[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SUPERCRITICAL TRADEOFF:
Reports tagged with supercritical tradeoff:
TR16-184 | 16th November 2016
Alexander Razborov

On Space and Depth in Resolution

We show that the total space in resolution, as well as in any other reasonable
proof system, is equal (up to a polynomial and $(\log n)^{O(1)}$ factors) to
the minimum refutation depth. In particular, all these variants of total space
are equivalent in this sense. The same conclusion holds for ... more >>>


TR21-158 | 12th November 2021
Noah Fleming, Toniann Pitassi, Robert Robere

Extremely Deep Proofs

Revisions: 1

We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, ... more >>>


TR24-185 | 21st November 2024
Susanna F. de Rezende, Noah Fleming, Duri Andrea Janett, Jakob Nordström, Shuo Pang

Truly Supercritical Trade-offs for Resolution, Cutting Planes, Monotone Circuits, and Weisfeiler-Leman

We exhibit supercritical trade-off for monotone circuits, showing that there are functions computable by small circuits for which any circuit must have depth super-linear or even super-polynomial in the number of variables, far exceeding the linear worst-case upper bound. We obtain similar trade-offs in proof complexity, where we establish the ... more >>>


TR24-186 | 21st November 2024
Mika Göös, Gilbert Maystre, Kilian Risse, Dmitry Sokolov

Supercritical Tradeoffs for Monotone Circuits

We exhibit a monotone function computable by a monotone circuit of quasipolynomial size such that any monotone circuit of polynomial depth requires exponential size. This is the first size-depth tradeoff result for monotone circuits in the so-called supercritical regime. Our proof is based on an analogous result in proof complexity: ... more >>>




ISSN 1433-8092 | Imprint