater used as the parent pointer of the ne\v

frame created when the procedure is applied. To summarize, with static binding the

unbound variables are looked up in the environment in which procedure is declared,

and with dynamic binding the unbound variables are looked up in the environment in

which the procedure is calied. The programming language LISP [61] implements the

discipline of dynamic binding.

The next example program ilLustrates the difference between static and dynamic

binding.

• 4.3. ElvvlRONAfE1VTS I1V JRELIX ï6

•

•

Program 2

computation power(x,y)
{ y <- exp(x,n);
};

computation sum_power(a,b,c,n) is
{ c <- power[a] + power[b];
};

The invocation is

c <- sum_power[9,lO,,3];

Figures ~.11 and ~.12 depict the structure of the environment just aCter the call

to power [a] in the body of sum_power has been made. Figure ~.11 on the next page

shows the result for the case of static binding and figure ~.12 on the following page

does the same for dynamic binding. The essential difference is \Vith the parent pointer

of frame f3. \Vith static binding, a pointer ta frame fi is stored at declaration time in

the procedure object for power. This pointer is used as the parent pointer of frame

f3 when power is called. However, with dynamic binding, the parent frame of f3 is f2

siDce that is the frame in which the caU ta power is made. The result is quite different.

In the latter case the Cree variable ~n' of power is found in frame rl, whereas in the

former case this variable is unbound with respect ta frame f3 causing an error ta be

reported.

For sarety, however, we decided ta use static binding in jRelbc, although this

hampers us from running code such as that in· program 2. \Ve will not he concerned

with dynamic binding any further.

•

•

•

4.3. ENVIR01'l}v[ENTS Il'! JRELLX

ft

aJaJ\~
__

~:~O f2.-1- Dy~~rJC·")

n:3

Figure ·1.11: Static binding

ft

0 0 \
a:9 f2
b:IO
c:"!
n:3 ,
D:9 f3

y:'!

Figure 4.12: Dynamic binding

--t ,

•

•

4.3. E1VVIRONNIE1VTS IN JRELLX

fi

sum-squ:ares: -

+
CO

Figure 4.13: SUffi of squares, part l

ft

CI] ""il:J f2
b:4
c")

square:

co
Figure 4.1-1: SUffi of squares, part 2

The follawing exarnple includes a nested procedure.

Program 3

computation sum_squaresCa,b,c)is
{ computation square(a,b) is

{ b (- a*a;
};

c <- square [a] + square [b] ;
};

h2 (- sum_squares(3,4];

ï8

•
..\fter this declaration bas been processed, the situation is as in figure 4.13. Figure

4.14 is a snapshot of the environment just after the calI to sum-squares bas been made

and the nested declaration for square has been pracessed. There is now a binding in

frame 1'2 for the procedure square. The environment pointer of square points ta f2

since that is the environment in which that procedure \Vas declared. Frame f2 a150

• 4.3. E1VVIRONNIENTS IN JRELL"<

ft

QJ '"il:3 f2
b:4

c:'!

square.

79

•
a:J

b:9

Figure 4.15: Sum of squares, part 3

n

QJ '"3:3 f2
b:4

c" J

square.

f3

•
3:4

b:16

Figure 4.16: Sum of squares, part 4

f4

contains bindings of aU the formal input parameters to the values specified by the calI.

Now when the next Hne of code in sum-squares is executed, two successive invocations

of square are made. Figure 4.15 cantains the state of the environment after the first

of these is begun. A. new frame f3 has been created in which "a' has been bound to

3 since that is the value of 'a' in frame f2. Note that the 'a' in f3 shadows the one in

f2. When the second caIl to square is processed, the ne\v frame, f4, is created. Frame

f3 is gone and the memary used by it will be reclaimed. This is illustrated in figure

4.16. In frame f4, "a' has been bound to 4, and once again shadows the 'a' in frame

r2.

• 4.3. E1V1t1R01VAtIENTS I1V JRELI..Y 80

•

•

4.3.2 Creating abjects with state

In the previous example, the nested procedure square was local to SUffi_squares. Sorne

programming languages such as LISP and RelLx allow a procedure to he returned as

the value of another procedure. In jReIL"<, for example, the type of an input or output

formaI parameter can he a computation. Coupling an environment model \Vith this

capability of manipulating procedures provides a programming paradigm sufficiently

powerful to enable the modeling of abjects \Vith local state having proper accessor and

mutator methods. The following example shows how this may be clone.

Program 4

computation make_bank_account(init_balance, deposit, balance)
local bal intg;

{ bal <- init_balance;
deposit(amount)
{ if (bal+amount)= 0) then

{ bal <- bal+amount;
}

eise
{ print nerror: not enough funds for withdrawal lf

;

};

};

balance(b)
{ b <- bal;
};

};

• 4.3. E1VvlRONNIENTS IlV JRELI.X:

fi

make-bank-acc: -

t
CD

Figure 4.17: Bank account computation, part 1

81

•

fI
make-bank-account: l

bal:-

• t
CD

bal: 100

., t

f2

•

([J
Figure 4.18; Bank account computation, part 2

Figure 4.17 shows the effect of declaring this procedure in the global environment.

Figure 4.18 shows the environment aCter the following invocation.

The procedures deposit and balance, which are nested inside of make_bank_account,

are passed out as return values through parameters. The result relation bal is defined

on the domains deposit and balance, and has a single tuple which contains references to

the deposit and balance procedure abjects just created. These then become available

for use outside of make_hank_account. Indeed, they can be accessed from bal which

is bound in the global frame. Because of this, we will say that deposit and balance

are exported procedures, in contrast ta the local procedure square in the previons

4.3. E1VVIRONAIE1VTS IN JRELIX 82

f3

bal:200

t
CUcu

fi
make-bank-account: l

bal:- bal:-

• t \CI]
f2

bal: 100

1 t •

•

Figure 4.19: Bank account computation, part3

•
example which remained local ta sum_squares. Each invocation of make_bank_account

creates a new bank account which also provides accessor and mutator methods for that

new bank account. Figure 4.19 shows the environment after a second bank account is

created by the following statement.

:\.ccording to the mIes of procedure application stated above, this caU produces

yet another frame. In this frame, the variable bal currently has the value 200. This

bal is different from the one in frame f2 which has the value 100. \Vhat this example

has accomplished is the creation of two abjects each having their own state variable

and access methods. A calI to the deposit procedure stored in the relation ba2 will

update the bal in frame f3 because the environment pointer of its procedure object is

set to the environment in which it \Vas dec1ared, namely, frame fJ.

4.3.3 The static environment model

•
In a realistic database application, it wouid not be unusual if there were thousands

of bank accounts. If the approach just outlined was adopted, this wouid require

equally many new frames to he created and to persist. Such an approach would be

very expensive in terms of memory usage, or disk space if the environments can be

• 4.3. ENVIR01'llvIE1'lTS IN JRELLX

ft

max:-

83

c
\

a: ??

b:??

f2

•

•

Figure 4.20: Static environment, part l

swapped to disk. In light of this, a new modified environment model is proposed.

The new rules for procedure application and declaratioo are:

:\ procedure is created by evaluating a declaration relative ta an enviroo

ment. The resulting procedure abject is a pair consisting of the code of

the procedure, as weIl as a pointer to a new frame. This new frame has as

its parent the environment in which the procedure was dec1ared.

:\ procedure is applied to a set of arguments by binding its formaI para

meters, to the actual arguments provided by the caU, in the enviranment

which is pointed to by the environment portion of the procedure object.

Program l 00 page 74 will he used ta illustrate how these roles work. Figure 4.20

shows the situation after the computation has been declared. The computation object

does nat just contain a pointer to its parent frame, it contains the entire frame f2.

This will be used when the computation is called to bind the formaI parameters ta the

values provided by the calI.

Figure 4.21 shows the environment just aCter the following calI is begun.

C <- max[2,3];

The variables 'a' and 'b' have been assigned the values 2 and 3, respectively, in frame

f2. As shown in figure 4.22, this frame is reused again when the following caU is made.

C <- max[4,6];

• 4.3. ENvIR01VJ.\fE1VTS IN JRELLY

n

max:-

84

c
b: 3

\
f2

•
Figure 4.21: Static environment, part 2

fi

max:-

l ,

c
a:4

b:6

•
Figure 4.22: Static environment, part 3

The essential difference bet\veen this model and the previous ones is that the new

frame, which is ta be used for binding the formal parameters and as the evaluation

context of the procedure, is created when the procedure is declared instead of when

it is applied. In this ne\v version a single enviranment is simply reused each time the

procedure is called instead of creating new environments each and every time. For

this reason, we caU the new approach the static environment model, and the original

model will be referred ta as dynamic. This is not ta he confused with dynamic and

static binding. The feature which distinguishes dynamic binding from static binding is

how the parent pointer of the new frame is set. The differenee between the statie and

dynamie environment models is completely orthogonal to the issue separating static

and dynamic binding. It is whether the new frame is created when a procedure is

declared or when it is applied. The two properties can therefore be cambined in four

different ways ta provide four alternative programming paradigms.

If we reeansider the previous examples in terms of this new model, we find that it

~ehaves similarly ta the original one except for the make_hank_account example. The

reason far this is quite simple. lt is only in the case where a procedure is exported

that a frame which was created due to a procedure caU lingers on after the caU is

cempleted. This is how stateful objects were manufactured. A weakness in this

approach has, then, been uncovered. If we wish our language ta provide the ability ta

modeI abjects with state, and in the case of jRelbc we certainly do, then sorne other

mechanism must be provided. The static environment model alane will not suffice.

Section 4.6 discusses the approach adapted by jRelix for handling stateful abjects.

•

•

4.3. E1VlfIR01V~IENTS I1V JRELI.X: 85

•

4.3.4 Implementation details

In this section the implementation of environments is discussed. As was explained

in section 4.1.2, relations are stored in a RelTable object and demains in a DomT

able ohject. Each frame of the environment therefore includes bath a RelTable and

a DomTable abject. In order to support computations, each frame cantains an addi

tionaI hash table, called table. The purpose of this hash table is ta provide storage

space for the formai parameters, local variables and state variables of a computation

in other words, whatever the RelTable and DomTable are not designed to handIe. The

•

•

4.3. ENVIRONNIENTS IN JRELIX

1 übject 1 Description

reltable A hash table used ta store relations, views

and computations

domtable A. hash table used to store domains

table .~ hash table used to store parameters and

local and state variables of computations

parent pointer ta the parent Environment

NRenv pointer to an :'IREnvironment

data colurnn major array of arrays to store

data of a relation

row row number of the relation contained in

data currently being processed

Table 4.2: Component structures of the Environment class

fields of the Environment class are summarized in table 4.2.

86

•

The existence of five different "kinds' of variables-relations, domains, computa

tion parameters, and local and state variables of computations-ereates a significant

amount of complexity for the systems programmer. \Vhen interpreting a staternent.

the need to look up variables in the environment will arise. lt is tao much trouble

for the system programmer ta have to eonsider what the ·kind' of each variable is.

Thus, this complexity has been hidden by means of a sufficiently rich set of interface

methods belonging ta the Environment class.

An abstract base class called IDInfo is created from which the classes Paramlnfa,

LocalInfo and Statelnfo are derived. These three classes are used to store information

pertaining to a single computation variable and it is these that are iDserted inta the

hastable..-\ RelInfo and a DomInfo class, which also derive from IOInfo, have been

created 50 that the RelTable, DamTable and the third hash table aIl blend tagether

seemlessly. The purpose of the abstract base class is ta simplify the manipulation of

these "info' abjects. The programmer can simply pass them around as IDInfo abjects

without having ta check their specifie type. These classes are summarized in table ·t3

on the following page.

• 4.3. E1VvIROlVlvIE1VTS IN JRELI..X 87

1 Class 1 Description

•

•

1

Iornfo Abstract class \Vith one field called kind

Paramlnfo Stores a name/value binding for a parameter

kind = PAR.~~IETER

Field storing the type of the parameter

Field storing the index of the parameter

LocalInfa Stores a name/value binding for a local variable

kind = LOCAL

Field storing the type of the variable

Field storing the value of the variable

StateInfo Stores a name/value binding for a state variable

kind = ST.-\TE

Field storing the type of the variable

Field storing the index of the variable

RelInfa Stores a name/value binding for a relation

kind = REL

Pointer to a relation abject

DomInfo Stores a name/value binding for a domain

kind = DO~[

Pointer ta a domain abject

Table 4.3: Classes encapsulating the different kinds of variables

There are a few fields in table 4.2 that have not yet been discussed. The parent

field contains a pointer ta the Environment abject which is the parent frame. Any

unsuccessful look up of a variable in the current frame i5 followed by a look up in

the parent frame. However, if the pointer happens ta be nuIl then, as this i5 the last

frame that may be searched, the variable is not in found in the environment and null

is returned. The NRenv field i8 discussed in the next section. The data and row fields

are used when a computation lS applied. The data field stores the contents of che

input relation in column major format as described in section -l.1.3. The row field

keeps track of the row of this relation which is currently being processed.

Now that the implementation of environments bas been covered, it remains ta

explain how a programmer can make use of it. Table -lA on the next page lists the

interface funtions that are available for this purpose. These fall iota three groups. The

polymorhic put methods are used ta insert new bindings into the environment. There

is a set of 'lookup' methods for retrieving items. The generic lookup method returns

~ IDlnfo abject. lt is up ta the system programmer to check the kind field ta deduce

which specifie c1ass the current object belongs to. This must be one of the classes,

listed in table 4.3, that inherits from IDlnfo. If a Relation object is expected, then

the lookupRel method may he used instead. This relieves the programmer of dealing

with an 1D1nfo abject by simply returning a Relation abject. The lookupDom and

lookupParam methods behave similarly, except that they return Domain abjects and

ParamInfo objects, respectively. The last group consists of interface methods that are

used to remove bindings from the environment.

•

•

4.3. ENVIRONAtIENTS IN JRELI..X 88

•

4.3.5 Scopes induced by nested relations

There is a further notion of scope in jRelLx which is orthogonal to that which has

been discussed so far in this section. Each level in a deeply nested relation is itself

made up of nested relations until, eventually, primitive data is reached. Each of these

relations is deflned on a collection of domains. It is possible to write domain algebra

expressions which involve domains at different levels of such a deeply nested relation.

The example in figure 4.23 on page 90 will help to illustrate this. Only the scheme

of the relation is given. 1t may be desired ta jaïn PTl \Vith PRESSURE (for example.

Table 4.4: Interface methods of the Environment class

89

1 Output1 Input

Insertion wlethods

put name of variable none

IDlnfo object none

put Relation abject none

put Domain abject none

Retrieval Nlethods

lookup name of variable IDlnfo abject

lookupRel name of variable Relation object

lookupDoln name of variable Domain object

lookupParam name of variable IDlnfo abject

Removal Nlethods

removeRel name of variable none

removeDom name of variable none

1 method

4.3. EMlIROiVl\IEJ.VTS IN JRELIX

•

•

ta compute the pressure at some point on the bridge). Since PRESSURE is higher

up in the nested hierarchy than PTl, the data in one relation under PRESSCRE is

regarded as constant \Vith respect ta all relations in that tuple that are stored under

PTl.

•

During interpretation, the names PRESSURE and PTI need ta be resolved sa that

actions can he carried out. A look up into the environment will be undertaken 50 as ta

obtain the data that these vaiables currently represent. A class called :'IREnvironment

has been created for this purpose. lt has been embedded into the Environment object

sa that a programmer need not be aware of this situation, and therefore not have

ta write extra code. The look up method of the Environment class will search the

NREnvironment before looking in the structures described in the preceding section.

\Vhen domain algebra is used ta jain PRESSURE ,vith PTl, the actualizert which

is the class that implements the domain algebra [70], works its way down the hierarchy

until it reaches PTl. As its descends the relation, it creates frames of the ~~Envir

onrnent which record the domains that were seen on the way. For example, the first

•

•

•

4.3. E1VVIRONAfENTS IN JRELL,(

bridge (OBJECT PRESSURE)

(SEQNO PTI PT2) (X Y P)

(X Y) (X Y)

Figure -1.23: .\ deeply nested relation

OBJECT
PRESSURE

row:

1 \
SEQ X
PTI Y
PT2 P
row: row:

1 \
x X
Y Y

row: row:

Figure 4.24: ~ested-relation environment

90

NREnvironemt ta he created in this case contains the domains OBJECT and PRES

SURE. \Vhen the actualizer goes deeper into OBJECT, a new frame is created which

contains SEQNO, PTI and PT2. The expression involving the join of PRESSURE

with PTl is evaluated \Vith respect to this environment. Therefore the look up of the

variables in the environment will return the bindings found in these NR-frames. As

the actualizer descends the relation hierarchy and creates the NR-frames, one more

piece of information must he kept track of-the row number. :\t a given moment in

the interpretation it is possible to be in the nth row of the relation PTl and in the mth

row of PRESSURE. Thus many row numbers must be kept track of. In fact one per

NR-frame is precisley what is needed. \Vhen the system programmer does a look up

in the environment, the interface method looks at the row numher in the NR-frame

and returns the correct information. Thus this aspect is also made transparent ta the

programmer. Figure 4.24 on the page before illustrates the NR-environment that is

created for our example.

•

•

4.4. :\PPLICATION OF CO~IPUTA.TIOLVS 91

•

4.4 Application of Computations

Computations may he applied in t'vo different ways-by means of an ijoin or by a

selection. The algorithms used to implement these are provided below.

1Algorithm: Natural jain 1

1. Create and initialize a new environment frame.

2. Set this Crame's parent pointer to that stored within the computation.

3. Determine the joïn attributes.

4. Calculate a black type Crom the join attributes.

5. Locate the matching ~alt' block. If not found throw an error.

6. Load the data of the input relation into.memory.

7. Create a new relation to hold the output.

•

•

•

4.4. ;\PPLIC.4TION OF C01\IPUTA.TIONS

8. For each tuple in the relation do:

(a) Execute each statement of the ~alt' black.

(b) Append the resulting tuple ta the output relation.

9. Detach the new environment frame 50 that it will he garbage collected.

10. Project the output relation on aIl its attributes to remove duplicate tuples.

Il. Return the output relation.

1Algorithm: Select 1

1. Create and initialize a new environment frame.

2. Set this frarne's parent pointer ta that stored within the computation.

3. Determine the input attributes.

4. Calculate a black type from the input attributes.

v. Locate the matching ~altt black. If not found throw an error.

6. Create a new relation to hold the output.

7. Execute each statement of the 'ale block.

S. Append the resulting tuple to the output relation.

9. Detach the new environment frame 50 that it will he garbage collected.

10. Project the output relation on all its attributes ta remove dupIicate tuples.

11. Retum the output relation.

1Algorithm: Stand-alone 1

1. Create and initia1ize a new environment frame.

2. Set this frarne's parent pointer to that stored within the computation.

92

• 4.4. .4.PPLICATION OF COlttIPUT.-tTI01VS

3. Calculate a block type from the input attributes.

4. Locate the matching ~alt' block. If not found throw an error.

5. For each input parameter do:

93

•

•

(a) Create a local variable having the name of the corresponding parameter.

(b) Initialize this variable with the value supplied for that parameter.

6. Execute each statement of the ~alt' block.

7. Copy the value of each parameter out to the cailing environment

8. Detach the new environment frame so that it wH! ha g~rbage collected.

Each time a computation is invoked, a new frame is created in arder ta hold data,

as specified by the formaI parameters. Computations are, however, quite different

from the type of procedures normally round in conventional programming languages.

In the latter case, when a procedure is called it is implicit that exactly one piece

of data will he substituted for each formai parameter. Computations, on the other

hand, are intended to work efficiently \Vith large amounts of data and it is expected

that each formaI parameter will be substituted for many times. Instead of creating a

new frame in which to bind the formaI parameters to the data each time a black of

a computation is executed, which \Vould amount to creating as many frames as there

are tuples in the relation being joined \Vith the computation, only a single frame is

created which will handle aU of the data. The slots in this frame will simply be reused

over and over again. This is how jRelLx makes use of the static environment model

that was discussed in section 4.3.3. ~ote that this new frame is not created when

the computation is defined, but rather, when it is invoked. This may seem like the

dynamic environment modeL It is best ta say that the approach that jRelix takes is

somewhere in between. What is ta be avoided is the creation and initialization of ne\v

frame objects each time a black of a computation is run, which is to say for each tuple

of the input relation. The problem with creating the new frame at declaration time is

that it precludes the passibility for the language ta allow recursive computations. In

order ta support recursioD, each instance of the computation that is currently pending

• 4.S. CREATION OF COl\'IPUTA.TI01VS

D V T
0 1 1 Block Type: 1102= 6

1 0 1 Block Type: 1012= 5

1 1 a Block Type: 0112= 3

Figure 4.25: Black type

94

•

•

must have a frame ta store its data. If there were only one frame per computation,

and not one frame per invocation, it would not be possible ta save the context of each

suspended instance of the computation.

Regardless of the method of invocation, a necessary step is to deduce which of the

~alt' blacks ta execute. The parameters of the computation are viewed as place holders

for binary digits, but instead of using the customary left ta right arder, the number

must be read backwards from right ta left. Figure 4.25 illustrates this for the velocity

computation which was shawn in figure 3.1 on page 47. The parameters, fram left ta

right are D, V and T. The three rows of digits correspond to the three 'ait' blocks

of the velocity computation. A '1' indicates that the variable is an input parameter

of the black, a ~O' that it is an output. The type of the first black is 110 in binary

notation, that is 6. This is just the binary digits of the first row read backwards. The

digits have ta he read backwards because the least significant digits occur to the left

instead of ta the right, as with our costumary positional numeral system.

4.5 Creation of Computations

The declaration of a computation leads ta the instantiation of a Computation ab

ject. The Computation class cantains methods for processing the declaration and

application of computations as weil as for responding ta commands that apply to

computations. The constructor of this class is called by the interpreter ta handle a

declaration. It requires as inputs a reference ta the syntax tree and a pointer to the

environment in which the declaration occurs. The steps involved are:

• 4.5. CREA.TIOIV OF CO~IPUTA.TI01VS

1Algorithm: Declaration 1

1. Store the environment pointer.

2. Parse the syntax tree.

3. Calculate the block type of each 'alt' block.

4. Update the system tables to include an entry for the new computation.

95

•

•

The environment pointer is stored ta implement the discipline of static binding.

\Vhen the computation is called, a new frame will he created. Its parent frame will

be set ta that indicated by this pointer. The syntax tree is traversed in order ta

deduce the parameters, local and state variables, "aIt' blacks, as well as the name of

the computation. This information is used by the black type algorithm.

The body of a computation consists of a sequence of "aIt' blocks. \Vhen the

c;omputation is invoked, it must be decided which of these appIies. Each "alt' block

corresponds ta exactly one set of input parameters. The purpose of the block type

algorithm is to assign an integer "type' to each "aIt' black of a computation. It is

stored in the computation abject sa that it need not be re-evaluated each time the

computation is invoked. As described in the previous section, this integer, when

expressed in binary notation, is a bit string of l 's and O's that indicates the input

parameters of the black. The black type algorithm marks each variable that appears

in a computation as either an input or an output. This decision is based on the way

in which the variable is first used. Renee, the marking of a variable is permanent.

The block type algorithm is complicated by the inclusion of nested computations. To

simplify the discussion, we first describe the algorithm for the case where there are

none these.

1Algorithm: Black Type 11

1. Initialize the markings: AIl parameters and local and state variables have their

marking set to RELIX_VOID.

2. For each statement of the ~alt' black:

(a) Deduce the input parameters of the statement.

(b) ~Iark these as input parameters if their current marking is RELL"<_\!OID.

(c) Deduce the ouput parameters of the statement.

(d))"-Iark these as output parameters if their current marking is RELIX_'/'OID.

• 4.5. CRE.-lTIDN OF CO~IPUT.-tTI01VS 96

•

•

3..o\ssign a type ta the ~alt' black based on the input parameters.

We now explain how the input and output variables may be deduced for each type

of statement provided by jRelLx.

Assignment < id > '<-' expr

Inputs: all identifiers in expr

Outputs: < id >

Remarks: There are two exceptions ta the rule for inputs. The identifiers of

a projection list and of a selection clause are excluded3 •

Statement Inputs Outputs

Examples: R <- [..\,8] in S ijoin T S, T R

R <- where .0\=2 in S S R

incrementai Assignment < id > <+ expr

Inputs: all identifiers in the statement

Outputs: none

Remarks: There are two exceptions to the rule for inputs. The identifiers of

a projection list and of a selection clause are excluded.

Statement Inputs Outputs

Examples: R <- [.-\,B] in S ijoin T S, T, R ~one

R <- where .0\=2 in S S, R ~one

Domain Declaration domains < id > type

Inputs: none

Outputs: none

3The reason for these exceptions is discussed in section 5.2.5 on page 110.

• 4.5. CREATION OF COl\IPUTA.TI01VS

Virtual Domain let < id > he expr

Inputs: none

Outputs: none

Relation Declaration relation < id > « idList » <- expr

Inputs: aIl identifiers in expr

Outputs: none

9ï

. Exampies:

Statement

relation R(A,B)

relation R(A..B) <- S

Inputs Outputs

~one ~one

S ~one

•
Relational view < id > is expr

Inputs: aIl identifiers in expr

Outputs: < id >

Remarks: There are two exceptions to the rule for inputs. The identifiers of

a projection list and of a selection clause are excluded.

Examples:

Statement

R is [.-\,B} in S ijoin T

R is where :\.=2 in S

Inputs Outputs

S, T R

S R

Update Add,Delete update < id > add expr

Inputs: < id > and aIl identifiers in expr

Outputs: none

Example:
Statement Inputs

update R add S ijoin T R, S, T

Outputs

None

•
Update Change update < id > change stmtList using JoinOperator expr

Inputs: < id >t aIl inputs in stmtList and all identifiers in expr

Outputs: none

• 4.5. CREATION OF CONIPUT.-tTI01VS

>comp C(X,Y) is

{ comp nested(Z) is

{ Z <- Y;

} ;

X <- nested[2];

} ;

Figure 4.26: ~ested Computation

98

•

•

Remarks: The stmtList may contain any jRelbc statements. Since the output

attributes of these statements are assumed to be domains of < id >, they

do not play a role in the block algorithm. The inputs of these statements

are considered inputs by the black algorithm.

Statement Inputs Outputs
Example:

update R change A. <- 2*C using ijoin S R, C, S ~one

- We naw complete our exposition of the block type algorithm by describing the

additional steps required in the presence of nested computations. The declaration of

a nested computation is ignored. It is when a nested computation is called within the

~alt' black that extra care must be taken. Consider the example provided in figure .1.26.

The variable Y is an input parameter ta computation C, even though it is only used

directIy by the computation nested. If nested is never called within C, then Y is not

an input paramater for C. This is why the nested computation is only processed when

it is called, and not when it is declared.

1Algoritbm: Black Type 21

1. Initialize the markings: AlI parameters and local and state variables have their

mark set ta RELIX_VüID.

2. For each statement of the ~alt' black:

(a) Deduce the input parameters of the statement.

(h) Nlark these as input parameters if their current marking is RELIX_'lOrD.

(c) Deduce the ouput parameters of the statement.

(d) Nlark these as output parameters if their current marking is RELe<_\/'OID.

(e) If a nested computation is invoked, mn the black type algorithm on that

computation.

• 4.6. I~IPLE1\'[ENTATI01V OF ST:-lTEFUL COl\tIPUT.4.TI01VS 99

•

•

3. Assign a type ta the "aIt' block based on the input parameters.

There is only one additional step in this algorithm. It is a recursive caU to the

black type algorithm. In the example of figure 4.26, this occurs when the computation

nested is called by C. The statement in nested identifies Y as an input and marks it

as such.

Just as with relations and views, a computation that has been successfully declared

\vill be added to the system tables. This is accomplished by adding the new Compu

tation abject to the RelTable. The class Computation inherits from the Relation c1ass

(once again demonstrating the influence of the principle that a computation 'is a' rela

tion on the implementation). Thus, it has a copy of the data dictionary variables. :'Iot

all of these fields apply to computations however. The name field is set to the name

of the computation, the roc field is set to indicate a computation. The numtuples and

numsortattrs fields are always set to 0 as these fields do not apply ta computations.

The numattrs field is set ta the number of parameters that the computation is defined

on. The synta.x tree for the computation declaration is stored in the tree field.

4.6 Implementation of Stateful Computations

lt has been noted that a shortcoming of the static environment model is its inability

ta model objects \Vith state. This section explores the approach taken in jRelL,,< to

overcome this limitation.

The keyword state is introduced into jRelLx as a modifier of variables. The purpose

of this new syntax is ta tell the system that the variable ta which it refers is intended

ta be stateful and, therefore, that special action must be taken. It is only permitted

ta use this keyword ta qualify a local variable of a computation. It is interesting that

with the dynamic enviranment model no such synta.x is required. The bank account

example of section 4.3.2 will he used ta illustrate the special action taken by jRelix

when it encounters this keyword. The new version of make_bank_account is shawn in

program 5.
• 4.6. INIPLE~IENT.4.TION OF ST.ATEFUL COlIPUT.~TION·S 100

•

•

Program 5

computation make_bank_account(init_balance, deposit, balance)
state bal intg;

{ bal <- init_balance;
deposit(amaunt)
{ if (bal+amount >= 0) then

{ bal <- bal+amount;
}

else
{ print Ilerrar : not enough funds for withdrawal u

;

};
};

balance(b)
{ b <- bal;
};

};

This computation may he invoked as it was before.

This time, however, the system will see that the keyword state is used instead of local

as a modifier for the variable bal. jRelix will create an extra hidden domain called

#6al, if one does not already exist, that will he included as one of the domains of bal,

see figure 4.27 on the following page-l. \Vhen deposit is called, the system can find the

value of bal by checking the entry in the current row and under the column labeled

#bal.

Severa! bank accounts may he instantiated at once by means of an ijoin. Here is

the required invocation.

ba <- Ename. accno, deposit, balance] in

Initial ijoin make_bank_account;

"'The two dots in this figure represent pointers to computations. The way this is implemented is

discussed in 4.7.2

• 4.7. STOR..-tGE OF C01\;IPUT..\TIONS 101

deposit balance #bal

100

•

•

relation: "bal" has "1" tuple(s)

Figure 4.27: Hidden state variables, part 1

The result is shawn in figure 4.28 on the next page. In effect, the hidden column

labeled #bal acts as a storage space for the various vaiues of bal. In this respect, it

acts as an environment does. Sa the keyword state, in sorne sense. brings us back to

dynamic environments. But the new approach is much more efficient. Each instance

of the variable bal takes up only the space of an integer. The only overhead is having

an extra domain name, but this is independent of the number of bank accounts which

are instantiated.

Ooly one new frame is created when make_bank_account is invoked. The declar

ation of the nested computation Deposit will be stored in this new frame exactly

once. Therefore, regardless of the number of tuples in the input relation that lS joined

,vith make_hank_account, the syntax tree corresponding to the Deposit computation

is parsed just once. The destination relation will then contain a constant column of

computations. That is, all entries under Deposit will point to the same computation

object. This approach is highly efficient for database applications which could easily

include thousands of bank accounts.

4.7 Storage of Computations

The manner in which top-level computations are stored is different from that in which

computations that are nested inside sorne relation are stored. This is true bath in

the case of temporary storage in R.~).:[, and of persistent storage on disk. The term

tcomputations which are nested, or contained, in sorne relation' is, at the very least.

cumbersome, but the temptation to calI them nested computations will he resisted.

• 4.7. STO&~GE OF COl\IPUT.~TIOiVS 102

name

Pat

Sue

accno

4104

1729

100

200

• relation: ItInitial" has "2" tuple(s)

name

Pat

Sue

accno

4104

1729

deposit balance 'bal

100

200

•

relation: "bail has "211 tuple(s)

Figure 4.28: Hidden state variables, part 2

The term nested computation is reserved for a computation that is nested inside

another computation. (Perhaps, we should oot be sa fickle, as a computation ois a'

relation~). For brevity, the term ~R-nested computation' will be used when referiog to

a computation that is contained in sorne relation.

• 4.7. STORAGE OF COl\IPUTA.TIOLVS 103

•

•

4.7.1 Top-level computations

Each computation is represented in R:\),.[by a Java Computation object. The Com

putation c1ass inherits from-or in Java parlance, extends-the Relation class which

is used for relations and views [30]. These are inserted iota a RelTable abject which is

essentialy just a hash table containing relations, computations and views, as weIl as a

few handy utility methods. Each frame of the environment contains its o\vn RelTable

abject so that different relations can belong to different frames.

\Vhen the system is shutdown, the Computation abjects are not saved to disk in

their entirety. Only the syntax tree representing the declaratian of the computation

is saved by means of the abject serialization mechanism which Java provides [23].

The file .expr is used for this purpose. It also stores synta.'C trees for views and

virtual domains as weIl [70], \Vhen the system is restarted, these synta.x trees will be

used ta create new Computation abjects for each top-Ievel computation by calling the

constructor of that class.

4.7.2 Computations nested in a relation

Due to the fundamental principle that a computation ois a' relation, every effort was

made to mimic the implementation of nested relations when designing the method for

storing R-nested computations. Therefore, whenever a domain of type computation

is declared, a relation baving the same name but prefixed \Vith a period is automat

ically created by the system. This new relation is defined on the same attributes as

those which make up the type of the newly declared damain, as weil as an extra one

called '.id'. In figure 4.29 on the following page, the domain DEPOSIT is declared.

The system will create a new relation called .DEPOSIT on the domains DEP and

.id. \Vhenever a relation is created which has DEPOSIT as one of its domains, only

surrogates will be stored under that field. These serve as pointers ta actual compu-

• 4.7. STORA.GE OF COi.\IPUTA.TIOlVS

>dornain DEP intgi

>dornain DEPOSIT cornp(DEP);

>pr .DEPOSITi

+----------------------+-------------+

104

1 .id 1 DEP

•

•

+----------------------+-------------+
+----------------------+-------------+
relation .DEPOSIT has 0 tuple

>

Figure 4.29: Storage of a computation nested in a relation

tations. The surrogates will not be found in the relation .DEPOSIT, as would he the

case if DEPOSIT where a regular nested domaine In fact, the relation .DEPOSIT

will remain completely empty. It is created solely to mimic the implementation of

nested relations sa that routines in the interpreter that depend on this implementation

will function properly for domains of type computation. The user should simply think

of any relation defined on DEPOSIT as containing a column of computations. The

surrogates that are stored under a domain of type computation are in fact keys for a

hash table called CompTable. Since the surrogates are assigned uniquely, there is only

a need for one CompTable in the eotire system, oot one per frame of the environment

as might be expected. The actual Computation abjects for R-nested computations are

stored in the CompTable keyed on the surrogates generated when they \Vere ioserted

into a relation.

\Vhen the system is shut down, aU computations in the CompTable are saved ta

disk. Once again, only their syta."< trees are actually seriaIized ta disk. The surrogates

for each R-nested computation is also recorded. \Vhen the system is restarted, these

syntax trees are used ta recreate the Computation abjects for each R-nested compu

tation. The Computation abjects are then reinserted into the CompTable keyed on

the same surrogates as in the previous run of the system.

• 4.8. RECURSIOIV

4.8 Recursion

105

•

•

~o special effort is required ta support recursion. AIl of the necessary machinery

is already provided by the environment mode!. Consider the factorial computation

shown in figure 3.12 on page 5i. Each time it is called, a new frame is created in

which the formaI parameters are bound to the values provided by the call. In effect,

a stack of new frames is created. Each of these will contain bindings of the formaI

parameters M and N. Therefore the different instances of these will not interfere with

each other. \Vhen the recursion bottoms out, the frames will dissappear (Le. be

marked for garbage collection) in the reverse order of their creation as values are

returned from the various incantations of the factorial computation.

There is one implementation detail that arises in this context, however, it is not

specifie to recursive computation. The following statement, taken from the factorial

computation, illustrates the issue.

N <- M* factorial[M-l];

Since N in an integer, the right hand side of this statement is expected to return an

integer. However, the invocation of factorial results in a relation. \Vhen the system

expects an integer, or other primitive type, and obtains a relation instead, an attempt

is made ta see if an appropriate value can be extracted from the relation. If the

relation has exactly one tupie, and is defined on ouly one domain that is of the type

that is expected, then this single value is extracted from the relation. In our example,

the resuit of factrial[N/-lJ is indeed a relation with one tuple that is defined on the

single domain N, which is of type integer. The value is extracted from the relation

and returned to the interpreter as the result of the computation caU.

•

•

•

Chapter 5

Conclusion

This chapter begins with a summary of the work that has been accomplished. 7his is

followed by suggestions for possible extensions and enhancements that could he made

in the future.

5.1 Summary

This thesis documents the design and implementation of computations, the proced

ural abstraction mechanism provided by jReIL"<. The central design principle is that

a computation is a special type of relation. A computation is intended ta embody a

constraint amongst its parameters. lt has been explained how this permits a compu

tation ta he thought of as a (possibly infinite) relation. Thus, to every computation

there corresponds a relation.

One of the qualities of the relational algebra is that its operators may he cascaded.

allowiog intricate queries to be expressed concisely. The overloading of the relational

algebra operators ta allow computations as their arguments implies that computations

are used syntactically in the same way as relations. Therefore, these queries may

consist of computations as well as relations, yielding a high degree of Bexibility.

The operators that have been overloaded are the selection and the natural joïn.

These are used to invoke computations. Ta understand how these work, it is best

ta consider the relation that corresponds ta a computation. The selection and join

operators behave with this relation as they would with regular relations.

106

• 5.2. FUTURE ~VORK

>comp no_constraint(X,Y) is

{ X <- 2 * Yi

} aIt

(y <- X * X;

} ;

>

Figure 5.1: Computation that does not embody a constraint

107

•

•

Computations aiso may be used to instantiate abjects \Vith state. The madel of

ins~antiatian is designed to deai with large numbers of objects efficiently. Aithough

behaviour may be encapsulated within the objects, these are not true 'objects' in the

object..oriented sense. ~[any 00 properties are not included in this implementation.

The following section discusses how sorne of these may be added in the future.

5.2 Future Work

5.2.1 A note on the commutivity of the natura1 jain

It has been claimed that the naturai join operator remains commutative after having

been generalized to work with computations. As has been discussed. there is a rela..

tian whicb corresponds ta each computation that embodies a constraint. The joïn of

a relation with a computation is like the joïn of a relation \Vith the relation corres..

ponding to a computation. Thus, the cammutivity, as well as the associativity, of the

generalized jain follows from tbat of the regular join.

However, if the user creates a computation that does not embody a constraint.

then it may not correspond to any relation. In this case, the generalized join operator

will Most likely not he commutative. An example of such a computation is provided in

figure 5.1. Note that the two 'alt t blacks do not enforce the same relationship amongst

the parameters of the computations. Therefore, this computation does Dot embody a

constraint.

• 5.2. FUTURE ~VORK

5.2.2 Natural joïn of two computations

108

The join of two relations and the jaïn of a relation with a computation have heen

discussed. It is natural next ta inquire what the join of t'vo computations should

yield. The meaning is in fact forced upon us if we wish to preserve the associativity

of the join operators. Consider the expression

Camp! ~ Comp2 ~ Rell (5.1)

•

•

This can be evaluated in two different ways depending on whether the ijoin operator is

left or right associative1• Regardless, we would like the results to he the same in each

case. Evaluating the expression from right to left presents no trouble as the result

of joining Comp2 with Rel1 is a relation, which can then be joined with Comp1.

Thus the join of two computations must behave like function composition. The join

of CampI with Comp2 results in a new computation which, when it is applied ta a

relation, Re11, has the same effect as joining Compi with Reli and then joining the

result of this with Comp2.

This suggests an implementation strategy for the join of two computations..-\ com

putation can actually he a doubly linked Iist of Computation objects. Computations

such as Compi would he a linked list with the Computation object of Compi as its

single item. Similarly, Comp2 would be a linked list containing only the Computation

object of Comp2. When these are joined together, the resulting abject would he a

computation that we will caU Camp3. Comp;) would actually be a doubly linked list

with two entries, one of these being the Computation object for Compi and the other

that for Comp2. to apply Comp3, aIl that must be done is ta apply the computations

stored in the linked list in turo. If the relation that is joined \Vith Camp3 is ta the Ieft

of the join operatar t then we begin applying the computations starting at the head of

the linked list. If the relation is to the right of the join operator, then we start \Vith

the computations at the tail of the linked list, and \York towards the head.

This implementation, however, has the unfortunate side effect of breaking the com

mutivity of the jaïn operator. Suppose the computation Comp2 is defined on the

parameters X and Y and encapsulates the constraint Y = .\:' + 2, and that CampI

lThe joïn operators are in fact right associative.

is defined on Y and Z and represents the constraint Z = Y'',!. Then, if the relation

Rel1 is defined on ~r, the result of equation 5.1 is essentialIy ta calculate the function

Z =(..~ + 2)2 However, the expression

• 5.2. FUTURE ~rORK

Comp2 IXJ CampI txJ ReL1

109

(5.2)

•

•

does not even make much sense since Campl and Rell have no domains in common.

A joïn of two relations having no domains in cornmon yields a cartesian product. If

we imagine that it is possible ta take the cartesian product of the infinite relation

corresponding to Campl with Rel1, then the resulting (infinite) relation, let us calI it

Temp, could indeed he joined \Vith Camp2. Temp would he defined on the domains

.Ir, y, and Z. Joining Temp with Comp2 would amount to picking out those tuples

of Temp satisfying }" = .t + 2. The finiteness of the relation Rel1 together with the

constraints guarantees that the final result will be finite2•

The difficulty \Vith the preceding is in how to implement the cartesian product of a

computation with a relation, as the result is infinite. Overcoming this problem would

restore the the commutivity of the natural join operator.

5.2.3 Overloading other relational algebra operators

It would be nice if aIl of the relational algebra operators \Vere overloaded ta function

\Vith computations. So far, this has only been done for the selection and natural join

operators. {jnfortunately, it is not ïmmediately clear what the approprïate generaliz

ations of the other operators (projection, ft-jaïn other than the natural, D'-joins, and

update) should he. Examples applications would be necessary to nlotivate and justify

anyextensions.

5.2.4 Events and triggers

In Relix, the predecessor ta jRelLx, procedures \Vere used to implement event handlers

[26]. Due ta time limitations, including this facility \Vithin computations \Vas not an

:!Indeed, the constraint Y = .Y" + 2 implies that for each value of X there corresponds a finite

number of values for Y. The constraint Z == }":! in turn implies that there can ooly he a finite number

of values for Z. In this example, the 'finite number' just mentioned is in fact one. In general~ however.

because of the also statement this could he any finite number.

• 5.2. FUTURE trORK

Domains of S Block type

A,X 3

.-\ 1

X 2

~one 0

Table 5.1: .-\mbiguous block types

objective of the current project. This feature could be added at a later date.

5.2.5 Block algorithm: select clause

110

•

•

.-\S explained in section 4.5, the select clause tS ignored by the block algorithm. The

reason is that the algorithm is used at declaration time, but it can not be known until

run-time what identifiers in the select clause belong to the source relation. Consider

the following example.

camp C(A,X) is

{ R <- where A=X in S;

};

lt is impossible ta tell, at declaration time, whether A, .r or bath are domains of the

relation S. The problem is that the block type depends on this information. Table 5.1

gives aIl the possible block types for the example.

Since the implementation \Vould he more complicated and also because it would be

less efficient to try ta deduce this information at run-time, the decision \Vas made to

ignore the selection clause in the black algorithm. Further experience with the system

may lead ta a better solution. ~ote that the ambiguity concerning which identifiers

belong ta the source relation results from the practice of labeling the columns of

a relation. No such ambiguity arises \vith a positional notation, such as the array

syntax.

For the time heing, the user can force a particular meaning by using local variables.

For example, if the intent is that ~r is a member of S and A is an input parameter.

then the following code could be used.

•

•

•

111

camp C(A,X) is

local 1 intg;

{ l (- A;

R <- where l=X in S;

};

The first statement makes A an input parameter. The relation R will consist of those

tuples of S that have a value of 1 in the calumn headed by)(. Since the value of 1 is

set ta A, the desired result is achieved.

The same probem arises \Vith the use of domain algebra in a computation.

comp C(A,R) ia

{ let X be A+8;

R (- [X] in S;

};

ft can not be deduced until mn-time whether or not A is a domain of S. Thus. the

black type is ambiguous. Once again, a local variable may be used to force A to be

an input parameter.

5.2.6 Storing a view in a relation

jRelLx supports nested relations-relations that contain relations. lt has aiso been

seen that relations may contain a colurnn of computations. This is consistent because

computations are a special from of relation. Views are also a special form of relation.

Therefore it is natural ta inquire about the possibility of placing views in a relation.

Consider the following code fragment.

comp viewComp(S.T,R) is

{ R is S ijoin T;

};

Rel (- viewComp ijoin InputRel;

The invocation of the computation viewComp causes a view to be placed in the relation

Rel.

The implementation of this is essentially the same as for columns of computations.

A ViewTable class, analogous to the CompTable class described in section -l.ï.2, stores

the views in a hash table keyed on surrogate values. .-\ column of views actually

consists of a column of surrogates which which are pointers to syntax trees stored in

a ViewTable object.

Unfortunately, storing views in a relation violates one of the principles used in the

design of nested relations in jReIL'C. As explained in section 2.5. there is a restriction

that applies ta the structure of a nested relation-aIl relations stored in a column

must have the same schema. This schema is weIl known because it is the type of the

domain, and the domain must be dedared before any relation cao be defined on it.

In contrast, a view cloes not bave a fixed schema. The domains of R, in the example.

depend on the domains of Sand T. Since the values of Sand T may change over

time, the schema of R can not be known until it is time to evaluate the view. From

the perspective of the implementation, however, this does not pose a problem. The

current proposaI is experimental. Time spent with the system will tell if this is a

usefuI feature.

•

•

5.2. FUTURE ~rORK 112

•

5.2.7 Object-oriented features

The inclusion of object-oriented features in Relix has been investigated in [-l9j. How

ever, the approach taken there, being based on relations. is somewhat incompatible

with the instantiation mechanism developed in this thesis. which is based on conl

putations. \Ve now explore ways of including additional 00 features in jRelix. \\''e

base the discussioll on the points outlined in the Object-Oriented Database System

At/ani/esta. These were listed in table 1.2 on page 12.

Classes

Classes in jRelix correspond ta stateful computations, which are computations that

have at least one state variable. The bank account computation of figure 3.9 on page 3~j

illustrates this. ft bas a statefui variable called bal.

• 5.2. FUTURE ~\rORK

Methods

113

•

•

~Iethods in jRelix are computations that are nested inside a stateful computation. The

bank account example illustrates this as weIl. That class has a DEPOSIT method.

for making either deposits or withdrawals, and a BALA1VCE method, for printing out

the current balance in the account.

Instantiation

Objects of a class May be instantiated by calling a stateful computation. There is

no need for new syntéLx. In particular, j Relix has no need for a new operatar to

instantiate abjects, as with RelLx and many 00 languages.

Visibility

In [9], it is discussed how first-cIass procedures can be used to distinguish private and

public data. The approach can be adopted by jRelLx. Public variables and methods are

those that appear in the parameter list of the stateful computation. \Ve say that these

have been exported through the parameter list by the stateful computation. Private

variables and methods are those that do not appear in the parameter list.

Complex abject

As a stateful computation can contain any number of stateful variables, support far

complex objects is provided.

Object identity

Relational systems are inherently value-oriented. This means that a relation will oever

contain two identical tuples. This is a consequence of the definition of a relation as

a set, instead of a bag3. Thus a relation called people \Vith attributes lVAklE and

CITY could only contain one tuple \vith NAME set to "John Smith" and CITY set

to "~Iontreal" even though there very weIl could be, and probably are, at least two

John Smith's in ~Iontreal. It is possible to use an extra surrogate domain. perhaps

J A bag is similar to a set, except that it may contain duplicates.

• 5.2. FUTURE \VORK

some~Iscns (init..name init_city initjnst)

J. ~Iedeski ~ew York \Vurlitzer

B. ~Iartin ~ew York Percussion

c. \Vood ~ew York Bass

Figure 5.2: Sorne musicians

11-1

•

called .oid, that could serve as a unique abject identifier. This could he left to the

user's discretion or it could he maintained by the system. See [-19] for a discussion of

the issues that this raises.

Encapsulation

As the methods of a class are contained within the class declaration (Le. the stateful

computation), encapsulation is provided by jRelix.

Inheritance

A model of inheritance could be built on top of the implementation of the join of

two computations suggested above. Ta motivate this, consider a musician c1ass that

inherits from a persan class. The class definitions are as follows:

computation person(init_name,init_city) is

state name string;

state city string;

{ name <- init_namej

city <- init_city;

};

computation mscn(init_inst) is

state instrument string;

{ instrument (- init_inst

};

•
The mwician class is a mscn c1ass that inherits from persan by means of a natural

joïn.

musician <- mscn ijotn persan;

Sa, starting \Vith the relation shown in figure 5.2, we may instantiatemusician abjects

in the usual \Vay.

• 5.2. FUTURE ~V'ORK 115

#name

J. Medeski

B. Martin

C. Wood

#city

New York

New York

New York

#instrument

Wurlitzer

Percussion

Bass

•

•

relation MMW has 3 tuples

Figure 5.3: ~Iusician objects

MMW <- musician ijoin someMscns;

The result is shawn in figure 5.3. There are three private stateful variables.

In arder ta make the use of inheritance less esoteric, the keY'vord isa, first intro

duced in [49), may be included in jRelix. The previous example becomes

msen isa person;

MMW <- msen ijoin someMscns;

The first statement indicates that the msen is a subclass of persan. The next statement

perfarms the instantiatian.

•

•

•

Appendix A

Backus-Naur Form for jRelix

Commands

This appendL,< describes jReIix grammar/syntax in the Backus-:'iaur Form (B:'-J'F)

format. The convention of this BNF definition is explained in table A.. 1.

Farm ~Ieaning

<S'{1IBOL> SY~IBOL is a definition of token and must he substituted

"SY~IBOL" 5Y~IBOL is reserved word or symbol and must be typed as it is

SI 1 52 either SI or 52 can be used

(5Y'~[BOL)? SY~[BOL is optional

(SY~IBOL)* S'~IBOL may appear zero or more times

(SY~IBOLS) grouping SY1IBOLS as one unit for high precedence

Table A.1: BNF convention.

The grammar is created from the grammar specification (in file Parser.jjt), using

the JavaCC documentation generator called j jdoc. Because JavaCC is a top-down

parser, left-recursion is not allowed in the grammar specification. Therefore the gram

mar looks different from that of the former Relbc which is intended for the bottorn-up

parser generator Vacca

There are five token definitions: <EDF> for end-of-file; <IDE~TIFIER> for

identifier; <INTEGER-LITER.-\L> for integer constants; <FLO.-\.T-.LITER.-\L> for

116

• floating constants; and <STRI~G.lJTER.-\L> for string constants.

lIT

Start := Command Il;11 1 Statement If;/f
Il .11, 1 <EDf>

•

•

Command := "help" «IDENTIFIER»?
1 Il quit Il l "input" FilePath 1 "debugU 1 Ilbatch lf 1 Uexpertll
l "time lf 1 IIdeld" IDList l "delr ll IDList l "pr" Expression
l "sd" «IDENTIFIER»? 1 IIsr" «IDENTIFIER»? 1 " srd"
l "ssd" 1 II ssr lf

1 " print" <STRING_LlTERAL>

Statement ;= SequentialStatement

SequentialStatement := ParallelStatement (" __ If ParallelStatement)*

ParallelStatement := ChoiceStatement ("I I" ChoiceStatement)*

ChoiceStatement := PrimaryStatement (II??" PrimaryStatement)*

PrimaryStatement := Declaration 1 Assignment 1 Update
1 ComputationCall 1 Conditional 1 ForLoop 1 WhileLoop
1 Exit 1 DeadLock 1 Exec 1 StatementBlock

StatementBlock := "{" Statement (";" Statement)* (II;")? "}Il

Conditional := "if" Expression "then" Statement (llelse" Statement)?

ForLoop := (llfor" Identifier)? (llfrom" Expression)?
("to" Expression)? (lIby" Expression)?
(lido Il 1 IIloop") Statement

WhileLoop := "while" Expression (lido" 1 1I1oop") Statement

Exit := "exit ll

DeadLock := "deadlockll

Exec := lIexec" Identifier

Declaration := IIrelation" rDList "(11 IDList Il)" (Initialization)?
Identifier (Ilinitial" Expression)? "is" Expression
(Iltarget" Expression)?
"domain ll IDList Type
"let" Identifier ("initial" Expression)? "be ll Expression
("computationll l "comp") Identifier

•

•

"(" (ParameterList)? ")11 "is ll ComputationBody

Initialization := 11<_11 ("{" ConstantTupleList Il}II 1 Identifier)

ConstantTupleList := ConstantTuple (II ,.11 ConstantTuple) *

ConstantTuple := 11(" Constant (II," Constant). If)"

Constant := LiteraI 1 n{" ConstantTupieList "}II

Identifier := <IDENTIFIER>

FilePath := <STRING_LlTERAL>

Assignment := Identifier
((n<_" l "<+11) Expression

1 Il (" IDList (1'<-" l "<+11) ExpressionList "] Il Expression
)

Update := lI update" Identifier
((lIadd" 1 IIdelete") Expression

1 "change" (StatementList)? (UsingClause)?
1 Il (Il IDList (1tadd" 1 IIdelete") ExpressionList "]" Expression

)

StatementList := Statement (11,11 Statement)*

UsingClause := llusing ll

(JoinOperator Expression
1

"[" ExpressionList ":" JoinOperator (II:")?

ExpressionList Il]11 Expression
)

IDList := Identifier (II," Identifier)*

ExpressionList := Expression (U,II Expression)*

118

•
Expression := Disjunction

Disjunction := Conjunction ((l'Orll

Conjunction := Comparison «lIand"

"1") Conjunction)*

lit..) Comparison)*

•

•

119

Comparison := Concatenation (ComparativeOperator Concatenation)?

Concatenation := MinMax ('Icat" MinMax)*

r~inMax := Summation «umin" 1 "max") Summation) *

Summation := JoinExpression «"+" 1 "_II) JoinExpression)*

JoinExpression := Projection
(JoinOperator Projection

1 Il [" ExpressionList ": Il JoinOperator (": ")?
ExpressionList Il]" Projection

)*

Projection := Projector «tlin" 1 "fram") Projection 1 Selection) 1 Selection

Projector. (QuantifierOperator)? "[" (ExpressionList)? "]"

Selection := Selector 1 QSelector 1 Term

Selector := ("where" l "when") Expression ("in ll 1 flfrom") Projection
l "edit" (Projection)? l "zorderfl Projection

QSelector := "quant" QuantifierList «"where" 1 " when") Expression)?
("in" 1 "from") Projection

QuantifierOperator .= Il Il 1 Il'/11• • 1. "#"

QuantifierList := Quantifier ("," Quantifier)*

Quantifier := 11(" Expression Il)" Expression

Term := Factor « If*If "/" 1 " mod") Factor).

Factor := (u." "_II "not" Il!II) Factor 1 Power

•
Power := Primary ("**" Power).

Primary := Litera! 1 QuantifierOperator 1 ArrayElement
1 PositionalRename 1 Identifier 1 Cast 1 "(U Expression fI)1I

1 Pick 1 Eva! 1 Function 1 IfThenElseExpression 1 VerticalExpression

ArrayElement := Identifier "[11 ArrayIndexList Il]"

•

•

•

ArrayIndexList := (Expression)? ("," (Expression)?)*

PositionalRename := Identifier "(11 (IDList)? ")11

Cast := 11(" Type Il)11 Primary

Pick := II piek ll Selection

Eval := lIeval ll Expression

Function := FunetionOperator II(U Expression Il)''

Litera! := IInull" l "de" 1 IIdk" l "true ll 1 IIfalse ll

1 (11+11 1 II_II)? «INTEGER_LITERAL> 1 <FLDAT_LlTERAL»
1 <STRING_LITERAL>

IfThenElseExpression := "if" Expression "then" Expression
"else" Expression

VerticalExpression := " red" AssoCammuOperator "ofll Expression
1 " equiv ll AssoCommuOperator "of" Expression

"by" ExpressianList
"fun" OrderedOperator lI af" Expression
"arder ll ExpressionList
II parH OrderedOperator lI of" Expression
("order" ExpressionList "by" ExpressionList

1 "byU ExpressionList "arder" ExpressionList

Type := ("boolean" l "bool") 1 " short"
1 Cllinteger" 1 lIintg") l "long"
1 ("float" 1 IIreal") 1 "double"
1 (ll string" 1 " strg") l "text"
1 (" statement Il l "stmt")
1 (llexpression" l "expr ll

)

1 (II computation" 1 IIcomp") "(" IDList ")11
1 "CII IDList ")"

AssoCommuOperator ;= ("or ll 1 111")
1 (" andIl 1 IIt U) 1 IlminIl l "maxIl 1 "+11 1 Il."

1 (Ilijoin" 1 "natjoin") 1 "ujoinll l "sjoin"

OrderedOperator := AssoCommuOperator
1 Ilcat" 1 "_" 1 "/" 1 "mad" 1 11**" 1 IIpredli 1 "SUCC"

120

•
ComparativeOperator := II substr"

JoinOperator := "nop" 1 MuJoin
1 «lInot" 1 "!"»? SigmaJoin

"="

121

"!=" 1 Il>" 1 "<11 1 Il>=" 1 "<:"

•

MuJoin := ("ijoin ll
1 " natjoin")

l "ujoin" 1 II s join" 1 "ljoin lf l "rjoin"
1 (lIdljoin" 1 "djoin") 1 "drjoin"

SigmaJoin := (Ilicomp" 1 IInatcomp") l "eqjoin ll

1 (lIgejoin" 1 "SUp" l "div") 1 "1tjoin"
1 (Illejoin" 1 "sub") 1 ("iejoin" l "sep")

FunctionOperator := "aba"
l "sqrt" l "sin" l "asin" l "cos" l "acos" l "tan"
1 " atan" l "sinh" l "cash" l "tanh" l "log" 1 "1og10"
1 Ilround" 1 "ceil" l "floor" l "isknown" l "chr" 1 " ord"

ParameterList := Parameter (" t" Parameter) •

Parameter := <IDENTIFIER> (":" "seq")?

ComputationBody := ComputationDeclaration
ComputationBlock (liaIt" ComputationBlock).

ComputationBlock := "{,, ComputationStatements "}"

ComputationDeclaratioD := (LocalV·ariableDeclaration
1 StateVariableDeclaration

)*

LocalVariableDeclaration .- "local ll IDList Type Il • Il,

StateVariableDeclaration. "state" IDList Type Il • Il
t

•
ComputationStatements := Statement ("; Il Statement 1

lIaIso" Statement)* (";")?

ComputationCall := Identifier 11(" (CallParameterList)? ")11

CallParameterList := CallParameter (Il .. " CallParameter).

CallParameter := ("in" 1 lIout") <IDENTIFIER>

•

•

•

Bibliography

[1) Hal Abelson, Norman Adams, David Bardey, Gary Brooks, \Villiam Clinger, Dan

Friedman, Robert Halstead, Chris Hanson, Chris Haynes, Eugene Kohlbecker,

Don Oxlev. Kent Pitman, Jonathan Rees, Bill Rozas, Gerald Jay Sussman, and

~Iitchell \Vand. The revised revised report on scheme or the uncommon lisp.

Technical ~Iemo .-\INI-848, ~[assachusetts Institute of Technology, Artificial In
telligence Laboratory, August 1985.

[2] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter·

pretation of Computer Programs. ~IIT Press, Cambridge. ~Iassachusetts, 1985.

[3] Serge Abiteboul, Georg Lausen, Heinz Uphoif, and Emmanuel \Valler. ~Iethods

and rules. SIGMOD Record (ACM Special Interest Group on lvlanagement of

Data), 22(2):32-41, June 1993.

[41 E. AHman, G. Held, and ~L Stonebraker. Embedding a data manipulation lan

guage in a general purpose programming language. In Proceedings of the Con

ference on Data Abstraction, Definition, and Structure, pages 25-35. Salt Lake

City, UT, ~Iarch 1976. AC~I-SIGPL.-\N-SIG~[OD. AC~L

[5] ~Iorton NI. Astrahan, ~Iike \V. Blasgen, Donald D. Charnberlin, K. P. Eswaran.

Jim Gray, Patricia P. Griffiths, \V. Frank King, Raymond A. Lorie, Paul R.)'Ic

Jones, James W. 1vlehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford \V.

\Vade, and Vera \Vatson. System R: Relational approach to database manage

ment. ACM Transactions on Database Systems, 1(2):97-137, June 1976.

[6} NI. P. A.tkinson, P. J. Bailey, K. J. Chisholm, \V. P. Cockshott, and R. ~Iorrison.

PS-aIgol: .-\ language for persistent programming. In 10th Australian National

Computer Conference, pages 70-79,)"Ielbourne, Australia, 1983. This document

is available at http://www-ppg.dcs.st-and.ac.uk/Publications/.

122

[i] NI. P. Atkinson, \V. P. Cockshott, P. Bailey, K. J. Chisholm, and R. ~lorrison. PS

algol reference manual. Technical Report PPR...4-83, Departments of Computer

Science, Universities of Edinburgh and St. Andrews, January 1984.

• BIBLIOGRA.PHY 123

•

•

[81 :\1. P. Atkinson, L. Daynes, ~1. J. Jordan, T. Printezis, and S. Spence. .-\n

orthogonally persistent Java. ACi\l1 SIG~[OD Record, 25(4):68-75, December

1996.

[9] NI. P. Atkinson and R. Nlorrison. Persistent first class procedures are enough.

In ~I. Joseph, R Shyamasundar, and J Hartmanis, editors, Lecture Notes in

Computer Science 181, pages 223-240. Springer-Verlag, 1984.

[101 wlalcolm P. Atkinson, François Bancilhon, David J. De\Vitt, Klaus R. Dittrich,

David ~Iaier, and Stanley B. Zdonik. The object-oriented database system mani

festo. In Hector Garcia-NIolina and H. V. Jagadish, editors, Proceedings of the

1990 ACkl S/GMOD International Conference on Management of Data, page

395, Atlantic City, NJ, 23-25 Nlay 1990.

[lI])JIalcolm P. Atkinson and O. Peter Buneman. Types and persistence in database

programming languages. ACM Computing Surveys, 19(2):105-190. June 1987.

[12] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Data
base System. ~Iorgan Kaufman, August 1991.

[13] François Bancilhon. .-\ classification of object oriented database systems. In

Database Programming languages: bulk types and persistent data, pages 3-6.

San NIateo, CA, August 1991. Proeeedings of the Third International \Vorkshop,

~lorgan-Kaufmann Publishers Ine.

[14] J. Bocca. EDUCE: A marriage of convenience: Prolog and a relational DB~IS. [n

Proceedings of the International Symposium on Logic Programming, pages 36-"5.

IEEE Computer Society" The Computer Society Press, September 1986.

[15] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating

object-oriented data modeling with a rule-based programming paradigm. S/G

MOD Record (ACM Special Interest Group on Management of Data), 19(2):225

236, June 1990.

[16] S. Ceri, G. Gottlob, and G. \Viederhold. Efficient database access from Prolog.

tose, 15(2):153-164, February 1989.

[1il Stefano Ceri, Georg Gottlob, and Letizia Tanca. \Vhat you always \vanted to

know about Datalog (and never dared to ask). IEEE Transactions on Knowledge

and Data Engineering, 1(1):146-166, ~Iarch 1989.

• BIBLIOGRAPHY 124

•

•

[18] C. L. Chang and A. \Valker. PROSQL: A Prolog programming interface \Vith

SQL/DS. In L. Kerschberg, editor, Expert Database Sys., page 233. Ben

jaminjCummings, Nlenlo Park, CA, 1986.

[19] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo.

The LDt system prototype. In IEEE Transactions on Knowledge and Data

Engineering, volume 2, ~Iarch 1990.

[20] Hong-Tai Chou, David J. De\Vitt, Randy H. Katz, and Anthony C. Klug. Design

and implementation of the \Visconsin Storage System. Software- Practice and

Experience, 15(10):943-962, October 1985.

[21] E. F. Codd. A relational model of data for large shared data banks. Communic

ations of the ACM, 13(6):377-387, June 1970.

[22] .-\. J. Cole and R. ~Iorrison. .4n Introduction to Programming with S-algol. Cam

bridge University Press, Cambridge, England, 1982.

[23] Gary Cornell and Cay S. Horstmann. Core Java. SunSoft Press, second edition,

1997.

[24] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of up

date operations on relational views. ACM Transactions on Database Systems,

7(3):381-416, September 1982.

[25J .~. Dearle, R. C. H. Connor, A.. L. Brown, and R. ~Iorrison. Napier88 - A. database

programming language? In R. Hull, R ~[orrison, and 0 Stemple, editors, 2nd

International Workshop on Database Programming Languages, pages 179-195,

Salishan Lodge, Oregon, 1989. :\-Iorgan Kaufmann. This document is available

at http://www-ppg.dcs.st-and.ac.uk/Publications/.

[26] A.Z. EI-Kays. Implementingevent handlers in a database programming language.

~Iaster's thesis, NlcGill University, ~Iontreal, Canada, 1996.

[27] O. Deux et aL The O2 system. Communications of the AC!YI, 34(10):34--19.

October 1991.

[28] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors. J. \V. Davis,

N. Derrett, C. G. Hoch, \V. Kent, P. Lyngbaek, B. ~Iahbod, ~I. .-\.. Neimat, T. .-\..

Ryan, and ~I. C. Shan. Iris: An object-oriented database management system.

ACM Transactions on Office Information Systems, 5(1):48-69, 1987.

• BIBLIOGRA.PHY~ 1·)
-~

•

•

[29] D. H. Fishman et al. Overview of the Iris DBNIS. Technical report, HP Labs, DB

Techno. Department of, June 1988. Also published in/as: In 'Object-Oriented

Concepts, Languages, and Applications', Edited by \V.Kim. F.H.Lochovsky.

pages 219-150, .~W, 1989.

[30] Biao Hao. Implementation of the nested relational algebra in Java. ~faster's

thesis, ~IcGill University, ~Iontreal, Canada, 1998.

[31) Hongbo He. Implementation of nested relations in a database programming lan

guage. ~Iaster's thesis, NIcGill University, ~Iontreal, Canada, 1997.

[32) Y. E. Ioannidis and ~I. Nt Tsangaris. The design, implementation, and perform

ance evaluation of BER~IUDA. IEEE Transactions on Knowledge and Data
Eng., 6(1):38, February 1994.

[331 Kathleen Jensen and Niklaus \Virth. PASCAL User 1'Ilanual and Report (third
edition). Springer-Verlag, New York, N.Y., 1985. Revised ta the ISO Standard

by Andrew B. ~Iickel and James F. ~Iiner.

[34J S.C. Johnson. Yacc: Yet another compiler compiler. Technical Report 32, AT&T

Bell Laboratories, ~Iurray Hill, N.J., 1975.

[35} W. Kim. Features of the ORION object-oriented programming database system.

In Object oriented Concepts, Applications, and Database, pages 251-282. Addison

Wesley, Nlarch 1989.

[36] Won Kim. Introduction to Object-Oriented Databases. ~IIT Press, Cambridge,

1990.

[37] Won Kim, Jorge F. Garza, Nat Ballou, and Darrell \Voelk. Architecture of the

ORION next-generation database system. In IEEE Transactions on Knowledge

and Data Engineering, volume 2, pages 109-124. 1990.

[38} Normand Laliberté. Design and implementation of a primary memory version

of i\LDAT including recursive relations. Nlaster7s thesis, ~IcGill University,

~Iontreal, Canada, 1986.

[39] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan \Veinreb. The Object

Store database system. Communications of the ACM, 34(10):50-63, October

1991.

• BIBLIOGR...%.PHY 126

•

•

[40] ~LE. Lesk. Lex: a lexical generator. Technical Report 39, AT&T Bell Laborat

ories, NIurray Hill, N.J., 1975.

[41] J. \V. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1984.

[42] G.)..1. Lohman, B. Lindsay, H. Pirahesh, and K. B. Schiefer. Extensions to

starburst: Objects, types, functions, and rules. Communications of the ACl1;[,
Special Section on Next-Generation Database Systems, 34(10):94, October 1991.

[43] Rebecca Lui. Implementation of procedures in a database programming language.

~Iaster's thesis, NIcGill University, Nlontreal, Canada, 1996.

[44] F. NIatthes, :\. Rudloff, J. \V. Schmidt, and K. Subieta. The database program

ming language DBPL - user and system manuaI. FIDE Technical Report Series

FIDE/92/47, FIDE Project Coordinator, Department of Computing Sciences,

University of Glasgow, Glasgow GI28QQ, July 1992. This document is available

at http://www.sts.tu-harburg.de/papers/1992/NIRSS92.

[45] F. Nlatthes and J. W. Schmidt. The type system of DBPL. In Proc. of the

2nd Workshop on Database Programming Languages, Salishan Lodge, Oregon,

pages 255-260, June 1989. This document is available at http://www.sts.tu

harburg.def papers/1989f~IaSc89.

[46] F. ~ratthes and J. W. Schmidt. Bulk types: Built-in or add-on? In ~I. P. Atkin

son, editor, Fully Integrated Data Environments. Springer-Verlag, 1995. This

document is available at http://www.sts.tu-harburg.de/papers/1995/NlaSc95b.

[47] T.H. ~Ierrett. Relational Infonnation Systems. Reston Publishing Company,

Reston, Virginia, 1984.

[48] T.H. Nlerrett. Computations: Constraint programming with the relational al

gebra. International Symposium on Nert Generation Database Systems and their

Applications, September 1993.

[49] Ellen Nlnushkin. Inheritance in a relational object-oriented system. ~raster's

thesis, ~IcGill University, ~Iontreal, Canada, 1992.

•

•

•

BIBLIOGRA.PHY

[50] Katherine NIorris, Jeffrey D. Ullman, and Allen Van Gelder. Design overview of

the NAIL! system. In Ehud Shapiro, editor, Proceedings of the Third Interna

tional Conference on Logic Programming, Lecture Notes in Computer Science,

pages 554-568, London, 1986. Springer-Verlag.

[51] R. Nlorrison. S-algol language reference manuai. Technical Report CS/79/!.

University of St Andrews, 1979.

[52] R. ~Iorrison. PS-algol reference manuaI. Technical Report 12, University of St.

A.ndrews, St. Andrews, Scotland, February 1988.

(5~] R. NIorrison, .-\. L. Brown, R. C. H. Connor, Q. I. Cutts, A. Deade, G. N. C.

Kirby, and D. S. NIunro. Napier88 Reference k[anual (Release 2.2.1). University

of St Andrews, 1996. This document is available at http://\Vww-ppg.dcs.st

and.ac.uk/Publications/.

[54] R. NIorrison, R. C. H. Connor, G. N. C. Kirby, and D. S. ~Iunro. Can Java

persist? In lst International Workshop on Persistence for Java, Glasgow, 1996.

This document is available at http://www-ppg.dcs.st-and.ac.ukjPublications/ .

[55] .-\llen Otis, Paul Butterworth, and Jacob Stein. The GemStone object database

managementsystems. Communications afthe ACl\f, 34(10):64-77, October 1991.

[56] Lawrence A. Rowe and Kurt A. Shoens. Data abstractions, views and updates

in RIGEL. In Proceedings of the ACM-S/GMOD Conference on Alanagement of

Data, Boston, Mass., pages 71-81, Nlay 1979.

[57] Srïram Sankar, Rob Duncan, and Sreenivasa Viswanadha. Java compiler

compiler (javacc)-the java parser generator, 1996. JavaCC web site at:

http://www.suntest.com/JavaCC/. The web site contains documentation, F.-\Qs,

newsgroups, and software for JavaCC and JJTree.

[58] J. W. Schmidt and F. ~Iatthes. D8PL language and system manual. Es
prit Project 892 MAP 2.3, Fachbereich Informatik, Universitat Hamburg,

Germany, April 1990. This document is available at http://www.sts.tu

harburg.de/papers/1990/Scwla90b.

[59] Joachim W. Schmidt. Sorne high level language constructs for data of type

relation. ACM Transactions on Database Systems, 2(3):247-261, September 1977.

[60] V. Soloviev. A.n overview of three commercial object-oriented database manage

ment systems: ONTOS, ObjectStore, and O2 • SIGkfOD Record (ACM Special

Interest Group on Management of Data), 21(1):93-105, NIarch 1992.

• BIBLIOGR.4PHY 128

•

•

[61] Guy L. Steele, Jr. Common LISP: The Langugage. Digital Press, Pennsauken.

New Jersey, 1984.

[62] NI. Stonebraker, L. Rowe, and NI. Hirohama. The implementation ofPOSTGRES.

IEEE Transact·ions on Knowledge and Data Engineering, 2(1):125-142! :\Iarch

1990.

[63] NI. Stonebraker and L. A. Rowe. The design of POSTGRES. In C. Zaniolo,

editor, sigmod, pages 340-355, \Vashington, DC, NIay 1986. acm.

[64] NI. R. Stonebraker, E. \Vong, P. Kreps, and G. D. Held. The design and impie

mentation of INGRES. ACM Transactions on Database Systems, 1(3):189-222,

September 1976.

[65] !vIichael Stonebraker and Greg Kemnitz. The POSTGRES next..generation data..

base management system. Communications of the ACM, 34(10):78-92, October

1991.

[66] Nattavut Sutyanyong. Implementation of domain algebra in jRelix. ~Iaster!s

thesis, NlcGill University,)"Iontreal, Canada, 1998.

[67] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Bystems,
volume 1. Computer Science Press, Rockville, ~[aryland, 1989.

[68] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Bystems,
volume 2. Computer Science Press, Rockville,)..[aryland, 1989.

[69] Niklaus Wirth. Programming in Modula-2 (3rd c07Tected edition). Springer·

Verlag, New York, N.Y., 1985.

[70] Zhongxia Yuan. Implementation of the domain algebra in Java. Master's thesis,

McGill University, Montreal, Canada, 1998.

