[go: up one dir, main page]
More Web Proxy on the site http://driver.im/Jump to content

Bose-Einstein statistics

From Wiktionary, the free dictionary

English

[edit]

Etymology

[edit]

Named after physicists Albert Einstein and Satyendra Nath Bose, who developed the model and its underlying theory in 1924-25.

Noun

[edit]

Bose-Einstein statistics (uncountable)

  1. (quantum mechanics) A particle statistics model that describes the behaviour of collections of particles (bosons) that do not obey the Pauli exclusion principle.
    • 1999, W. Ketterle, D. S. Durfer, D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates”, in M. Inguscio, S. Stringari, C. E. Wieman, editors, Bose-Einstein Condensation in Atomic Gases, IOS Press, page 136:
      However, bosonic stimulation is as fundamental as Bose–Einstein statistics: one can derive the Bose–Einstein equilibrium distribution just by assuming detailed balance and bosonic stimulation (271).
    • 2010, Masahito Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation, World Scientific, page 1:
      Bosons obey Bose–Einstein statistics in which there is no restriction on the occupation number of any single-particle state.
    • 2017, J. Klaers, M. Weitz, “Photon BEC and Grand-Canonical Condensate Fluctuations”, in Nick P. Proukakis, David W. Snoke, Peter B. Littlewood, editors, Universal Themes of Bose-Einstein Condensation, Cambridge University Press, page 401:
      The photon number distribution, which can also be derived in a superstatistical approach [23], in general interpolates between Bose-Einstein statistics and Poisson statistics.

Synonyms

[edit]

Hypernyms

[edit]

Coordinate terms

[edit]
[edit]

Translations

[edit]

Further reading

[edit]