[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

基于垂直剖面函数式的全球对流层天顶延迟模型的建立

赵静旸, 宋淑丽, 陈钦明, 周伟莉, 朱文耀. 基于垂直剖面函数式的全球对流层天顶延迟模型的建立[J]. 地球物理学报, 2014, 57(10): 3140-3153, doi: 10.6038/cjg20141005
引用本文: 赵静旸, 宋淑丽, 陈钦明, 周伟莉, 朱文耀. 基于垂直剖面函数式的全球对流层天顶延迟模型的建立[J]. 地球物理学报, 2014, 57(10): 3140-3153, doi: 10.6038/cjg20141005
ZHAO Jing-Yang, SONG Shu-Li, CHEN Qin-Ming, ZHOU Wei-Li, ZHU Wen-Yao. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(10): 3140-3153, doi: 10.6038/cjg20141005
Citation: ZHAO Jing-Yang, SONG Shu-Li, CHEN Qin-Ming, ZHOU Wei-Li, ZHU Wen-Yao. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(10): 3140-3153, doi: 10.6038/cjg20141005

基于垂直剖面函数式的全球对流层天顶延迟模型的建立

详细信息
    作者简介:

    赵静旸, 女, 1985年生, 博士研究生, 主要从事空间大地测量和GNSS气象学等研究. E-mail:jyzhao7@gmail.com

  • 中图分类号: P228

Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile

  • 对流层延迟是无线电导航定位的主要误差源之一,其值对目标高程的变化敏感.在动态导航定位中,由于目标高程变化随机性强,延迟改正实时性需求高,已有的对流层延迟模型难以满足应用需求.本文利用2005到2006年ERA-Interim再分析气象资料积分方法计算的对流层天顶总延迟(ZTD)、天顶静力学延迟(ZHD)以及天顶非静力学延迟(ZWD)的垂直剖面研究了ZTD随高程变化的最佳拟合形式,并以此为基础建立了全球ZTD改正模型SHAO-H.该模型以大气中水汽的垂直分布规律为依据,将ZTD表示为高程的分段函数,进而再模制每段函数中各参数随时间的变化.精度评估显示:与积分ZTD相比,SHAO-H模型计算的ZTD在不同等压层上的平均bias大部分在±1 mm以内,随着高度的上升,平均RMS由39 mm减小至不足1 mm;与IGS (International GNSS Service)实测ZTD相比,SHAO-H模型的精度(bias为7.02 mm,RMS为38.50 mm)优于UNB3m模型(bias为14.67 mm, RMS为51.95 mm).SHAO-H模型具有精度稳定、计算简便等优点,适宜任意高度的用户使用.
  • 加载中
  • [1]

    Byun S H, Bar-Server Y E. 2009. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod., 83(3-4): 1-7.

    [2]

    Chen Q M, Song S L, Zhu W Y. 2011. Preliminary establishment of the global model(SHAO-G)for the zenith tropospheric delay. // China Satellite Navigation Conference (in Chinese). Shanghai.

    [3]

    Chen Q M, Song S L, Heise S, et al. 2011. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China. GPS Solut, 15(4): 415-425.

    [4]

    Chen Q M, Song S L, Zhu W Y. 2012. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area. Chinese J. Geophys., 55(5): 1541-1548.

    [5]

    Collins J P, Langley R B. 1996. Mitigating tropospheric propagation delay errors in precise airborne GPS navigation. // Proceedings of the IEEE Position, Location and Navigation Symposium. Atlanta, Georgia, USA: IEEE, 582-589.

    [6]

    Collins P, Langley R, LaMance J. 1996. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation. // The Institute of Navigation 52nd Annual Meeting. Cambridge, Massachusetts, USA.

    [7]

    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J Roy. Meteor. Soc., 137(656): 553-597.

    [8]

    Dodson A H, Chen W, Baker H C, et al. 1999. Assessment of EGNOS tropospheric correction model. // Proceedings of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1999). Nashville, TN, 1401-1408.

    [9]

    Hopfield H S. 1971. Tropospheric effect on electromagnetically measured range: prediction from surface weather data. Radio Sci., 6(3): 357-367.

    [10]

    Leandro R, Santos M, Langley R B. 2006. UNB neutral atmosphere models: Development and performance. // ION NTM 2006. Monterey, California, USA, 564-573.

    [11]

    Leandro R F, Langley R B, Santos M C. 2008. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solut., 12(1): 65-70.

    [12]

    Li W, Yuan Y B, Ou J S, et al. 2012. A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull., 57(17): 2132-2139.

    [13]

    Penna N, Dodson A, Chen W. 2001. Assessment of EGNOS tropospheric correction model. J. Navig., 54(1): 37-55.

    [14]

    Saastamoinen J. 1972. Contributions to the theory of atmospheric refraction. Bull. Geo., 105(1): 279-298.

    [15]

    Seidel D J, Randel W J. 2006. Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111: D21101.

    [16]

    Sheng P X, Mao J T, Li J G, et al. 2003. Atmospheric Physics (in Chinese). Beijing: Peking University Press

    [17]

    Song S L, Zhu W Y, Chen Q M, et al. 2011. Establishment of a new tropospheric delay correction model over China area. Sci. China Phys. Mech. Astron., 54(12): 2271-2283.

    [18]

    Thayer G D. 1974. An improved equation for the radio refractive index of air. Radio Sci., 9(10): 803-807.

    [19]

    Yao Y B, He C Y, Zhang B, et al. 2013. A new global zenith tropospheric delay model GZTD. Chinese J. Geophys. (in Chinese), 56(7): 2218-2227.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2013-10-31
修回日期:  2014-09-16
上线日期:  2014-10-20

目录