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Operational solar forecasting for the real-time market1

Abstract2

Despite the significant progress made in solar forecasting over the last decade, most of the proposed models cannot be
readily used by independent system operators (ISOs). This article proposes an operational solar forecasting algorithm
that is closely aligned with the real-time market (RTM) forecasting requirements of the California ISO (CAISO).
The algorithm first uses the North American Mesoscale (NAM) forecast system to generate hourly forecasts for a
5-h period that are issued 12 h before the actual operating hour, satisfying the lead-time requirement. Subsequently,
the world’s fastest similarity search algorithm is adopted to downscale the hourly forecasts generated by NAM to a
15-min resolution, satisfying the forecast-resolution requirement. The 5-h-ahead forecasts are repeated every hour,
following the actual rolling update rate of CAISO. Both deterministic and probabilistic forecasts generated using the
proposed algorithm are empirically evaluated over a period of 2 years at 7 locations in 5 climate zones.

Keywords: Solar forecasting, Ensemble, Numerical weather prediction, Operational forecasting, Real-time market3

1. Introduction4

Integrating variable solar energy into the power grid requires forecasting of solar irradiance or power output of a5

photovoltaic (PV) or concentrating solar power (CSP) plant. While many innovative algorithms have been published6

in the solar forecasting literature, issues related to the implementation in an actual power system operational envi-7

ronment are generally not discussed. This trend has also been observed in load forecasting (Hong and Fan, 2016).8

Implementational issues are important to promoting energy forecasting to practitioners and to satisfy the ultimate9

goal of doing forecasting research which is to create knowledge for industrial applications (Hong and Fan, 2016).10

Examples of implementational issues include:11

1. What is needed to build a database that is suitable for storing and retrieving data used in operational solar12

forecasting?13

2. Is the algorithm fast enough for real-time wide-area operation. For example this could be a concern for compu-14

tationally demanding data-driven methods are used?15

3. How does the lead time—time between forecast submission and the start of an operating hour—affect the solar16

forecast error?17

4. How to manipulate data to comply with forecasting resolution requirements? For example, how to convert18

hourly satellite-based forecasts to 15-min or 5-min forecasts that are required by the system operators in a way19

that maintains the mean and the variance of the raw forecast?20

With the growing maturity of solar forecasting methods in recent years, some of the above-mentioned issues21

have started to draw attention from solar forecasters. For instance, Pedro et al. (2018) noticed the need to advance22

solar forecasting to a production stage and discussed the implementation of a solar forecasting MySQL database.23

Cervone et al. (2017) investigated the scalability of several data-driven methods, and confirmed the necessity of using24

supercomputers and parallel computing for operational applications. However, the time (referring here to lead time,25

horizon, and resolution) requirements in operational solar forecasting have been discussed less. This article discusses26

time requirements and illustrates their application through an operational solar forecasting method for the real-time27

market (RTM). More specifically, a state-of-the-art pattern-matching algorithm (PMA) is combined with hourly post-28

processed numerical weather prediction (NWP) forecasts, to produce deterministic and probabilistic forecasts at a29

higher time resolution that can directly be used by an independent system operator (ISO).30
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Nomenclature

Abbreviations

AnEn Analog Ensemble

ANN Artificial Neural Network

ARIMA AutoRegressive Integrated Moving Average

CAISO CAlifornia Independent System Operator

CSI Clear-Sky Index

ETS ExponenTial Smoothing

FFT Fast Fourier Transform

GHI Global Horizontal Irradiance

kNN k-Nearest Neighbor

MASS Mueen’s Algorithm for Similarity Search

MOS Model Output Statistics

NAM North American Mesoscale

NWP Numerical Weather Prediction

PeEn Persistence Ensemble

QR Quantile Regression

RTED Real-Time Economic Dispatch

RTM Real-Time Market

RTUC Real-Time Unit Commitment

STL Seasonal and Trend decomposition using
Loess

STUC Short-Term Unit Commitment

SURFRAD SURFace RADiation budget network

TBATS Trigonometric, Box–cox transform, Arma
errors, Trend, and Seasonal

Terminologies for the similarity-search algorithm

Σ cector of moving sum-of-squares

history length-n history time series, i.e., n hours of
historical ground measurements

l l = n − m + 1

m length of query

n length of history

query length-m query time series, i.e., m hours of
NWP forecasts

Datasets and methods
Ens ensemble NAM forecasts (1-h resolution)

Nam raw NAM forecasts (1-h resolution)

Oracle oracle NAM forecasts (1-h resolution)

Pers smart persistence (15-min resolution)

Sarima seasonal ARIMA forecasts (15-min resolu-
tion)

Surfrad15 15-min aggregated ground-based mea-
surements

Surfrad60 60-min aggregated ground-based mea-
surements

1.1. Time-related issues in operational forecasting31

For different grid operations in the day-ahead market and RTM, the forecasting requirements are also different32

in terms of forecast horizon. In the literature, there is a strong consensus on the choice of forecasting method for33

a given horizon (Inman et al., 2013). For day-ahead forecasting, NWP is almost always used, whereas satellite-34

based and statistical-learning methods are well-suited for a few hours ahead forecasting. Lastly, sky-camera-based35

forecasting has demonstrated its capability for a horizon shorter than 15 min. The reader is referred to a recent review36

for an overview of solar forecasting (Yang et al., 2018). The 6–8 h-ahead forecasting required by the RTM lies at the37

transition between satellite and NWP: while satellite data is often used for intra-day forecasting (e.g., Aguiar et al.,38

2016; Nonnenmacher and Coimbra, 2014), 6-h-ahead forecasts errors are typically double the error of 1-h-ahead39

forecasts, and the forecast horizon usually does not extend beyond 6 h (Perez et al., 2010). Therefore NWP is more40

suited to cover the full horizons required by the RTM.41

Most NWP (and satellite) models only produce forecasts with an hourly resolution,1 which is not granular enough42

for RTM applications. These mismatches in forecast resolution are rarely discussed in the literature. In statistical43

1Most NWP models are capable of producing forecasts with higher temporal resolutions as the native time step is on the order of minutes, but
due to data storage concerns the output is typically only hourly.
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and machine-learning forecasting, the data resolution needs to match the forecast resolution. For example, when44

the phrase “hourly forecasting” is mentioned, most forecasting models would end up generating one forecast value45

per hour (1-step-ahead forecasting using 1-h aggregated data) (e.g., Bae et al., 2017; Shakya et al., 2017). On the46

contrary, what the grid operators need is in fact a series of high-resolution forecasts with smaller intervals, e.g., 5-min47

(Makarov et al., 2011). Therefore, for NWP applications to the RTM, raw 1-step-ahead forecasts with a 1-h resolution48

need to be downscaled to smaller intervals. Downscaling introduces additional forecast errors, hence, it is important49

to understand the propagation of errors in an actual operational scenario. Additional complications due to forecast50

resolution requirements are discussed in Appendix A.51

The third time-related issue is forecast lead time.2 In power systems research, the term “lead time” commonly52

refers to the time needed by the system operators to perform generator scheduling, unit commitment, and economic53

dispatch (Chen et al., 2017); in this article, for clarity, the forecast lead time is differentiated from forecast horizon. For54

example, the California Independent System Operator (CAISO) requires the day-ahead load forecasts to be submitted55

before 10:00 on the day prior to the operating day (Makarov et al., 2011), which corresponds to a lead time of 14 h.56

In a recent study, Yang and Dong (2018) showed that adding the lead time to the forecast horizon results in higher57

forecast errors, simply because it is harder to predict further into the future. Therefore, it is necessary to consider lead58

time when interpreting forecast error metrics, so that the operators has more realistic expectation for the uncertainty59

of the submitted forecasts. This distinction is rarely discussed in the solar forecast literature.60

The last complication involved in operational forecasting is the forecasting rolling update rate. Although the61

forecasting requirement may state “5-h-ahead,” this does not mean that the forecasts are produced every 5 h. Instead,62

the forecasts are usually produced in an hourly rolling manner (Kaur et al., 2016). For example, suppose forecasts for63

9:00–14:00 were submitted at 7:45, the next submission will be at 8:45, for the period of 10:00–15:00 and the fore-64

casts from 10:00–14:00 therefore are produced twice at different issue times and similarly six different forecasts are65

produced for every hour. Owing to this rolling nature of operational forecasting, the evaluation procedure is somewhat66

complicated, since there are multiple forecasts issued at different times apply to each timestamp. Although including a67

rolling update rate simply means a change in the forecast horizon, such a forecast setup is rarely demonstrated, which68

may lead to some ambiguity. For example, suppose the 5-h-ahead forecasting is run for 10 hours. If the rolling update69

rate is 5 h, there are 2 forecasts made for each forecast horizon. On the other hand, if the rolling update rate is 1 h,70

there are 10 forecasts made for each forecast horizon. This will directly affect the forecast evaluation and the reported71

metrics. These different forecasts made for the same timestamp need to be validated separately.72

1.2. An overview of the proposed algorithm73

Based on the above discussions, it can be concluded that there is a gap in the discussion and exemplification74

of operational solar forecasting models in the academic literature. In this paper, we present an operational forecast75

example and discuss the related implementation issues. An operational RTM forecast algorithm needs to have the76

following characteristics:77

1. Sufficient stability for forecasting algorithm within the 5-h forecast horizon is desirable. Stability refers to78

homogeneity of the forecast error variance, i.e., constant or near constant root-mean-square errors across the79

different forecast horizons. Better stability implies higher confidence at far-away horizons, and thus reduces the80

bullwhip effect3 in unit commitment.81

2. The forecasting algorithm should be able to generate forecasts with granular resolutions. More specifically,82

some forecast downscaling methods are useful, when the raw forecasts are in an hourly resolution.83

3. A distinction between the lead time and forecast horizon should be made, and no information after the forecast84

submission time should be used. In other words, all forecasts covering the lead time and forecast horizon need85

2Lead time can be considered as part of the total forecast horizon. In other words, a lead time t simply means that the forecasts generated up to
t are irrelevant.

3This is a phenomenon seen in supply-chain management; it refers to increasing swings in the inventory in response to shifts in customer
demand. Supply-chain entities further up, such as the manufacturer, are more affected. In the present case, if each nodal-level forecast is over-
dispersed, such conservative planning strategy may cascade to a very large required reserve at the power system level, which will be difficult for
the ISO to meet.
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to be prepared strictly before the submission time.486

4. Given the difference between the forecast horizon h and rolling update rate r, dh/re forecasts would be made for87

each timestamp, at different forecast submission times. Furthermore, the evaluation should be done dh/re-times,88

based on these different forecasts made for the same timestamps.89

To that end, an NWP-based data-driven algorithm, based on pattern matching, is thus proposed in this article to close90

the gap.91

First of all, NWP is chosen due to its ability to model and assimilate the atmospheric physics in continuous time.92

Physically-based methods have the distinct advantage over satellite-based or statistical-learning methods in capturing93

the complex evolution of weather throughout a day up to several days ahead. More specifically, the North American94

Mesoscale (NAM) forecast system, a major weather model run by the National Centers for Environmental Prediction95

(NCEP), is used. However, NAM only produces forecasts with a 1-h resolution, which is not sufficient for RTM. To96

comply with the forecast-resolution requirement, these 1-h forecasts are downscaled to a shorter timescale (15 min97

in this case). This downscaling is achieved using a similarity-search algorithm (Mueen et al., 2017), by matching a98

length-m forecast time series at 1 h resolution to all length-m sub-series from a historical ground-based irradiance99

measurement time series (aggregated to 1 h resolution). Since the best-matched hourly sub-series has a corresponding100

15 min series, this high-resolution time series is used as the final forecasts. This circumvents the need to synthetically101

generate the high-frequency forecasts. Fig. 1 illustrates this procedure. In addition, if multiple good matches can be102

found, this group of high-resolution time series can be used to construct an ensemble, and thus generate probabilistic103

forecasts, which is another desirable forecast property (van der Meer et al., 2018).104

This proposed algorithm has several variations, since the hourly forecasts used for pattern matching can vary, e.g.,105

using the raw NAM forecasts, or using the post-processed NAM forecasts. Hence, to differentiate these variations, the106

pattern-matching-based algorithm itself is denoted using Pma hereafter, whereas the data input to pattern matching is107

denoted with an additional version name, e.g., Pma+Nam, if the raw NAM forecasts are used.108

(c) historical 15−min time series

(b) historical 60−min time series

(a) hourly NWP forecast time series
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Figure 1: An illustration of the proposed forecasting concept. The short length-m query time series (i.e., NWP forecasts with a 1-h resolution)
sweeps through the long length-n (n � m) history time series (historical ground measurements aggregated to 1-h resolution), and is compared to
each sub-series. After the best match (shown in turquoise) is found, the corresponding high-frequency history sub-series (ground measurements
aggregated to 15-min resolution, with a length of 4m, shown in Indian red), is used as the downscaled forecasts. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

1.3. A brief review on NAM-based forecasting methods109

The NAM model operates over the continental United States. The core of the model is based on the non-hydrostatic110

version of the Weather Research and Forecasting (WRF). The horizontal resolution for NAM is 12 km, and the vertical111

4There is some major confusion on this issue in the literature, especially when Kalman filtering, an algorithm that adjust the forecasts sequen-
tially, is involved. For example, in Diagne et al. (2014), although the paper appears to describe a day-ahead forecasting scenario, when hourly
Kalman filtering was used, the forecasting is in fact “hour-ahead”.
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coordinate includes 60 hybrid sigma-level terrain-following grids. The NAM forecast is run four times a day at 0:00,112

6:00, 12:00, and 18:00 UTC. The output is available hourly out to 36 h then 3-hourly from 36 to 84 h. GHI is113

computed using the geophysical fluid dynamics laboratory short wave (GFDL-SW) (Wang, 1976) radiation transfer114

model (RTM). Changes in GHI are based on the weather conditions in each atmospheric column because GFDL-SW is115

an one-dimensional model. While the spatial and temporal resolution are not as high as some of the other operational116

weather models—e.g., 3 km horizontal resolution for the High-Resolution Rapid Refresh (HRRR), or hourly-update117

in the Rapid Refresh (RAP)—the NAM has a consistency advantage than the HRRR and the RAP forecast because118

the latter constantly undergo major updates. This means that the errors in the NAM are more consistent over the years119

and could be corrected for in a simpler way.120

The NAM has been used extensively in solar forecasting, whether as the initial and boundary condition for a higher121

resolution mesoscale model (Mathiesen et al., 2013), as a member of a blended ensemble forecast (Perez et al., 2014),122

or as an input to utilize machine learning techniques for improved accuracy (Lu et al., 2015). It is shown that with123

some post-processing, solar forecast utilizing NAM can achieve higher accuracy. To this end, techniques to improve124

NAM forecast accuracy will be described in more details in Section 3.125

1.4. A brief review on pattern-matching-based forecasting methods126

The pattern-matching-based method is not a new concept in weather forecasting. It can be traced to at least 1969,127

when Lorenz coined the term analogs, for two or more states of the atmosphere that resemble each other (Lorenz,128

1969). In the recent years, the method is regaining popularity in solar forecasting, largely due to the increasing amount129

of ground-based measurements and satellite-derived irradiance data. Since many solar forecasting papers of this kind130

adopt very primitive5 ways of pattern matching (e.g., Akarslan and Hocaoglu, 2017; Wang et al., 2017), only several131

representative and innovative works are reviewed here.132

In Alessandrini et al. (2015), one of the earliest pattern-matching-based solar forecasting papers, analog ensemble
(AnEn) is used to forecast the PV output of three plants in Italy, for a forecast horizon of 0–72 h. The particular
matching strategy used in the paper is performed over five NWP output parameters, namely, GHI, total cloud cover,
air temperature, solar azimuth and elevation angles. More specifically, the similarity between the current forecast, Ft,
and an analog, At, is given by:

‖Ft, At‖ =

5∑
i=1

w(i)

√√√ 3∑
j=1

(
F(i)

t+ j−2 − A(i)
t+ j−2

)2
, (1)

where i is indexing the 5 weather variables, j is indexing the time around t, and w(i) are the weights of the weather
variables, which need to be trained from data. To construct the AnEn, 20 analogs are used. AnEn is compared
to quantile regression (QR) and persistence ensemble (PeEn). It was found that AnEn is similar to QR, and both
methods outperforms PeEn. It is worth noting that PeEn is a commonly used benchmarking model for probabilistic
solar forecasting. Although there are several variants to it, the particular form that was used in Alessandrini et al.
(2015) is given by:

PeEn = {GHIt−24×i : i = 1, . . . , 20}. (2)

In other words, PeEn is made of the most recent available 20 measured GHI values at the same hour.133

Using Alessandrini et al. (2015) as a foundation, the same group of researchers later extended their work in134

two directions: (1) combining artificial neural network (ANN) with AnEn; and (2) analyzing and evaluating the135

computational efficiency of the methodology (Cervone et al., 2017). In their new paper, ANN-based regression models136

are used to generate deterministic forecasts based on the NWP output. Subsequently, the 5-parameter AnEn model137

is modified to a 6-parameter AnEn model, with the ANN forecast as the 6th parameter; in other words, the ANN138

post-processed NWP output is included in the ensemble. Including the post-processed NWP forecasts into the AnEn,139

the AnEn performance improves. Aside from the ANN–AnEn hybrid modeling, a computation speed analysis is also140

5The word “primitive” refers to several things: (1) the matching is based on brute-force search algorithms, (2) only a single match is considered,
i.e., point forecasting, (3) the query length is arbitrarily chosen without proper motivation and analysis.
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conducted (Cervone et al., 2017). It was found that Eq. (1) contributes 84% of the computational time, whereas the141

analog sorting and selection only contributes 16%.142

Whereas Alessandrini et al. (2015); Cervone et al. (2017) used NWP output data and the matching was perform143

in time only, Ayet and Tandeo (2018) demonstrated a similar method on satellite-derived data with spatio-temporal144

matching. For a given location and time, the analogs are selected using a k-nearest neighbor (kNN) algorithm. The145

kNN is performed in a 4-dimensional feature space6 compressed from satellite-derived cloud-index images.146

1.5. Contributions of this work147

The first and foremost contribution is that this work takes all time parameters involved in RTM operational fore-148

casting into consideration. Such fundamental requirements are typically overlooked, or deemed unimportant, during149

solar forecasting research. Even though there are thousands of forecasting papers in the literature, it is believed that150

this work is the first one that shows a correct and completely realistic demonstration of intra-day operational solar151

forecasting. Section 2 elaborates the various time-related considerations in detail. Since these considerations add ma-152

jor difficulties in terms of implementation and design of forecasting experiments, partial data and code7 are provided153

as supplementary materials to clarify potential confusions and ambiguities.154

The second contribution of this work is a state-of-the-art NWP—time-series ensemble; this is used to improve155

the day-ahead NAM forecast accuracy. In the literature, NWP forecasts are often adjusted through post-processing156

techniques such as model output statistics (MOS), Kalman filtering, or machine-learning-based correction. Accord-157

ing to Ren et al. (2015), post-processing can be considered as a cooperative ensemble approach. Alternative to the158

cooperative ensemble, competitive ensemble (e.g., perturbing the NWP initial conditions, or forecast combination) is159

also frequently used to boost the forecast accuracy. In this regard, this article uses both cooperative and competitive160

ensembles. More specifically, MOS is used to post-process the raw NWP output, whereas seasonal time series models161

are used as alternatives and thus compete with NWP forecasts through forecast combination. This contribution is162

described in Section 3 of the article.163

Thirdly, the scalability—in terms of computational speed—of the proposed solar forecasting problem is enhanced164

through adopting a state-of-the-art pattern-matching algorithm. Brute-force searches, i.e., using for-loops to compute165

Euclidean distances, are ubiquitously used in weather applications. This is no doubt inefficient, and very little has been166

done algorithmically. Fortunately, there is a large number of fast search algorithms in the field of computer science167

that are suitable for the present application. Hence, an ultra-fast similarity-search algorithm based on fast Fourier168

transform (FFT) is used. FFT-based distance calculation is usually used to compute the z-normalized Euclidean169

distance (Mueen et al., 2017) and this article modifies the FFT distance calculation to allow the fast computation170

of unnormalized Euclidean distance. The relationship between Euclidean distance computation and FFT is derived171

mathematically, and the proposed similarity-search algorithm is discussed in Section 4.172

Lastly, and most importantly, this article shows empirically that by using Pma, the accuracy of intra-day forecast-173

ing highly correlates with that of the day-ahead NWP forecasts. In other words, improvements in day-ahead NWP174

forecasts carry through to boost performance in 15-min 6–8-h-ahead forecasts. This suggests that future research in175

solar forecasting should focus on improving the NWP forecasts, the remaining tasks, namely, downscaling, creat-176

ing ensemble, generating deterministic and probabilistic forecasts for the RTM, can be handled by Pma with decent177

accuracies.178

Besides the above-mentioned sections, the remaining part of the article is as follows. Section 5 presents a case179

study to demonstrate the proposed operational forecasting algorithm in detail. Both deterministic and probabilistic180

forecasting results are presented with a suite of evaluation metrics. Section 6 discusses advantages, disadvantages, as181

well as several possible variations to the proposed algorithm. Conclusions follow at the end.182

2. Forecasting requirements in CAISO RTM, design of case study, forecasting models, and evaluation metrics183

The CAISO real-time market has three major scheduling processes, namely, real-time unit commitment (RTUC),184

short-term unit commitment (STUC), and real-time economic dispatch (RTED) (Makarov et al., 2011). In all of these185

6These 4 features are: cloud fraction, cloud spread, clear sky intensity, and cloud intensity.
7The complete data and code is over 1.5 GB, and can be obtained from the corresponding author.
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Table 1: An illustration of hourly rolling 5-h-ahead forecasting. A total of twenty 15-min forecasts spanning the next 5 h are generated 75 min
prior to each operating hour.

forecast timestamps

submission
time

operating
hour

+1 h +2 h +3 h +4 h +5 h

.

.

.
.
.
.

.

.

.

07:45 09:00


09:15 10:15 11:15 12:15 13:15
09:30 10:30 11:30 12:30 13:30
09:45 10:45 11:45 12:45 13:45
10:00 11:00 12:00 13:00 14:00

08:45 10:00


10:15 11:15 12:15 13:15 14:15
10:30 11:30 12:30 13:30 14:30
10:45 11:45 12:45 13:45 14:45
11:00 12:00 13:00 14:00 15:00

09:45 11:00


11:15 12:15 13:15 14:15 15:15
11:30 12:30 13:30 14:30 15:30
11:45 12:45 13:45 14:45 15:45
12:00 13:00 14:00 15:00 16:00

.

.

.
.
.
.

.

.

.

operations, four time parameters are involved: (1) forecast horizon, the time span that the forecasts need to cover; (2)186

forecast resolution, the time interval of each submitted forecast; (3) forecast lead time, the time needed prior to the187

operating hour or day; and (4) forecast update rate, the frequency for the forecasts to be refreshed. A quadruplet can188

be used to denote these time parameters, i.e., (H ,R,L,U) denote forecast horizon, resolution, lead time and update189

rate, respectively. For example, the submission requirement for RTED is (H65min,R5min,L7.5min,U5min) (Makarov190

et al., 2011). In other words, a total of thirteen 5-min forecasts need to be submitted 7.5 min prior to the operating191

hour, this process repeats every 5 min. For STUC, the submission requirement is (H5h,R15min,L75min,U1h), or twenty192

15-min forecasts need to be submitted 75 min prior to the operating hour, and the process repeats every hour (Makarov193

et al., 2011).194

In view of the above requirements, a timeline can be drawn to illustrate the CAISO’s requirement for STUC195

(H5h,R15min,L75min,U1h), which is the target of this article. Fig. 2 depicts an example timeline, assuming the oper-196

ating hour starts at 9:00 on an arbitrary day. Based on Fig. 2, the forecasting case study can be designed. Firstly, for197

each forecast submission, forecasts over a 5-h period, with a 15-min resolution, are generated. Although a 75-min lead198

time is needed, during actual operation, any lead time longer than that is acceptable. Since the NWP forecasts have an199

hourly resolution, this article extends the lead time to 2 h.8 Next, given the forecast update rate of 1 h, the 5-h-ahead200

forecast needs to be updated every hour. This process is exemplified in Table 1. It is noted that a complete forecast201

time series (columns in Table 1) can be formed for each forecast horizon, ranging from 1- to 5-h-ahead. Hence, the202

forecast evaluation is performed for each hourly forecast horizon as exemplified in Fig. 3.203

2.1. Models for deterministic forecasting204

This article considers three methods: (1) clear-sky persistence, (2) the family of seasonal auto-regressive integrated205

moving average (SARIMA) models, and (3) the proposed Pma, for deterministic forecasting.206

2.1.1. Clear-sky persistence207

The persistence model takes the most recent available measurement as the forecast. The performance of this raw208

persistence model can be improved by considering the diurnal cycle in the solar irradiance, namely, the clear-sky209

expectation. The clear-sky persistence model assumes the forecast clear-sky index (CSI) is equal to the most recent210

available CSI measurement. The forecast CSI is then adjusted using the current clear-sky expectation. Given the211

8Since the lead time of NWP forecasting accuracy only depends weakly on lead time, a longer lead time does not complicate the time consid-
eration here.
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hour in a day
0 1 7 8 9

operating hour starts at 9:00 a.m.

10 14

forecast submission at 7:45 a.m.

75 min

operating hour

5 hrs of 15-min forecasts

Figure 2: Real-time market operation in CAISO. For an operating hour starting at 9:00 a.m., 5 hours of 15-min forecasts need to be submitted at
7:45 a.m., i.e., 75 min prior to the operating hour.

hour in a day
0 1 7 8 9

operating hour starts at 9:00 a.m.

10 11 12 13 14

forecast generated at 7:00 a.m.

7 hrs of 15-min forecasts

evaluation period 1

evaluation period 2

evaluation period 3

evaluation period 4

evaluation period 5

Figure 3: Forecast evaluation design in this article. For each operating hour, 7 hours of 15-min forecasts are generated 2 h prior to the operating
hour. The forecasts are evaluated over five hourly periods, separately.

time parameters (H5h,R15min,L75min,U1h), the clear-sky persistence model used in this article takes the single most212

recent non-zero CSI value prior to the submission deadline as the forecast CSI across the entire forecast horizon. For213

example, for an operating hour starts at 9:00, the CSI value at 7:45 (if it is a non-zero value), will be used for 9:15,214

9:30, . . . , 13:45, 14:00 (all 20 timestamps). This model is denoted as Pers.215

2.1.2. Multi-step-ahead time series model216

Most time series models, such as autoregressive integrated moving average model (ARIMA) or exponential217

smoothing state space mode, have the capability of modeling the seasonal component, in this case, the diurnal cy-218

cle. In many recent studies, various time series models have been compared, and their performance are mostly similar219

(Yang and Dong, 2018; Yang et al., 2015b). To that end, seasonal ARIMA, or SARIMA, is used to represent multi-220

step-ahead time series models.221

In the present case, the SARIMA model is used to generate 25-step-ahead forecasts using 15-min ground data,222

covering the 5-h horizon with a lead time of 75 min. The training length is set to be 5 days (a length-480 time series)223

prior to the submission deadline. The process order and model parameters of the SARIMA model are re-trained every224

hour to comply with the rolling forecast submission required by the RTM.225

The above SARIMA model has a seasonal period of 96, i.e., number of 15-min data points in a day. The high
seasonal frequency causes the parameter estimation to be time consuming, and it requires a large amount of memory.
Although this should not pose any problem during the actual operational forecasting, speeding up the run time is nev-
ertheless desired. In this regards, based on a discussion by Rob Hyndman,9 a Fourier series de-seasonality approach
is used:

yt = const. +

K∑
k=1

[
αk sin

(
2πkt
96

)
+ βk cos

(
2πkt
96

)]
+ Nt, (3)

where yt is the GHI time series, and Nt is an ARIMA process. The value of K is chosen to be 3 since the unimodal226

diurnal cycle do not require a large K. For each Nt model, the Akaike information criterion is used for model selection227

9Rob Hyndman is the main author of the famous forecast package in R. See, https://robjhyndman.com/hyndsight/longseasonality/
for his discussion on long seasonal period.
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with an ARIMA process order up to (p = 3, d = 0, q = 3), where p, d, and q are the orders for the autoregressive,228

differencing, and moving average parts, respectively. This model is referred to as Sarima hereafter.229

2.1.3. Pma230

The previous two benchmarking methods operate on 15-min data directly, whereas Pma first generates forecasts231

with an hourly resolution and then downscales them to a 15-min resolution. In this regard, three variations are used to232

exemplify the procedure.233

The first model uses the raw NAM forecasts without any correction. For each operating hour, 8 hourly forecasts are234

used as query for pattern matching. For example, if the operating hour starts at 9:00, NAM forecasts for 7:00, 8:00, . . . ,235

14:00 are used, see Fig. 3. These 8 numbers are compared to all length-8 sub-series in the hourly historical measured236

data, through Pma. After the best-matched sub-series (in terms of unnormalized Euclidean distance) is found, the237

corresponding 15-min measurements from the same historical period are used as the final forecasts. However, it238

should be noted that length-8 hourly sub-series corresponds to a length-32 15-min series. Therefore, only those 20239

data points relevant to the 5-h-ahead forecasting are recorded. This process repeats every hour, so that the forecasts240

can be evaluated based on the evaluation periods, see Fig. 3.241

The second model has the exact same setup as the first one, except that the NAM forecasts are corrected and242

ensembled prior to the pattern matching. This is to investigate whether improved hourly forecasts can lead to better243

15-min forecasts. Of course, this is likely to be the case, therefore, a more relevant question is: how much of the244

hourly forecast improvements can be carried to the 15-min forecasts? As mentioned earlier, both cooperative (MOS245

correction) and competitive (time series) ensembles will be used to improve the raw NAM forecasts.246

The last model is designed to study the extreme case of having perfect hourly forecasts. Since both the NWP247

forecasting step and the downscaling step contribute to the final error, isolating the downscaling error is of interest.248

By assuming the hourly NWP forecasts are 100% accurate, i.e., the hourly measurements from the forecast hours249

are used directly, any remaining error solely comes from the downscaling step. This type of models is usually called250

“oracle model” in forecasting works (Yang and Dong, 2018). In what follows, these three models are denoted as251

Pma+Nam, Pma+Ens, and Pma+Oracle, respectively.252

2.2. Models for probabilistic forecasting253

Since all three above-mentioned deterministic forecasting methods can be extended to probabilistic forecasting,254

the probabilistic forecasting portion of the article adopts the same three methods.255

2.2.1. Clear-sky persistence ensemble256

Whereas Pers discussed in Section 2.1.1 considers the most recent available CSI values as forecast CSI, the257

clear-sky PeEn takes the CSI values recorded at N most recent non-zero 15-min timestamps to create an ensemble.258

Following Alessandrini et al. (2015), the value of N is set to 20 in this article. For example, consider the forecasting259

scenario depicted previously: instead of only assigning CSI at 7:45 to 9:15, 9:30, . . . , 13:45, 14:00, 20 CSI values are260

assigned to each of these 20 timestamps. More explicitly, suppose the daylight hour starts at 7:00 and ends at 19:00,261

these 20 CSI values come from: today 7:45, . . . , 7:00, and yesterday 19:00, 18:45, . . . , 15:30, 15:15.262

2.2.2. SARIMA with normal prediction interval263

In a previous contribution by Yang (2017), it has been shown that by fitting a SARIMA model to hourly irradiance
time series, the residual follows a normal distribution—as least for the case of the experimental data therein used.
Hence, normal prediction interval is assumed in this work. More specifically, if the standard deviation of an h-step-
ahead forecast, σ̂h, is known or can be estimated, the prediction interval can be formed. Mathematically, the intervals
are given as:(
ŷU

t+h, ŷ
L
t+h

)
= (ŷt+h + cσ̂h, ŷt+h − cσ̂h) , (4)

where the multiplier c depends on the coverage probability, e.g., c = 1.96 for the 95% prediction interval. However,264

the estimation of σh is not always straightforward, especially for h > 1. For different time series models, the closed-265

forms of σ̂h are also different; sometimes, the closed-form is not available and an approximation needs to be used. In266
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this article, the most well-developed forecasting toolbox (Hyndman et al., 2018) is used, and the σh estimates of the267

SARIMA models are readily available.268

2.2.3. Pma with multiple analogs that form an ensemble269

As compared to the previous two methods, it is much easier to form ensembles using Pma. Based on a given query,270

instead of finding and recording one analog, the top N analogs can be recorded. The ranking of analogs is based on271

the unnormalized Euclidean distance. The value of N is again taken to be 20 in this article.272

2.3. Evaluation metrics273

2.3.1. Metrics for deterministic forecasts274

Three metrics are used throughout the article to evaluate the deterministic forecasts made by various models,
namely, the normalized mean bias error (nMBE), normalized root-mean-square error (nRMSE), and forecast skill.
Whereas nMBE is used to access the systematic bias in the forecasts, nRMSE is used to access whether the forecasts
contain large errors. Finally, forecast skill is used to determine the improvement of each model over the reference
model, in this case, the clear-sky persistence. These metrics are given as:

nMBE =

1
n
∑n

t=1 (ŷt − yt)
1
n
∑n

t=1 yt
× 100, (5)

nRMSE =

√√
1
n
∑n

t=1 (ŷt − yt)2

1
n
∑n

t=1 y2
t

× 100, (6)

s =

(
1 −

nRMSEmodel

nRMSEreference

)
× 100, (7)

where ŷt and yt are the forecast and measurement at time t. All three metrics are expressed in percentage. It should be275

noted that another frequently used way to compute nRMSE is
√

1
n
∑n

t=1(ŷt−yt)2

1
n
∑n

t=1 yt
×100. However, this different formulation276

of nRMSE does not change the forecast skill.277

2.3.2. Metrics for probabilistic forecasts278

To evaluate the probabilistic forecasts, the Brier score (BS), continuous ranked probability score (CRPS), and
CRPS skill score are used. The Brier score is given by:

BS =
1
n

n∑
t=1

m∑
i=1

(pti − oti)2 , (8)

where pti is the probability that the forecast at time t falls in category i, and oti takes the value of 0 or 1 according to279

whether or not the event occurred in category i. In this article, a bin width of 100 W/m2 is used. In this way, a total of280

14 bins are formed for irradiance ranging from 0 to 1400 W/m2, i.e., m = 14 in Eq. (8).281

The CRPS is given by:

CRPS =
1
n

n∑
t=1

∫ ∞

−∞

(
F ŷt (x) − 1(x − yt)

)2
dx, (9)

where F ŷt is the CDF of the forecast ŷt and 1(x − yt) is the Heaviside step function shifted to yt.282

Lastly, the CRPS skill score is given by:

s =

(
1 −

CRPSmodel

CRPSreference

)
× 100. (10)
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The clear-sky PeEn is used as the reference model to evaluate the CRPS skill score of the probabilistic forecasts. The283

Brier skill score (BSS) could also be used instead of the CRPS. However, since BS depends on the number of defined284

classes, so does the BSS. This allows one to tune the score, which is undesirable.285

3. Data286

Two sets of data are involved in the empirical part of this article. For the ground-based measurements, 20 years287

(1998–2017) of research-grade data from a SURFRAD station is used, whereas for the NWP data, 2 years (2016–288

2017) of hourly NAM forecasts are considered.289

3.1. SURFRAD data290

The surface radiation budget network (SURFRAD) was established in 1993 by the National Oceanic and At-291

mospheric Administration to collect long-term high-resolution radiation measurements and support climate research.292

There are a total of 7 stations. Whereas the results for all stations are provided in Appendix C, the algorithm per-293

formance is demonstrated in details at the station Desert Rock (DRA), Nevada, due to its geographical proximity to294

California. While DRA is not in California, it is close to several solar power plants that are outside California yet295

deliver their energy to CAISO. DRA started collecting data in March 1998, and only GHI data is of interest here. Prior296

to 2009, the station collected 3-min data; since 2009-01-01, 1-min data have been collected. Ground data needs to be297

quality checked and averaged. The original SURFRAD quality control (QC) is basic, and the primary goal of this QC298

is to eliminate physically impossible GHI values. Even though more advanced and stricter QC sequences exist, for299

forecasting applications, the original QC should suffice.300

The 1-min SURFRAD data is first aggregated to the nearest 15-min timestamp using the ceiling operator; this301

data frame is referred to as Surfrad15 hereafter. Next, to match the “snapshot” nature of the NAM data, Surfrad15302

is aggregated to hourly data using the round operator, e.g., 11:45, 12:00, 12:15, and 12:30 are averaged to the 12:00303

timestamp. This is equivalent to averaging 1-min SURFRAD data from 11:31 to 12:30. The resultant hourly data304

frame is denoted with Surfrad60. A graphical representation of this averaging scheme is shown in Table 2. A305

similar scheme is used for 3-min data. It is noted that data aggregation is a processing issue that is constantly being306

overlooked. Due to the diurnal cycle of GHI, one should be careful in aligning the timestamps of different datasets.307

Miss-aligned datasets can cause higher errors; this is typified by the discussion in Yang (2018a).308

After the first aggregation, Surfrad15 has a total of 694,176 of 15-min records, for which 1.1% are missing. This309

rather small percentage of missing values are replaced with their corresponding clear-sky expectations, calculated310

via the Ineichen–Perez model. Subsequently, Surfrad15 is aggregated to Surfrad60, which has a total of 173,544311

records.312

3.2. NAM data313

GHI computed from the NAM forecast is used for this work. As briefly described in Section 1.3, changes in GHI314

are based on the weather conditions in each atmospheric column. Variables such as solar zenith angle, clouds, aerosols,315

and water vapor concentration all contribute to changes in GHI. Of particular importance is cloud optical thickness,316

which is parameterized based on prognostic variables such as liquid and ice water mixing ratio, cloud temperature, and317

pressure (Stephens, 1978). Additionally, NAM uses climatological tables for aerosols (GFDL Global Atmospheric318

Model Development Team, 2004), often resulting in a systematic clear sky bias from the ground observation. The319

following section describes ways to account for these biases.320

NAM is run 4 times per day, starting from 00:00, 06:00, 12:00, and 18:00 UTC. In this work, the 12–35 hours-321

ahead forecasts generated by the 12:00 runs are used.10 For example, for the NAM run starts at 2015-12-31 12:00, 24322

point forecasts for timestamps 2016-01-01 00:00, . . . , 2016-01-01 23:00 are saved. The next run starts at 2016-01-01323

12:00, and the forecasts span 2016-01-02 00:00, . . . , 2016-01-02 23:00. This procedure repeats until the forecasts324

over 2017-12-31 00:00, . . . , 2017-12-31 23:00 are generated. As a result, two full years of NAM 12-h-ahead forecasts325

are obtained. Fig. 4 plots a one-day time series plot of SURFRAD and NAM data. The two data sources show good326

temporal alignment.327

10The CAISO STUC requires an hourly rolling update rate. Since the NWP forecast accuracy does not degrade with forecast horizon for the first
24 to 48 hours (Perez et al., 2013), these 24-h-rolling NAM forecasts do not affect the analyses below. Furthermore, starting 2017-02-01, the NAM
output has been archived hourly, which could be used for actual operational forecasting.
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Table 2: The data averaging scheme used in this article.

Time Surfrad15 Surfrad60

.

.

.
.
.
.

.

.

.
11:31  11:45



12:00

.

.
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11:45
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.
.

12:00
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.
.
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.
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.
.
.

.

.

.
.
.
.

0

250

500

750

1000

1250

May 30 12:00 May 30 18:00 May 31 00:00 May 31 06:00

Time [Mmm dd HH:MM]

G
lo

ba
l h

or
iz

on
ta

l i
rr

ad
ai

nc
e 

[W
/

m
2 ] 1−min SURFRAD

1−h SURFRAD

NAM forecasts

Figure 4: A one-day time series plot of SURFRAD and NAM data.

3.3. Improving the NAM forecast accuracy328

Using the previously discussed time-parameter notation, the raw NAM forecasts can be denoted using Nam with329

(H24h,R1h,L12h,U24h). By comparing Nam to Surfrad60, a nRMSE of 18.91% is observed. The corresponding330

day-ahead persistence model results in a 25.68% nRMSE. Although there is a positive forecast skill, it is known, a331

priori, that more accurate day-ahead hourly forecasts will lead to more accurate intra-day 15-min forecasts, i.e., the332

error in Nam will propagate to the pattern-matching step later. To that end, time series ensembles Yang and Dong333

(2018) are used to improve the accuracy of Nam. Before the ensemble methods are elaborated, the component models334

are described below.335

3.3.1. Component model 1: MOS-corrected NAM336

MOS is perhaps the most well-accepted way of post-processing the NWP forecasts. The choice of MOS herein
used follows Mathiesen and Kleissl (2011); Lorenz et al. (2009), namely, the bias correction through a fourth-degree
polynomial:

biast = a1 cos4 Zt + a2k̂4
t + a3 cos3 Zt + · · · + a8k̂t, (11)

where Zt is the zenith angle at time t, and k̂t is the forecast clear-sky index at time t. Using this equation, the model-led337

bias of a new forecast can be estimated once the regression coefficients are obtained. The regression coefficients are338
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fitted by season and by year. More specifically, the coefficients fitted using data from 2016 January to March are used339

to correct the NAM forecasts from 2017 January to March. This procedure is applied to other quarters of the year.340

Similarly, the coefficients fitted using data from 2017 are used to correct the NAM forecasts from 2016. Through this341

cross validation, true out-of-sample MOS can be applied to all data points. This correction leads to a smaller nRMSE342

of 17.47%.343

3.3.2. Component model 2: The family of seasonal ETS models344

The family of exponential smoothing (ETS) models contains a total of 30 models, among which 20 are seasonal345

models. These models have been extensively studied for solar forecasting applications (Yang and Dong, 2018; Yang346

et al., 2015a; Dong et al., 2013). The R package “forecast” (Hyndman et al., 2018) is herein used to perform ETS347

forecasting. To align with Nam, a 12-h lead time is considered. Following Yang and Dong (2018), the training period348

is set to be 14 days. For example, to generate the forecasts for 2016-01-01 00:00, . . . , 2016-01-01 23:00, Surfrad60349

data from 2015-12-17 12:00 to 2015-12-31 11:00 (336 hourly data points) are used. Given U24h, the ETS model350

selection and parameter estimation is performed every 24 h, and the Akaike information criterion is used in model351

selection. Since ETS is a time series method, it does not consider any physical evolution of the atmosphere. Hence352

the nRMSE is 20.39%, which is worse than Nam but better than persistence.353

3.3.3. Component model 3: STL decomposition354

The number of parameters in a SARIMA or ETS model is quite large. To reduce the computational burden, data-355

driven decomposition method is often used. The seasonal and trend decomposition using loess (STL) is a mature356

procedure rooted in time series forecasting. In solar engineering, it has been shown to be useful in separating the357

variable solar time series component from the clear-sky component (Yang, 2017; Yang et al., 2012). Therefore, STL358

decomposition is used as a component model in this article. The time series setup of STL decomposition follows the359

ETS setting exactly. Its nRMSE is 20.50%, which is similar to ETS, but with an improved computational speed.360

3.3.4. Component model 4: TBATS361

The abbreviation “TBTAS” is constructed using the initials of five phrases, namely, trigonometric, Box–Cox
transform, ARMA errors, trend, and seasonal, that jointly describe the nature of the model. TBATS is evolved from
the linear version of the Holt–Winter additive seasonal exponential smoothing:

yt = `t−1 + bt−1 + st−m + εt, (12a)
`t = `t−1 + bt−1 + αεt, (12b)
bt = bt−1 + βεt, (12c)
st = st−m + γεt, (12d)

where ε is the white noise; m is the period of the seasonal cycle; `, b and s represent the level, growth and seasonal
components of the time series {yt}; and α, β and γ are the smoothing parameters to be fitted. TBATS improves over the
Holt–Winter model in several aspects. Firstly, it uses a Box–Cox transformed time series instead of the original time
series, which may be non-stationary. TBATS also models the error component, i.e., εt in Eq. (12), with an ARMA
process:

εt =

p∑
i=1

ϕiεt−i +

q∑
i=1

θiat−1 + at. (13)
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Lastly, TBATS has the capability of modeling multiple seasonal components with different cycles. For the ith seasonal
component, s(i)

t , the trigonometric representation is given by:

s(i)
t =

ki∑
j=1

s(i)
j,t , (14a)

s(i)
j,t = s(i)

j,t−1 cos λ(i)
j + s∗(i)j,t−1 sin λ(i)

j + γ(i)
1 εt, (14b)

s∗(i)j,t = −s(i)
j,t−1 sin λ(i)

j + s∗(i)j,t−1 cos λ(i)
j + γ(i)

2 εt, (14c)

λ(i)
j = 2π j/mi, (14d)

where ki is the number of harmonics required for the ith seasonal component; s(i)
j,t and s∗(i)j,t are the stochastic level362

and growth of the ith seasonal component. Owing to its elaborate modeling procedure, TBATS has previously been363

shown to outperform most time series models (Yang and Dong, 2018). For the present dataset, it leads to an nRMSE364

of 20.11%, which is the smallest among the three time series models.365

3.3.5. Time series ensemble models366

The reason for having ensembles is to reduce the data, parameter, and modeling uncertainties. In the present367

case, the same datasets are used for the component models, and there is no parameter perturbation involved. Hence,368

the ensemble mainly contributes in terms of reducing modeling uncertainty. The results from the five component369

models, namely, uncorrected NAM, MOS, ETS, STL, and TBATS, are used to generate ensembles. The forecast-370

generating mechanisms of these component models are different, which is a common prerequisite for the ensembles371

to be effective, i.e., to prevent underdispersed ensembles.372

The choice of ensemble methods employed in this article follows Yang and Dong (2018), in which several373

regression-based combination methods were introduced. In a companion paper, the exact methods have been ex-374

tended to spatial prediction problems (Yang, 2018b). Both works showed that by combining predictions, the risk of375

forecast busts can be reduced.376

The first ensemble is constructed through simple averaging; it is denoted as Avg. Given the forecasts made for
time t using the ith component model, ŷ(i)

t , where i = 1, . . . , 5, the final ensemble forecast is simply:

ŷt =
1
5

5∑
i=1

ŷ(i)
t . (15)

This approach does not require any training, and each component forecast has the same contribution to the final
forecast. Since some of the component models are more accurate than others, it is logical to assign a larger weight
to a model accurate model. One of the intuitive ways of weight assignment is by considering the mean squared error
(MSE):

ŷt =

5∑
i=1

1
MSEi∑5

i=1
1

MSEi

ŷ(i)
t , (16)

where MSEi is the observed MSE for the ith component model. This method is referred to as Var, i.e., averaging
through variance-based weighting. Besides Var, regressions can be used to estimate the combining weights:

ŷt =

5∑
i=1

β̂(i)ŷ(i)
t + β̂0. (17)

In this setting, the regressand is the observed GHI, and the regressors are the forecasts made using the component377

models. The regression parameters, β̂0 and β̂(i), can be estimated using any regression technique. Ordinary least378

squares, least absolute deviations, and lasso are used to exemplify this class of methods; they are denoted with Ols,379

Lad, and Lasso, respectively. The reader is referred to Yang (2018b); Yang and Dong (2018) for the details of the380
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regression-based ensemble construction.381

Aside from Avg, the other ensemble schemes require training the weights. On this point, the cross validation382

procedure used earlier for MOS is applied here. In other words, for each quarter in each year, the weights are383

estimated using data from the same quarter in the other year. The nRMSEs for Avg, Var, Ols, Lad, and Lasso are384

17.61%, 17.18%, 16.74%, 17.10%, and 16.81%, respectively. The scatter plots of all the forecasts described in this385

section are shown in Fig. 5. As compared to Nam, the ensemble models are effective in reducing the number of386

severely underpredicted cases (i.e., fewer blue points below the identity line).387

Skill =  0.0%

Skill = 31.4%

Skill = 26.4%

Skill = 33.1%

Skill = 32.0%

Skill = 34.8%

Skill = 20.6%

Skill = 33.4%

Skill = 20.2%

Skill = 34.5%

Skill = 21.7%

AVG VAR OLS LAD Lasso

Persistence raw NAM MOS on NAM ETS on Surfrad60 STL on Surfrad60 TBATS on Surfrad60

0 400 800 1200 0 400 800 1200 0 400 800 1200 0 400 800 1200 0 400 800 1200

0 400 800 1200

0

400

800

1200

0

400

800

1200

SURFRAD measurements [W/m2]

12
−

 to
 3

6−
h−

ah
ea

d 
fo

re
ca

st
s 

[W
/

m
2 ]

0

1

2

3

4

log(count)

Figure 5: The forecast (H24h,R1h,L12h,U24h) versus measured GHI at Desert Rock (−116.02◦, 36.62◦). The component models are arranged in
the top row, whereas the ensembles are in the bottom row. Hexagon binning is used for visualization. For a higher contrast, the color scheme is
based on the logarithm of bin frequency.

Based on this posterior observation, Ols forecasts are used hereafter as queries for pattern-matching, i.e., the388

hourly forecasts used in Pma+Ens comes from Ols. However, it should be noted that in a real-time environment, the389

best ensemble model might be unknown to the forecasters. Nevertheless, in most cases, the ensemble performance390

dominates that of the component models. Hence, opting for an ensemble model is less risky than choosing any391

component model alone.392

4. An ultra-fast Euclidean distance sweeping algorithm393

As mentioned in Section 1, the main step to downscale the hourly forecasts to 15-min forecasts is to perform394

a similarity search. For that, a similarity metric is required. In contrary to the literature, where z-normalized Eu-395

clidean distance is preferred, this article favors the unnormalized Euclidean distance. The reason is illustrated with396

an example. Consider two GHI time series, each with three elements: {100, 200, 300} and {200, 400, 600}W/m2. The397

z-normalized Euclidean distance between these two series is zero. In other words, when the z-normalized Euclidean398

distance is used, the matching results may be far from the actual irradiance levels. To mitigate this issue, Alessan-399

drini et al. (2015) considered a metric that requires 5 weather variables, recall Eq. (1), among which solar elevation400

angle and azimuth angle are jointly used to constrain the matching. Nevertheless, one can simply circumvent the401

above-mentioned issue by using the unnormalized Euclidean distance.402

Besides the choice of similarity metric, another issue is the computational time of the search. In weather applica-403

tions, the computational time for a single Euclidean distance is manageable. However, when the history gets long, or404

the number of distance computations is large, brute-force computation is no longer feasible. Such scalability issues405

have been discussed in Cervone et al. (2017), and a super-computer is used in that work. While leveraging strong406
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computational power is one approach, the other approach is to examine the construction of Euclidean distance, and407

improve the speed in terms of algorithm design. On this point, Mueen’s algorithm for similarity search (Mueen et al.,408

2017) is perhaps the world’s fastest similarity search algorithm under Euclidean distance. Notwithstanding, that algo-409

rithm is designed for the z-normalized Euclidean distance, and some modifications are required if the unnormalized410

Euclidean distance is used. The modified algorithm is discussed next.411

Given a length-m query time series:

Q = {q1, q2, . . . , qm}, (18)

and a length-n history time series:

H = {h1, h2, . . . , hn}, (19)

the total number of Euclidean distance to be calculated is l = n−m + 1. More specifically, if the sub-series of H from
the ith element to jth element is denoted as H[i : j], the first distance is computed between Q and H[1 : m], the second
distance is computed between Q and H[2 : (m + 1)], and until the last distance is computed between Q and H[l : n].
Mathematically, the distances are given as:

d1(H[1 : m],Q) =

√√ m∑
i=1

(hi − qi)2

d2(H[2 : (m + 1)],Q) =

√√ m∑
i=1

(hi+1 − qi)2

... (20)

dl(H[l : n],Q) =

√√ m∑
i=1

(hi+l−1 − qi)2.

By expanding the summations, Eq. (20) becomes:

d1(H[1 : m],Q) =

√√ m∑
i=1

h2
i +

m∑
i=1

q2
i − 2

m∑
i=1

hiqi

d2(H[2 : (m + 1)],Q) =

√√ m∑
i=1

h2
i+1 +

m∑
i=1

q2
i − 2

m∑
i=1

hi+1qi

... (21)

dl(H[l : n],Q) =

√√ m∑
i=1

h2
i+l−1 +

m∑
i=1

q2
i − 2

m∑
i=1

hi+l−1qi.

It can be observed that the
∑m

i=1 q2
i term does not change for each distance; it only needs to be calculated once. On the412

other hand, for each subsequent distance, the first summation is only differed by one element, i.e., in d1, the summation413

is over h2
1, h

2
2, . . . , h

2
m, whereas in d2, the summation is over h2

2, h
2
3 . . . , h

2
m+1. Based on this characteristic, the first sum-414

of-squares term can be calculated with a single pass of the history time series, i.e., calculated simultaneously when415

reading the array. Therefore, the only term left to be computed is the last summation term.416

To better understand the computational trick, a simpler example is used. Let n = 5, m = 3, Eqs. (18) and (19)
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become:

Q = {q1, q2, q3}, (22)
H = {h1, h2, h3, h4, h5}. (23)

By reversing Q and padding the result with zeros, i.e.,

Q↓ = {q3, q2, q1, 0, 0}, (24)

the convolution between H and Q↓ is given by:

H ~ Q↓ =



h1q3
h1q2 + h2q3

h1q1 + h2q2 + h3q3
h2q1 + h3q2 + h4q3
h3q1 + h4q2 + h5q3

h4q1 + h5q2
h5q1

0
0



>

. (25)

It is evident that the third to fifth elements of the convolved vector correspond to the last summation terms in Eq. (21).417

This ingenious convolution step was proposed in Mueen et al. (2017); however the current algorithm applies con-418

volution to the unnormalized Q↓, and above mathematical derivation is distinct from that shown in Mueen et al.419

(2017). Since the convolution does not require any loop, the algorithm is ultra-fast11 in terms of sweeping all-pair420

Euclidean distances. Lastly, it is well-known that convolution in the time domain equals to point-wise multiplication421

in the frequency domain. The convolution is thus computed via the fast Fourier transform (FFT) and inverse FFT. To422

summarize the section, the ultra-fast Euclidean distance computation (UFEDC) procedure is depicted in Algorithm 1.423

Algorithm 1 Ultra-fast Euclidean distance computation
1: procedure UFEDC(history, query)
2: n← len(history)
3: m← len(query)
4: Σ← mvss(history) . Moving sum-of-squares
5: Q↓ ← rev(query) . Reverse query
6: Q↓[m + 1 : n]← 0 . Pad the reversed query with 0’s
7: dots← ifft(fft(history) ∗ fft(Q↓)) . Conv. between history and Q↓
8: result ← sqrt

(
sum

(
Q2
↓

)
+ Σ − 2 ∗ dots[m : n]

)
. Eq. (21)

9: return result
10: end procedure

5. Empirical study424

The empirical validation for (H5h,R15min,L75min,U1h) using the five models discussed in Section 2 is presented425

in this section. The validation period spans two full years, namely, 2016 and 2017. The total number of 15-min data is426

70,176, i.e., (365+366)×24×4. After applying a zenith angle filter of Z < 85◦, 32,642 data points remain. Therefore,427

the error metrics for each evaluation period shown in Table 1 and Fig. 3 are computed over 32,642 forecasts.428

To ensure that the forecasts can cover the full 2-year period, Pers and Sarima use a small portion of data from429

December 2015, so that the first forecasts can fall on 2016-01-01 00:00. On the other hand, for the pattern-matching430

11A similar algorithm—sweeping using normalized Euclidean distance—is tested again the current implementation in the National Center for
Atmospheric Research (R code courtesy of Stefano Alessandrini), the speed of the convolution-based algorithm is approximately two orders of
magnitude faster than the default PeEn implementation.
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Table 3: Forecast evaluation for deterministic forecasting over a 2-year period. The five evaluation periods correspond to 1–5-h into the operating
hour, with a lead time of 75 min and a forecast resolution of 15 min.

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.86 0.14 3.69 0.40 0.41
2 -2.07 0.10 3.79 0.56 0.33
3 -3.60 -0.02 3.81 0.62 0.23
4 -5.25 -0.09 3.88 0.60 0.21
5 -6.85 -0.08 3.81 0.26 0.11

nRMSE [%]

1 20.24 19.91 20.77 19.04 12.07
2 22.33 21.10 20.71 19.21 12.17
3 24.24 21.70 20.81 19.14 12.18
4 26.26 21.99 20.86 19.15 12.07
5 28.27 22.11 21.00 19.42 12.10

Forecast skill [%]

1 0.00 1.63 -2.63 5.91 40.37
2 0.00 5.54 7.28 13.99 45.53
3 0.00 10.48 14.12 21.01 49.74
4 0.00 16.23 20.54 27.06 54.03
5 0.00 21.78 25.72 31.31 57.21

models, the history time series is extracted from Surfrad60; it starts from 1998-03-16 00:00 and ends at 2015-12-31431

23:45. Although during the actual operation, the length of history increases as more data becomes available, i.e., after432

2016-01-01 is forecast, it can be used as part of the history to forecast 2016-01-02, this article fixes the length of433

history throughout the empirical study.434

5.1. Deterministic forecasting435

The results for deterministic forecasting are shown in Table 3. The following observations can be made. In terms436

of nMBE, only Pma+Nam shows a sizable positive bias, and NWP–time-series ensemble—Pma+Ens in this case—is437

effective in removing such bias. In terms of nRMSE, Pers and Sarima show increasing errors as the forecast horizon438

increases, whereas the Pma models have relatively “flat” errors across the 5 evaluation periods. In terms of forecast439

skill, all models yield positive skills. Among these models, it is evident that Pma+Ens (besides Pma+Oracle of course)440

has the highest skills for all evaluation periods. The performance of Pma+Oracle reveals that the downscaling step441

leads to a ≈12% nRMSE, whereas the nRMSE of Ens is about ≈19%. This means the hourly day-ahead forecasting442

error (recall Section 3, this error is about 17%) and the downscaling error do not stack.443

5.2. Probabilistic forecasting444

The error metrics of the probabilistic forecasts from the five models are shown in Table 4. Unlike the case of445

deterministic forecasting, these results are rather disappointing. Besides Pma+Oracle, all other models have shown446

worse performance—over one or more evaluation periods—than the baseline model, PeEn, in terms of all metrics. It447

is now clear that good deterministic forecasting does not guarantee good performance in probabilistic forecasting. In448

this regard, it confirms the necessity to check both the deterministic and probabilistic performance of a model, in a449

forecasting study.450

To investigate the cause, the probabilistic forecasts over a 7-day period are plotted in Fig. 6. The 95% and 80%451

prediction intervals are plotted as light and dark gray ribbons. This sequence of days consists of 4 clear days and 3452

cloudy days. Quite a number of observations can be made from this simple plot.453

Firstly, observations on PeEn are discussed. Given the model assumption (i.e., CSI from 20 most recent 15-min454

timestamps), the PeEn forecasts rely largely on the variability of the previous hours/day. It is evident from the plot455

of day 7 that if the previous day is cloudy, and thus has low CSI values, the prediction interval in the morning will456

be large. This leads to a wide interval width, and thus the coverage of PeEn is quite good. Since the natural bound457

of probabilistic forecasts is always ±∞, which ensures 100% coverage rate, good coverage does not imply good458

forecasts. The interval width is also important.459
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Table 4: Forecast evaluation for probabilistic forecasting over a 2-year period. The five evaluation periods correspond to 1–5-h into the operating
hour, with a lead time of 75 min and a forecast resolution of 15 min. The last column will be discussed in Section 6.1.

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.52 0.63 0.54 0.70 0.30 0.51
2 0.55 0.65 0.54 0.69 0.30 0.52
3 0.56 0.65 0.54 0.69 0.29 0.53
4 0.57 0.66 0.55 0.68 0.29 0.54
5 0.57 0.66 0.55 0.69 0.29 0.55

CRPS [W/m2]

1 47.83 55.87 50.27 54.55 20.69 43.68
2 52.04 59.81 50.31 54.18 20.85 44.95
3 55.24 61.62 50.52 54.08 20.75 46.04
4 57.65 62.57 51.12 54.27 20.44 47.08
5 59.54 63.10 51.72 54.65 20.10 47.91

CRPS skill score [%]

1 0.00 -16.81 -5.10 -14.04 56.75 8.68
2 0.00 -14.93 3.32 -4.12 59.93 13.63
3 0.00 -11.56 8.55 2.09 62.44 16.65
4 0.00 -8.54 11.32 5.86 64.55 18.32
5 0.00 -5.98 13.14 8.22 66.24 19.54

For Sarima, it is observed that the interval width on the consecutive clear days (days 1, 2, and 3) decreases through460

time. This implies that the confidence of Sarima depends on the training error standard deviation—multiple clear days461

lead to a smaller standard deviation, and thus a narrower prediction interval. Next, the effect of Fourier modeling on462

prediction interval is also apparent, see the interval variation during the nighttime in Fig. 6. However, since the463

nighttime forecasts are irrelevant, it does not affect the performance of Sarima.464

Pma+Oracle gives narrow intervals with good coverage. This is expected. On the other hand, the performance465

of Pma+Nam and Pma+Ens depends highly on whether the NWP model is able to forecast the hourly variability. In466

days 4 and 5, Pma+Nam and Pma+Ens have very similar intervals to those of Pma+Oracle, indicating that the NWP467

was successful in predicting the irradiance variability for these days. However, for day 6, despite the varying 15-min468

pattern, Pma+Nam and Pma+Ens do not reflect much deviation in their ensemble members (i.e., small interval width).469

The reason can be traced to the NWP forecasts—when the NWP forecasts a clear sky day, the ensemble members470

most likely come from other clear days. Lastly, it is observed that Pma+Ens is somewhat inaccurate near solar noon471

during a clear day. This is because of the MOS adjustment, see Fig. 5. The MOS correction applied in this article472

tends to move GHI towards the average GHI observed for a given predicted CSI and solar zenith angle; therefore the473

forecast tends to underpredict on clear days and overpredict on cloudy days. However, developing better MOS models474

is not within the scope of this work.475

6. Discussion476

6.1. How to improve the poor probabilistic forecasting performance?477

Given the good deterministic forecasting performance of the proposed pattern-matching method, the present fo-478

cus is on improving its probabilistic forecasting performance. It should be clear now that the poor performance of479

Pma+Nam and Pma+Ens is owing to the poor coverage. In other words, due to the high similarity among the ensemble480

members, Pma+Nam and Pma+Ens generate prediction intervals that are too narrow.481

To diversify the ensemble members, several actions can be taken: (1) increase the query length m, (2) decrease the482

history length n, and (3) increase the number of ensemble members N. By increasing m, the Euclidean distance will483

have more degrees-of-freedom, and thus the analogs are more diversified. By decreasing n, the choice of candidates is484

reduced, and thus less similar candidates will be added. Lastly, the aim of increasing N is also to loosen the selection485

criterion, and thus include some less similar analogs. There is no doubt that one could iterate these settings and486

somewhat identify a best approach, see Appendix B for additional empirical results. Nevertheless, from a data science487

perspective, the empirically identified “best choice” is only suitable for the current dataset, which may not apply to488

other scenarios. A more general solution is preferred.489
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Figure 6: Probabilistic forecasting results over a week in 2016. The solid black lines plots the measurement from Surfrad15, whereas the dashed
red lines are the deterministic forecasts. The dark and light ribbons show 80% and 95% prediction intervals, respectively. The time is shifted from
UTC to local time for visualization.

Since PeEn has good coverage but wide intervals, whereas Pma+Nam and Pma+Ens do not have enough coverage490

but their prediction intervals are narrow, the most intuitive approach is to even out the intervals generated by different491

methods. Although this approach appears too ad hoc at the first glance, it aligns with the well-accepted framework492

of forecast-ensemble calibration (Raftery et al., 2005). Moreover, in reality, such simple combination of predictions493

often lead to desirable outcome (Yang and Dong, 2018; Yang, 2018b). To that end, the three sets of forecasts generated494

by PeEn, Pma+Nam and Pma+Ens are combined. For each model, the 20 forecasts are first sorted. Subsequently, the495

forecasts made by different models are averaged, following the sorted order. With the 20 newly combined forecast, a496

new prediction interval can be formed. The performance of this new model is shown in the last column of Table 4.497

Positive skills are now observed for all evaluation periods.498

6.2. Extending the pattern-matching routine to a multivariate case499

As mentioned in the introduction, AnEn often select analogs based on the weighted sum of Euclidean distances500

between several meteorological variables, see Eq. (1). Therefore, extending the current pattern-matching routine to501

a multivariate case is trivial—one can simply iterate the algorithm several times, and sum the distances. Although502

the convolution step needs to be repeated N times, the resulting computational speed is still faster than a standard503
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implication by an order of magnitude.12
504

6.3. The impacts of Pma on solar forecasting research505

The case study in Section 5 reveals a series of positive impacts of Pma that could potentially advance the field506

of solar forecasting. Firstly, the Pma+Oracle, i.e., Pma with perfect day-ahead forecasts, demonstrated extraordinary507

results in both deterministic and probabilistic forecasting. Hence, it can be concluded that better NWP forecasts would508

lead to better downscaled forecasts at the 6–8-h horizon. This implies that future solar forecasting research should509

place a high priority on improving the NWP models.510

Secondly, the forecast skill and CRPS skill score of Pma increase with forecast horizon. Although at the 1-h-ahead511

horizon, Pma slightly underperforms, one can use a regime-switching approach to separate the forecasting tasks based512

on forecast horizon, i.e., 1-h-ahead forecasting can be replaced by a more suitable algorithm.513

Thirdly, Pma complements the traditional way of generating ensemble forecasts using NWP by running the NWP514

model multiple times; Pma is comparatively computationally cheaper to implement.515

To confirm the above-mentioned impacts, the case study is extended to all SURFRAD stations, which covers516

5 different climate zones according to the Köppen-Geiger climate classification. The additional deterministic and517

probabilistic forecasting results are provided in Appendix C. Consistent conclusions can be drawn from the extensive518

empirical results, confirming the universality of the proposed algorithm.519

6.4. Future works520

Whereas this work provides a framework for operational solar forecasting in the RTM, there are several potential521

issues that need to be investigated in the future. Firstly, since better NWP forecasts can lead to better intra-hour522

forecasts, improving the accuracy of the raw NWP forecasts is beneficial. In this regard, the various research versions523

of WRF developed by the Center for Renewable Resources and Integration, University of California, San Diego524

(Wu et al., 2018; Sahu et al., 2018; Zhong et al., 2017), can be tested in the future. Besides improving the raw525

NWP forecasts, better post-processing techniques, such as Rincón et al. (2018), can be involved. Lastly, the topic of526

prediction interval ensemble in the form of Raftery et al. (2005), can be further explored for solar forecasting.527

One interesting features of the pattern-matching based algorithms is that the history time series need not come528

from the same location as the hourly forecasts. In other words, as long as the history comes from a location within529

a same climate zone or with similar latitude (so that the zenith angle can match), the proposed algorithm will most530

likely suffice. Since NWP forecasts are available throughout the continental US, the present downscaling approach531

provides a unique solution to high-resolution forecasting, without local measurements.532

7. Conclusion533

A pattern-matching-based algorithm is proposed to generate solar forecasts for short-term unit commitment in534

the CAISO real-time market. Unlike previous solar forecasting publications, this work follows the CAISO RTM535

requirements exactly. All time parameters including forecast horizon, resolution, lead time, and update rate are536

considered. More specifically, 5-h-ahead forecasts in 15-min intervals are generated 75 min prior to an operating537

hour, and the forecasts are updated every hour.538

The algorithm has three major steps. Firstly, the 12–35-h-ahead NAM forecasts are improved using a state-of-539

the-art ensemble time series technique. Next, the 1-h resolution forecasts are matched to an 18-year historical hourly540

GHI series measured at a SURFRAD station, using the world’s fastest similarity search algorithm. The best-matched541

analogs are then downscaled to a 15-min resolution. Lastly, to improve the model performance in probabilistic fore-542

casting, an ensemble of prediction intervals is formed. The algorithm is validated using two years of data. For543

deterministic forecasting, the proposed model results in a forecasting skill of 5–31%, whereas for the probabilistic544

forecasting, the proposed model results in a CRPS skill score of 8–20%.545

12The algorithm has been tested against the R code provided by Stefano Alessandrini, who is a major contributor of the AnEn solar forecasting,
and has authored tens of AnEn forecasting papers. The present algorithm has been transferred to the National Center for Atmospheric Research
(NCAR), so that a faster Fortran version can be eventually used in NCAR’s operational forecasting.
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This article focuses on GHI forecasting. However, in actual power system operations, solar-generated power is of546

interest. Hence, in addition to the method proposed in this work, some irradiance-to-power conversion methods are547

required. For example, for flat-surface PV systems, it usually takes a three-step procedure: (1) separating diffuse hor-548

izontal irradiance component from the GHI forecast (see Gueymard and Ruiz-Arias, 2016, for a review on separation549

modeling); (2) transposing the horizontal irradiance components to tilted surface (see Yang, 2016, for a review on550

transposition modeling); and (3) a PV performance model to convert the in-plane irradiance to power (see Skoplaki551

and Palyvos, 2009, for a review on temperature dependence during power conversion). Since each of these steps552

would introduce some new errors, it is unclear how the GHI forecast errors reported in this work would propagate to553

the eventual power forecast error. Therefore, further studies on this subject are needed.554

Appendix A. Data aggregation and forecast consistency555

With the exception of physically-based forecasting, where weather variables are integrated in time in multi-556

ple small steps, the majority of statistical and machine-learning solar forecasting models are limited to the data-557

aggregation resolution. For example, if the 1-min raw data are aggregated to a 10-min resolution, the forecasts made558

will be in 10-min steps. In other words, 1-step-ahead forecasting corresponds to 10-min-ahead forecasting, whereas559

2-step-ahead forecasting corresponds to 20-min-ahead forecasting. However, there are other ways to generate such560

10-min-ahead forecasts. For instance, one can aggregate the 1-min raw data to a 5-min resolution and perform a 2-561

step-ahead forecasting to obtain a 10-min-ahead forecast. Alternatively, one can also use 2-min data with 5-step-ahead562

forecasting, or use 1-min data with 10-step-ahead forecasting. Due to the modeling error, each of the above-mentioned563

forecasting scheme will produce different forecasts that are very unlikely to be aggregate consistent, namely, the 5564

forecasts made using 2-min data will not add up to the single forecast made using 10-min data. Hence, the question565

“which scheme should be used?” needs to be addressed. In fact, such discussion has been around since at least (Dong566

et al., 2013), but has not attracted significant attention from the academicians.567

Of course, one simple way to address the question is to test all possible schemes, as seen in Dong et al. (2013),568

and to contrast the results. Nevertheless, it is time consuming, and conclusions may vary across different datasets.569

It was not until a recent publication by Athanasopoulos et al. (2017) that this problem is properly addressed. The570

temporal reconciliation method therein proposed can unify all forecasts produced using different horizon–resolution571

combinations. Furthermore, it improves the forecast accuracy, owing to the cancellation of modeling errors. Such572

reconciliation has also been applied to solar forecasting (Yang et al., 2017). Unfortunately, neither publication received573

sizable echo from solar forecasters, for unknown reasons.574

Appendix B. Effect of model parameters on Pma575

In Section 6.1, several potential approaches—without using interval averaging—to improve the probabilistic fore-576

casting performance of Pma are reasoned. These approaches aim at diversifying the ensemble members by (1) in-577

creasing m, (2) decreasing n, and (3) increasing N. This appendix extends the Pma+Ens case study, by perturbing578

these model parameters.579

The results shown in Table 4 are generated using m = 8, n = 18 years, and N = 20. Firstly, the value of m is580

gradually increased to 24, while n and N are kept unchanged. It is observed that the m = 24 case has the smallest581

CRPS. Next, by fixing m = 24 and n = 18 years, the number of ensemble members, N, is gradually increased up to582

300. Further reduction in CRPS is observed as N goes to 300. On the other hand, reducing the history length n to 5583

years seems to have a negative impact on forecast accuracy. These results are tabulated in Table B.5.584

It is noted that the approach used here is not practical for two main reasons: (1) the choice of parameters would585

vary across geographical locations, and (2) the ISOs would rarely have the luxury to fine tune the model parameters586

for every forecasting task. Hence, interval averaging appears to be a more appropriate way to ensure a satisfactory587

probabilistic forecasting performance.588

Appendix C. Performance of Pma under other climate zones589

In this appendix, the performance Pma is further validated at locations in other climate zones that are covered590

by SURFRAD, see Table C.6 for a summary. The complete procedure including NWP post-processing and various591
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Table B.5: Effect of model parameters, m, n, and N, on the probabilistic forecasting performance of Pma. The first three columns are identical to
Table 4, reprint here for easy referencing.

Pma+Ens

Evaluation period PeEn Sarima m = 8, n = 18 yr, N = 20 m = 24, n = 18 yr, N = 20 m = 24, n = 18 yr, N = 300 m = 24, n = 5 yr, N = 300

Brier score

1 0.52 0.63 0.70 0.64 0.58 0.67
2 0.55 0.65 0.69 0.64 0.58 0.67
3 0.56 0.65 0.69 0.64 0.58 0.67
4 0.57 0.66 0.68 0.64 0.58 0.67
5 0.57 0.66 0.69 0.64 0.58 0.67

CRPS [W/m2]

1 47.83 55.87 54.55 51.84 49.93 56.80
2 52.04 59.81 54.18 51.85 49.89 56.76
3 55.24 61.62 54.08 51.84 49.90 56.75
4 57.65 62.57 54.27 51.81 49.89 56.80
5 59.54 63.10 54.65 51.86 49.89 56.93

CRPS skill score [%]

1 0.00 -16.81 -14.04 -8.39 -4.38 -18.74
2 0.00 -14.93 -4.12 0.36 4.13 -9.06
3 0.00 -11.56 2.09 6.16 9.67 -2.75
4 0.00 -8.54 5.86 10.12 13.45 1.47
5 0.00 -5.98 8.22 12.90 16.21 4.39

Table C.6: Metadata of the SURFRAD network and their corresponding Köppen-Geiger climate classification.

Abbrv. Station Latitude Longitude Time zone Köppen-Geiger Climate description

BON Bondville, Illinois 40.05192◦ N 88.37309◦ W Central Dfa Hot-summer humid continental
DRA Desert Rock, Nevada 36.62373◦ N 116.01947◦ W Pacific BWk Cold desert
FPK Fort Peck, Montana 48.30783◦ N 105.10170◦ W Mountain BSk Cold semi-arid (steppe)
GWN Goodwin Creek, Mississippi 34.25470◦ N 89.87290◦ W Central Cfa Humid subtropical
PSU Penn. State Univ., Pennsylvania 40.72012◦ N 77.93085◦ W Eastern Dfb Warm-summer humid continental
SXF Sioux Falls, South Dakota 43.73403◦ N 96.62328◦ W Central Dfa Hot-summer humid continental
TBL Table Mountain, Boulder, Colorado 40.12498◦ N 105.23680◦ W Mountain BSk Cold semi-arid (steppe)

versions of Pma are repeated. Without loss of generality, the Pma setting herein used is m = 8, n = 18 years,592

and N = 20, except for the Sioux Falls station, South Dakota, which was established in 2003 with n = 14 years.593

Even though the other SURFRAD stations are outside of CAISO, the CAISO operational requirements are used for594

illustration purposes. The deterministic and probabilistic forecasting results for these additional empirical studies are595

shown in Tables C.7–C.18.596

Based on these extensive empirical studies using data from different climate zones, the universality of the proposed597

algorithm can be confirmed. All previously discussed issues can be transferred to these new case studies. For clarity,598

they are re-iterated here:599

1. It is necessary to post-process the raw NWP output, since Pma+Ens outperforms Pma+Nam at all stations;600

2. The performance of Pma+Oracle is extraordinary at all stations, indicating that a better hourly forecast would601

lead to a better 15-min forecasts;602

3. The advantages of the proposed algorithm becomes more apparent at 3–5-h-ahead horizons; and603

4. The averaging of prediction interval is an effective way of improving the accuracies of probabilistic forecasting.604
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Table C.7: Same as Table 3, but for Bondville, Illinois (40.05192◦ N, 88.37309◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.52 0.19 1.72 2.04 -0.07
2 -1.24 0.28 1.64 2.25 -0.21
3 -2.06 0.21 1.73 2.15 -0.17
4 -2.82 0.05 1.74 2.01 -0.12
5 -3.38 -0.07 1.73 1.78 -0.28

nRMSE [%]

1 31.48 31.85 34.47 32.03 17.89
2 35.79 35.33 34.42 32.20 17.97
3 39.62 37.38 34.72 32.26 18.12
4 42.96 38.47 34.36 32.16 18.15
5 45.65 39.06 34.84 32.50 18.28

Forecast skill [%]

1 0.00 -1.16 -9.49 -1.73 43.18
2 0.00 1.29 3.83 10.04 49.80
3 0.00 5.66 12.37 18.58 54.27
4 0.00 10.47 20.03 25.15 57.75
5 0.00 14.43 23.68 28.81 59.97

Table C.8: Same as Table 4, but for Bondville, Illinois (40.05192◦ N, 88.37309◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.68 0.79 0.75 0.92 0.41 0.72
2 0.72 0.82 0.75 0.91 0.41 0.73
3 0.74 0.83 0.75 0.91 0.41 0.74
4 0.76 0.84 0.76 0.91 0.40 0.75
5 0.77 0.84 0.76 0.90 0.40 0.76

CRPS [W/m2]

1 74.32 82.26 79.56 83.97 29.26 68.45
2 82.56 92.76 79.33 83.52 29.26 70.55
3 89.10 98.85 79.54 83.44 29.24 72.39
4 94.29 102.03 80.29 83.53 28.87 73.99
5 98.31 103.85 81.16 83.60 28.55 75.32

CRPS skill score [%]

1 0.00 -10.68 -7.05 -12.98 60.62 7.90
2 0.00 -12.36 3.91 -1.16 64.56 14.54
3 0.00 -10.94 10.73 6.36 67.19 18.75
4 0.00 -8.21 14.84 11.41 69.38 21.53
5 0.00 -5.63 17.45 14.96 70.96 23.39
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Table C.9: Same as Table 3, but for Fort Peck, Montana (48.30783◦ N, 105.1017◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -1.14 0.25 8.89 2.51 -0.02
2 -2.40 0.33 8.85 2.52 -0.13
3 -3.82 0.35 8.91 2.66 -0.08
4 -5.26 0.32 8.81 2.45 0.00
5 -6.61 0.26 8.89 2.13 -0.35

nRMSE [%]

1 29.27 29.34 32.83 30.40 16.71
2 33.25 32.52 32.66 30.54 16.72
3 36.72 34.24 32.70 30.53 16.68
4 39.30 35.22 32.85 30.58 16.74
5 41.53 35.76 32.95 30.63 16.84

Forecast skill [%]

1 0.00 -0.24 -12.17 -3.87 42.90
2 0.00 2.20 1.78 8.16 49.71
3 0.00 6.75 10.95 16.85 54.58
4 0.00 10.39 16.43 22.20 57.40
5 0.00 13.88 20.65 26.25 59.45

Table C.10: Same as Table 4, but for Fort Peck, Montana (48.30783◦ N, 105.1017◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.67 0.74 0.76 0.94 0.37 0.71
2 0.71 0.77 0.76 0.94 0.37 0.73
3 0.73 0.79 0.77 0.94 0.37 0.74
4 0.74 0.79 0.77 0.94 0.36 0.75
5 0.75 0.80 0.77 0.94 0.36 0.75

CRPS [W/m2]

1 65.25 69.11 72.65 77.29 24.69 61.70
2 71.84 77.73 72.66 77.15 24.65 63.64
3 76.40 82.18 72.97 77.08 24.51 65.00
4 79.40 84.61 73.51 77.39 24.16 66.03
5 81.46 85.95 74.10 77.74 23.94 66.77

CRPS skill score [%]

1 0.00 -5.93 -11.34 -18.46 62.16 5.43
2 0.00 -8.20 -1.14 -7.39 65.69 11.41
3 0.00 -7.57 4.49 -0.88 67.92 14.92
4 0.00 -6.57 7.42 2.54 69.57 16.84
5 0.00 -5.52 9.04 4.56 70.62 18.04
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Table C.11: Same as Table 3, but for Goodwin Creek, Mississippi (34.2547◦ N, 89.8729◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.82 0.98 5.68 1.65 -0.26
2 -1.77 1.04 5.74 1.80 -0.13
3 -2.77 0.86 5.68 1.75 0.03
4 -3.66 0.59 5.83 1.67 -0.23
5 -4.36 0.39 5.66 1.37 -0.18

nRMSE [%]

1 31.07 32.45 35.67 32.34 18.41
2 35.02 35.99 35.47 32.39 18.38
3 38.76 38.24 35.60 32.33 18.33
4 42.08 39.65 35.95 32.50 18.36
5 45.13 40.45 36.15 32.76 18.49

Forecast skill [%]

1 0.00 -4.45 -14.81 -4.10 40.73
2 0.00 -2.76 -1.28 7.52 47.53
3 0.00 1.33 8.14 16.57 52.71
4 0.00 5.76 14.56 22.76 56.36
5 0.00 10.37 19.90 27.40 59.03

Table C.12: Same as Table 4, but for Goodwin Creek, Mississippi (34.2547◦ N, 89.8729◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.69 0.80 0.73 0.92 0.41 0.70
2 0.72 0.83 0.73 0.91 0.41 0.72
3 0.74 0.84 0.73 0.91 0.41 0.73
4 0.76 0.85 0.74 0.91 0.40 0.74
5 0.77 0.86 0.75 0.91 0.40 0.74

CRPS [W/m2]

1 78.12 87.82 83.05 85.85 29.58 70.29
2 87.03 98.96 82.81 85.21 29.71 72.64
3 94.38 105.96 83.09 85.15 29.67 74.78
4 100.41 110.44 84.12 85.52 29.41 76.78
5 105.28 113.11 85.34 86.14 29.04 78.45

CRPS skill score [%]

1 0.00 -12.42 -6.32 -9.90 62.13 10.01
2 0.00 -13.71 4.85 2.09 65.86 16.53
3 0.00 -12.28 11.96 9.77 68.57 20.76
4 0.00 -9.99 16.22 14.82 70.71 23.53
5 0.00 -7.43 18.94 18.18 72.42 25.49
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Table C.13: Same as Table 3, but for Penn. State Univ., Pennsylvania (40.72012◦ N, 77.93085◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.70 0.73 4.53 1.51 -0.23
2 -1.05 0.86 4.51 1.44 -0.14
3 -1.07 0.79 4.45 1.38 -0.24
4 -0.65 0.62 4.48 1.04 -0.25
5 0.22 0.42 4.48 0.78 -0.37

nRMSE [%]

1 35.74 35.82 39.48 36.19 20.74
2 40.82 39.83 39.34 36.27 20.43
3 45.98 42.33 39.58 36.21 20.21
4 50.85 43.66 39.64 36.49 20.63
5 55.05 44.34 39.75 36.90 20.85

Forecast skill [%]

1 0.00 -0.21 -10.44 -1.26 41.97
2 0.00 2.41 3.61 11.14 49.93
3 0.00 7.92 13.91 21.23 56.04
4 0.00 14.14 22.05 28.24 59.44
5 0.00 19.46 27.78 32.96 62.12

Table C.14: Same as Table 4, but for Penn. State Univ., Pennsylvania (40.72012◦ N, 77.93085◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.73 0.79 0.82 0.96 0.43 0.77
2 0.77 0.83 0.82 0.96 0.43 0.78
3 0.79 0.84 0.82 0.96 0.43 0.79
4 0.81 0.85 0.82 0.95 0.42 0.80
5 0.83 0.86 0.81 0.95 0.42 0.81

CRPS [W/m2]

1 82.24 86.93 89.21 90.81 30.51 75.12
2 91.95 98.77 88.99 90.61 30.60 77.56
3 99.95 105.84 89.33 90.61 30.39 79.62
4 106.33 109.70 89.84 90.89 30.18 81.28
5 111.26 111.70 90.18 91.06 30.09 82.39

CRPS skill score [%]

1 0.00 -5.71 -8.48 -10.42 62.90 8.66
2 0.00 -7.42 3.21 1.45 66.72 15.65
3 0.00 -5.89 10.62 9.34 69.60 20.34
4 0.00 -3.17 15.51 14.53 71.61 23.56
5 0.00 -0.40 18.94 18.15 72.95 25.95
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Table C.15: Same as Table 3, but for Sioux Falls, South Dakota (43.73403◦ N, 96.62328◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.46 0.44 5.10 3.14 -0.02
2 -0.63 0.61 5.06 3.19 -0.05
3 -0.67 0.54 5.11 3.32 -0.03
4 -0.49 0.43 5.12 3.21 -0.08
5 -0.05 0.32 5.17 2.88 -0.22

nRMSE [%]

1 30.10 31.30 34.14 31.72 15.77
2 34.50 35.37 34.10 31.91 15.81
3 38.63 37.88 34.18 32.00 15.53
4 42.47 39.35 34.20 31.91 15.65
5 45.80 40.14 34.41 31.90 15.59

Forecast skill [%]

1 0.00 -3.98 -13.41 -5.38 47.61
2 0.00 -2.52 1.15 7.51 54.17
3 0.00 1.94 11.52 17.16 59.81
4 0.00 7.36 19.48 24.86 63.14
5 0.00 12.37 24.87 30.36 65.96

Table C.16: Same as Table 4, but for Sioux Falls, South Dakota (43.73403◦ N, 96.62328◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.66 0.77 0.74 0.90 0.37 0.70
2 0.71 0.81 0.74 0.89 0.37 0.72
3 0.74 0.82 0.74 0.89 0.37 0.73
4 0.76 0.83 0.74 0.89 0.37 0.75
5 0.78 0.84 0.75 0.89 0.37 0.76

CRPS [W/m2]

1 70.23 76.86 75.45 79.25 24.38 64.71
2 79.43 88.68 75.20 78.96 24.56 67.10
3 87.25 95.67 75.33 78.99 24.41 69.26
4 93.70 99.85 75.96 79.13 24.00 71.17
5 98.75 102.34 76.85 79.43 23.67 72.62

CRPS skill score [%]

1 0.00 -9.45 -7.43 -12.84 65.29 7.86
2 0.00 -11.64 5.32 0.59 69.09 15.53
3 0.00 -9.65 13.66 9.47 72.02 20.62
4 0.00 -6.56 18.94 15.55 74.39 24.05
5 0.00 -3.63 22.18 19.57 76.03 26.46
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Table C.17: Same as Table 3, but for Table Mountain, Boulder, Colorado (40.12498◦ N, 105.2368◦ W).

Evaluation period Pers Sarima Pma+Nam Pma+Ens Pma+Oracle

nMBE [%]

1 -0.46 0.44 5.10 3.14 -0.02
2 -0.63 0.61 5.06 3.19 -0.05
3 -0.67 0.54 5.11 3.32 -0.03
4 -0.49 0.43 5.12 3.21 -0.08
5 -0.05 0.32 5.17 2.88 -0.22

nRMSE [%]

1 30.10 31.30 34.14 31.72 15.77
2 34.50 35.37 34.10 31.91 15.81
3 38.63 37.88 34.18 32.00 15.53
4 42.47 39.35 34.20 31.91 15.65
5 45.80 40.14 34.41 31.90 15.59

Forecast skill [%]

1 0.00 -3.98 -13.41 -5.38 47.61
2 0.00 -2.52 1.15 7.51 54.17
3 0.00 1.94 11.52 17.16 59.81
4 0.00 7.36 19.48 24.86 63.14
5 0.00 12.37 24.87 30.36 65.96

Table C.18: Same as Table 4, but for Table Mountain, Boulder, Colorado (40.12498◦ N, 105.2368◦ W).

Evaluation period PeEn Sarima Pma+Nam Pma+Ens Pma+Oracle Interval averaging

Brier score

1 0.66 0.77 0.74 0.90 0.37 0.70
2 0.71 0.81 0.74 0.89 0.37 0.72
3 0.74 0.82 0.74 0.89 0.37 0.73
4 0.76 0.83 0.74 0.89 0.37 0.75
5 0.78 0.84 0.75 0.89 0.37 0.76

CRPS [W/m2]

1 70.23 76.86 75.45 79.25 24.38 64.71
2 79.43 88.68 75.20 78.96 24.56 67.10
3 87.25 95.67 75.33 78.99 24.41 69.26
4 93.70 99.85 75.96 79.13 24.00 71.17
5 98.75 102.34 76.85 79.43 23.67 72.62

CRPS skill score [%]

1 0.00 -9.45 -7.43 -12.84 65.29 7.86
2 0.00 -11.64 5.32 0.59 69.09 15.53
3 0.00 -9.65 13.66 9.47 72.02 20.62
4 0.00 -6.56 18.94 15.55 74.39 24.05
5 0.00 -3.63 22.18 19.57 76.03 26.46
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