semiprime
English
editEtymology
editNoun
editsemiprime (plural semiprimes)
- (number theory) A natural number that is the product of two (not necessarily distinct) prime numbers.
- 2010, Jason Earls, The Lowbrow Experimental Mathematician, Lulu.com, page 145:
- Again, to be perfectly clear, we are looking for c values that produce a low density of semiprimes when employing Euler's basic polynomial but changing the c values, in the range of x=1 to 10000. Some very early standouts are: c=4 which produces 799 semiprimes; c=6 which produces 532 semiprimes; c=12 which produces only 431 semiprimes; c=18 which produces 364 semiprimes, and c=30 which produces only 320 semiprimes.
- 2015, Jie Wang, Zachary A. Kissel, Introduction to Network Security: Theory and Practice, Wiley [under licence from Higher Education Press], page 113,
- Firstly, we should change semiprimes from time to time, where a particular semiprime should only be used in a time interval shorter than the time required to factor an RSA challenge number of a similar length. Secondly, we should use semiprimes that consist of more than 200 decimal digits.
- 2015, Marius Coman, Two Hundred and Thirteen Conjectures on Primes: Collected Papers, Education Publishing, page 46:
- In this paper I will define four sequences of numbers obtained through concatenation, definitions which also use the notion of “sum of the digits of a number”, sequences that have the property to produce many primes, semiprimes and products of very few prime factors.
Synonyms
edit- (product of two primes, not necessarily distinct): biprime
Derived terms
editTranslations
editnumber that is the product of two primes
|
Adjective
editsemiprime (not comparable)
- (mathematics) That has properties derived directly or by extension from a semiprime.
- 1974, Thomas W. Hungerford, Algebra, Springer, page 446:
- The final part of the semiprime-semisimple analogy is given by
Proposition 4.4. A ring is semiprime if and only if is isomorphic to a subdirect product of prime rings.
- 1982, K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, translated by Harry F. Smith, Rings That Are Nearly Associative, Academic Press, page 176:
- In this chapter we shall study the structure of semiprime alternative algebras.
- 2003, John N. Mordeson, Davender S. Malik, Nobuaki Kuroki, Fuzzy Semigroups, Springer, page 213:
- Let be a semiprime fuzzy ideal of and .
Translations
editFurther reading
edit- Semiprime ideal on Wikipedia.Wikipedia
- Semiprime ring on Wikipedia.Wikipedia
- Semiprime on Wolfram MathWorld