In a pair of recent breakthroughs \cite{CHR,Li} it was shown that the classes $S_2^E, ZPE^{NP}$, and $\Sigma_2^E$ require exponential circuit complexity, giving the first unconditional improvements to a classical result of Kannan. These results were obtained by designing a surprising new algorithm for the total search problem Range Avoidance: given ... more >>>
The complexity class PPP contains all total search problems many-one reducible to the PIGEON problem, where we are given a succinct encoding of a function mapping n+1 pigeons to n holes, and must output two pigeons that collide in a hole. PPP is one of the “original five” syntactically-defined subclasses ... more >>>
The ExactlyN problem in the number-on-forehead (NOF) communication setting asks $k$ players, each of whom can see every input but their own, if the $k$ input numbers add up to $N$. Introduced by Chandra, Furst and Lipton in 1983, ExactlyN is important for its role in understanding the strength of ... more >>>
It is well-known that randomized communication protocols are more powerful than deterministic protocols. In particular the Equality function requires $\Omega(n)$ deterministic communication complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows that randomized communication is strictly stronger than what can be solved by deterministic protocols ... more >>>
For every prime p > 0, every n > 0 and ? = O(logn), we show the existence
of an unsatisfiable system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial Calculus refutation over F_p with M extension variables, each depending on at ...
more >>>
A secret-sharing scheme allows to distribute a secret $s$ among $n$ parties such that only some predefined ``authorized'' sets of parties can reconstruct the secret, and all other ``unauthorized'' sets learn nothing about $s$. For over 30 years, it was known that any (monotone) collection of authorized sets can be ... more >>>
We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, ... more >>>
This paper surveys the development of propositional proof complexity and the seminal contributions of Alasdair Urquhart. We focus on the central role of counting principles, and in particular Tseitin's graph tautologies, to most of the key advances in lower bounds in proof complexity. We reflect on a couple of key ... more >>>
The Stabbing Planes proof system was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas -- certain unsatisfiable systems of linear equations mod 2 -- which are canonical ... more >>>
Query-to-communication lifting theorems translate lower bounds on query complexity to lower bounds for the corresponding communication model. In this paper, we give a simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Whereas previous proofs used sophisticated Fourier analytic techniques, our proof uses elementary counting together with ... more >>>
One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions $f ... more >>>
We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula $F$, it is NP-hard to find a refutation of $F$ in the Nullstellensatz, Polynomial Calculus, or Sherali--Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a ... more >>>
We show that Cutting Planes (CP) proofs are hard to find: Given an unsatisfiable formula $F$,
(1) it is NP-hard to find a CP refutation of $F$ in time polynomial in the length of the shortest such refutation; and
(2) unless Gap-Hitting-Set admits a nontrivial algorithm, one cannot find a ... more >>>
We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve two open ... more >>>
Over the last twenty years, an exciting interplay has emerged between proof systems and algorithms. Some natural families of algorithms can be viewed as a generic translation from a proof that a solution exists into an algorithm for finding the solution itself. This connection has perhaps been the most consequential ... more >>>
Lifting theorems are theorems that relate the query complexity of a function $f:\left\{ 0,1 \right\}^n\to \left\{ 0,1 \right\}$ to the communication complexity of the composed function $f\circ g^n$, for some “gadget” $g:\left\{ 0,1 \right\}^b\times \left\{ 0,1 \right\}^b\to \left\{ 0,1 \right\}$. Such theorems allow transferring lower bounds from query complexity to ... more >>>
We study the Boolean Hierarchy in the context of two-party communication complexity, as well as the analogous hierarchy defined with one-sided error randomness instead of nondeterminism. Our results provide a complete picture of the relationships among complexity classes within and across these two hierarchies. In particular, we prove a query-to-communication ... more >>>
A major open problem in proof complexity is to prove super-polynomial lower bounds for AC^0[p]-Frege proofs. This system is the analog of AC^0[p], the class of bounded depth circuits with prime modular counting gates. Despite strong lower bounds for this class dating back thirty years (Razborov, '86 and Smolensky, '87), ... more >>>
We characterize the size of monotone span programs computing certain "structured" boolean functions by the Nullstellensatz degree of a related unsatisfiable Boolean formula.
This yields the first exponential lower bounds for monotone span programs over arbitrary fields, the first exponential separations between monotone span programs over fields of different ... more >>>
We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by
branching on an inequality and its "integer negation.'' That is, we can (nondeterministically ...
more >>>
For any $n$-bit boolean function $f$, we show that the randomized communication complexity of the composed function $f\circ g^n$, where $g$ is an index gadget, is characterized by the randomized decision tree complexity of $f$. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs.\ ... more >>>
The random k-SAT model is the most important and well-studied distribution over
k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for
satisfiablity algorithms, and lastly average-case hardness over this distribution has also
been linked to hardness of approximation via Feige’s hypothesis. In this ...
more >>>
We prove that the $\text{P}^{\small\text{NP}}$-type query complexity (alternatively, decision list width) of any boolean function $f$ is quadratically related to the $\text{P}^{\small\text{NP}}$-type communication complexity of a lifted version of $f$. As an application, we show that a certain "product" lower bound method of Impagliazzo and Williams (CCC 2010) fails to ... more >>>
For a universal constant $\alpha > 0$, we prove size lower bounds of $2^{\alpha N}$ for computing an explicit monotone function in NP in the following models of computation: monotone formulas, monotone switching networks, monotone span programs, and monotone comparator circuits, where $N$ is the number of variables of the ... more >>>
We survey recent progress in the proof complexity of strong proof systems and its connection to algebraic circuit complexity, showing how the synergy between the two gives rise to new approaches to fundamental open questions, solutions to old problems, and new directions of research. In particular, we focus on tight ... more >>>
Monotone span programs are a linear-algebraic model of computation which were introduced by Karchmer and Wigderson in 1993. They are known to be equivalent to linear secret sharing schemes, and have various applications in complexity theory and cryptography. Lower bounds for monotone span programs have been difficult to obtain because ... more >>>
We show that \emph{randomized} communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal \emph{randomized} lower bounds for the Clique vs.\ Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (G\"o\"os, Pitassi, and Watson, {\small FOCS~2015}).
more >>>We show that deterministic communication complexity can be superlogarithmic in the partition number of the associated communication matrix. We also obtain near-optimal deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields new lower bounds for the log-rank conjecture. All these results follow from a simple ... more >>>
We prove several results which, together with prior work, provide a nearly-complete picture of the relationships among classical communication complexity classes between $P$ and $PSPACE$, short of proving lower bounds against classes for which no explicit lower bounds were already known. Our article also serves as an up-to-date survey on ... more >>>
We study whether information complexity can be used to attack the long-standing open problem of proving lower bounds against Arthur--Merlin (AM) communication protocols. Our starting point is to show that---in contrast to plain randomized communication complexity---every boolean function admits an AM communication protocol where on each yes-input, the distribution of ... more >>>
We introduce a new and very natural algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits ($VNP \neq VP$). As a ... more >>>
An approximate computation of a Boolean function by a circuit or switching network is a computation which computes the function correctly on the majority of the inputs (rather than on all inputs). Besides being interesting in their own right, lower bounds for approximate computation have proved useful in many subareas ... more >>>
We study differential privacy in a distributed setting where two parties would like to perform analysis of their joint data while preserving privacy for both datasets. Our results imply almost tight lower bounds on the accuracy of such data analyses, both for specific natural functions (such as Hamming distance) and ... more >>>