[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

An Adaptive Cooperative Strategy for Underlay MIMO Cognitive Radio Networks: An Opportunistic and Low-Complexity Approach

Credit: 1
Pages: نامشخص
زبان:
Container: Frequenz
Vol: 69
Issue: 3-4
Year: 2015
Type: journal-article
Publisher: Walter de Gruyter GmbH
DOI: 10.1515/freq-2014-0070
Authors: M. Mazoochi , M. A. Pourmina , H. Bakhshi
توجه: قبل از اقدام به دریافت مقالات ISI، حتما از تعداد صفحات و نوع مطلب اطمینان حاصل نمایید. با استفاده از لینک اطلاعات فوق، می توانید به صفحه اطلاعات این مقاله در سایت ناشر مراجعه نمایید و تعداد صفحات و... را به دقت کنترل فرمایید. پس از اطمینان به این صفحه بازگشته و مراحل خرید و دریافت فایل مقاله را انجام دهید.
برخی از مقالات رایگان می باشند و بدون خرید از سیویلیکا با کلیک بر روی لینک فوق، از طریق سایت ناشر قابل دریافت می باشند.

Abstract:

AbstractThe core aim of this work is the maximization of the achievable data rate of the secondary user pairs (SU pairs), while ensuring the QoS of primary users (PUs). All users are assumed to be equipped with multiple antennas. It is assumed that when PUs are present, the direct communications between SU pairs introduces intolerable interference to PUs and thereby SUs transmit signal using the cooperation of other SUs and avoid transmitting in the direct channel. In brief, an adaptive cooperative strategy for multiple-input/multiple-output (MIMO) cognitive radio networks is proposed. At the presence of PUs, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The optimal approach for determining the power allocation and the cooperating SU is proposed. Besides, the outage probability of the proposed communication protocol is further derived. Due to high complexity of the optimal approach, a low-complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low-complexity approach is only about 14%, while the complexity is greatly reduced.