[go: up one dir, main page]
More Web Proxy on the site http://driver.im/Jump to content

8-cubic honeycomb

From Wikipedia, the free encyclopedia
8-cubic honeycomb
(no image)
Type Regular 8-honeycomb
Uniform 8-honeycomb
Family Hypercube honeycomb
Schläfli symbol {4,36,4}
{4,35,31,1}
t0,8{4,36,4}
{∞}(8)
Coxeter-Dynkin diagrams


8-face type {4,36}
7-face type {4,35}
6-face type {4,34}
5-face type {4,33}
4-face type {4,32}
Cell type {4,3}
Face type {4}
Face figure {4,3}
(octahedron)
Edge figure 8 {4,3,3}
(16-cell)
Vertex figure 256 {4,36}
(8-orthoplex)
Coxeter group [4,36,4]
Dual self-dual
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive

In geometry, the 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 8-space.

It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space.

There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,36,4}. Another form has two alternating hypercube facets (like a checkerboard) with Schläfli symbol {4,35,31,1}. The lowest symmetry Wythoff construction has 256 types of facets around each vertex and a prismatic product Schläfli symbol {∞}(8).

[edit]

The [4,36,4], , Coxeter group generates 511 permutations of uniform tessellations, 271 with unique symmetry and 270 with unique geometry. The expanded 8-cubic honeycomb is geometrically identical to the 8-cubic honeycomb.

The 8-cubic honeycomb can be alternated into the 8-demicubic honeycomb, replacing the 8-cubes with 8-demicubes, and the alternated gaps are filled by 8-orthoplex facets.

Quadrirectified 8-cubic honeycomb

[edit]

A quadrirectified 8-cubic honeycomb, , contains all trirectified 8-orthoplex facets and is the Voronoi tessellation of the D8* lattice. Facets can be identically colored from a doubled ×2, [[4,36,4]] symmetry, alternately colored from , [4,36,4] symmetry, three colors from , [4,35,31,1] symmetry, and 4 colors from , [31,1,34,31,1] symmetry.

See also

[edit]

References

[edit]
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21