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Some Nonnegative Trigonometric Polynomials Connected 
With a Problem in Probability 

Eugene Lukacs l and Otto SZclSZ 2 

Let O< bl < b2< ... < bn be integers and let g(O) be the Vandermonde determinant 
formed from bL b~ , ... , b! with the first row replaced by sin2 (bi O/2) (i= 1, ... , n ). The 
function g(O) is then a cosine pOlynomial. In connection with a problem in probabilit.v, the 
question arose as to when g(O) is a nonn egative trigonometric polyno mial. This question is 
answered for six classes of such trigonometric polynomials. 

In a previous paper 3 we gave a necessary condi­
tion that a polynomial without multiple roots must 
sa tisfy in order that its reciprocal be the Fourier 
transform of a distribution function. Imposing a 
further restriction on the polynomials it is easy to 
derive the following condition: 

The reciprocal of a polynomial whose roots are 
all single and ha" e the same imaginary part is the 
Fourier transform of a distribu tion function if and 
only if 

(1) The pol ynomial has one purely imaginary root 
ai (a 7"" 0) and n pairs of complex roots ± bk+ ai 
(0< bl < b2< . . . < bn , k = l , 2, ... , n). 

(2 ) The determinant 

b ~, b ~, .. . , 
? 0 for all O. 

b2 (n-l) 
1 , b2 (n- l ) 

2 , •• • , 
b 2 (n-I) 

n 

This condition follows easily from formula (4 .4) of 
the reference cited in footnote 3. It is therefore 
of some interest to study this determinant and to 
investigate for what values of bl , b2 , • •• , bn it is 
a nonnegative function of O. 

In this paper we consider this determinant only 
for integer values of the bj and show that it repre­
sents for certain configurations of the bj a nonnegative 
trigonometric polynomial. Certain relations for 
generalized Vanclermonde determinants of odd in­
tegers are also obtained. 

We introduce first some notations. Let 
0< bl < b2< < bn be n integers and 

b ~\ . . . , 

b~, ... , 

bi(n-I) , b2 (n-l) 
2 , ••• , b !(n- I ) 

----
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the generalized Vandermonde determinant formed 
from the numbers M, b~, ... , b~ with the exponents 
k, 1, 2, ... , (n - l ). Clearly V 1= V 2 = ... = 
V n_ I= O, while V o is the ordinary Vandermonde 
determinant of the numbers bi, . . ., b;. D eno te 
further by tl ", the minor of the element in the first 

n 
row and m-th column of fl O so t llat 1 '0= ~ ( _ l)m- Itlm. 

m=l 
In this paper we study the function 

• 2 b20 
sin 2"'" 

b ~, b ~, ... , 
g(O) = 2 

b2 (n-l) 
1 , 

b2 (n-l) 
2 , ••• , b ~ (n-I) 

n 
= Vo+ ~ (_l)mtl m cos bmO (2) 

m=1 

For th e cli sC li ssion of g(O) we need the following 
lemmas: 

L emma 1. If bl , b2 , . •• , bn are integers, the 
determinant (2) can be factored so that 

g(O) = (l - cos o)n A(cos 0), (3) 

where A(x) is a polynomial in x of degree bn- n. 
L emma 2. If b1, b2, ••• , bn are odd integers we 

have 

g' (O) = sin 0 (l - coS20)"-1 B(cos 0) = (sin 0)2n-IB(cos 0), 
(4) 

where B (x) is a polynomial in x of degree bn- 2n + 1. 

To prove lemma 1 we differentiate (2) with respect 
to 0 and then set 0= 0. This shows that 

g2H (0) == 0 

g2i(0) = 0 

g2k(0 )= (- 1)k-l V k 

for .1= 1, 2, ... ad inf. } 

fo1' .1= O, J , 2, ... (n- l ) (5) 

fork = n, (n+l), ... ad inf. 
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From (5) we obtain the expansion of g(O) into a series 

(6) 

On the other hand, (2) indicates that g(O) is a cosine 
polynomial of degree bn which vanishes for 0= 0. 
Therefore it has the form 

g(0)= {31 (I - cos 0) + {32(l-COS 0)2+ 

+ {3bn (1- cos O) bn (7) 

Comparing (6) and (7) it is seen that {31= {32= ... = 
{3,,-1= 0 so that (I - cos o)n is a factor of g(O) ; this 
establishes lemma 1. 

To prove lemma 2 we assume that all the bt (i = l , 
2, . .. , n) are odd numbers. It follows then from 
(2) that 

therefore 
g' (7r - O)=g'(O). 

From (3) we have 

g' (8)= (I - cos 8)n-l sin 8[nA (cos 8) ­

(I - cos 8)A'(cos 8)]. 

Substituting this into (9) we obtain 

(8) 

(9) 

(I -cos 8)n-l sin 8[nA(cos 8)- (I - cos 8)A'(cos 8)] 

= (1 + cos 8)n-l sin 8[nA(-cos 8)­

(l +cos O)A' ( - cos 8)]. 

This shows that nA(cos 8)-(I-cos 8)A'(cos 8) and 
therefore also g' (8) has the factor (1 + cos 8)n-l. This 
completes the proof of lemma 2. 

If we introduce as a new variable 

x=cos 8 (10) 

and write 

P (x)=g(arc cos x) (11) 

we have from lemma 1 

P (x)= (l -x)nA(x), (12) 

and similarly from lemma 2 

P' (x) = - (l _x2)n-lB (x). (13 ) 

We substitute next the eA"pansion (6) into (8) and 
see that 

2Vo- "i2 (_ I )k-l V k 82k= "i2 (_ I )k-l V k (7r _ O)2k 
k=n (2k)! k=n (2k)! 

(14) 

Differentiating (14) and setting 8= 0 we obtain from 
this equation a number of relations for generalized 
Vandermonde determinants formed of odd integers 

2 Vo= "i2 (_ I )k-l V k 7r2k 

k=n (2k)! 

"i2 (_ I )k-l V k 7r2k = 0 
k=n (2k - m)! 

for m = l , 2, ... (2n - l ) 

00 TT 2k 'L:: (_ I )k-l . V k 7r 

k=n+m (2k - 2n- 2m)! 

= (_ I )n+m7r2(n+m) V,, +m 

for m = O, 1, 2 , .. . ad info 

~ TT 2k 'L:: (_ I )k-l V k7r 0 
k=n+mH (2k - 2n- 2m - l )! 

for m = O, 1, 2, ... ad info 

(15) 

III the following we discuss several configurations 
of the integers b1, b2, . .. , bn , which lead to non­
negative trigonometric polynomials g(8), the results 
are given in statements, labelled (A ) (B ) . . . (F) . 
(A) If the bt are the first n consecutive integers, that 
is if bi=i for i= l , 2, ... , n, then the trigonometric 
polynomial g(8) is nonnegative. 

Proof: From lemma 1 we see g(8)=A(I - cos 8)n, 
where A is a constant. Hence A = 2- ng(7r) ; from (2-) 

n 
it is seen that g( 7r) = Vo+ 'L:: Llm • Therefore A > O 

m=l 
and consequently g(8) nonnegative for all valucs of 8. 
(B ) If the bi are the first n consecutive odd integers, 
that is, if bi = 2i - 1 for i= l , 2, ... , n then the 
trigonometric polynomial g(8) is nonnegative. 

Proof: Since bn= 2n - l the polynomial B(x) of 
lemma 2 reduces to a constant B. From (13) we have 
P'(x) = _ B (I _x2)n-l or, in view of P(I )=O, 

P (x)= B .C (l _ t2)n-l dt. 

Formulae (11) and (2) show then that P (O) = g(7r/2) = 
Vo> O, hence 

Therefore P (x) 2:: 0 for Ixl:S 1. This completes the 
proof of statement (B ) since the inequalities 
P(x) 2:: 0 for Ixl :S 1 and g(8) 2:: ° for all 8 are equivalent. 
(C) If bn=n+ l , that is if the numbers bl , • •• , b" 
are obtained from the fiTst consecutive (n+ 1) integers 
by omi t ting the in teger k (1:S k :S n ) then the trigo­
nometric polynomial g(8) is nonnegative if and only 
if 2k22:: (n+ 1). 

Proof: In this case P(x) has degree (n+ 1) so that 
according to lemma 1 A(x) is a linear function. 

A (x)= a + bx. (16) 
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The substitution (10) transforms cos ke into Tk(x) 
where Tk(x) is the k-th T chebicheff polynomial of 
the first kind . Formulae (2), (3) and (16) show that 

The coefficients a and b of A (x) can be determined 
from (17), after some elementary computations it is 
seen that 

n [ n(n + l) +P] 
A(x) = 2 fl n x+ (n + l )2-P . (18) 

In the interval Ixl<1 the functions A(x) and P(x) = 
(1 _ x)n A(x) have the same sign 0 that it is sufficient 
to de termine when A(x) is nonne~ative in Ixl<l. 
From (18) it i3 seen that A(x) ~ ° in Ixl < 1 if and only 
if n(n+ 1) + k2 ~ (n + 1)2 _ lc2 , that is if 2Jc2 ~n+ l. 
(D ) If tIle bi (i = l , 2, ... , n) arc all odd numbers 
and if bn = 2n+ l so that bI , b2, .. . , bn arc obtained 
from the fir t (n + 1) odd integers by omitting the 
k-th odd integer 2k - l (l ::;k::;n), than the trigono­
metric polynomial gee) is nonnegative if either one 
or the other of the foll owing conditions is satisfied 

(i) 

lc < ~ (1 + -v'l + 2n) , ( ii) 

but 
n - 2lc(lc-l ) < Z2 

2[n(n + 1)- lc (lc - l )]- n, 

where Zn is the root of the equation 

whieJ:- falls into the interval (0, 1) . 

If neither (i) nor (ii ) is satisfied, then the function 
gee) assumes also negative values. Moreover it is 
possible to simplify (ii) for large n by proving the 
Corollary to statement (D). 

If for large nand k < [I +-v'l + 2n]/2 also 

I (n+~) [n - 2le (lc - 1)] 

V 2[n(n+ 1) - lc (le - l )] ::; p= 0.5939157 . . . 

then gee) is nonnegative; if on the other hand 

(n+~)[n- 2le (le - l )] 2 

2[n(n + 1) - lc (lc - l )] > p 

then ther e are integers nand le for which gee) assumes 
positive and negative values_ 

To prove statement (D ) we need the following 
lemma 

Lemma 3. Let 

(20) 

and 
(21) 

The polynomial Q(x, .n is nonnegative in the interval 
-1::;x::; 1 if and only if 

(22) 

Here Zn is the root of the equation 

which falls into the interval (0, 1). 

I . 1 
Moreover let wn= -y n+Z Zn . 

Then lim W n = p exists and is the root ofthe equation 
n-"" 

F(p)= "/7r(~- p2) -2p3.r (l - tZ)e- p2t2 dt= O, 

which is located in the interval (o ,~) 

(24) 

Some values of Zn as well as p were computed. 
The proof of this lemma is rather lengthy_ In 
order to avoid interrupting the discussion of the 
various nonnegative trigonometric polynomials, this 
proof will be given in the last section of this paper. 

We proceed now to the proof of statement (D). 
According to lemma 2 B (x) is a polynomial of the 

second degree. Since the bj are all odd numbers 
pI (x) and B(x) are even functions of x so that one 
obtains from (13 ) and (2) 

n 
PI(X)= _( I - x Z)n- I(a + cx2)= ~ (- l) mflm T~ m(x). 

7n= 1 

Thi relation permits us to de termine a and c, and it 
is seen that 

PI(x) = 
_ 22n(2n + l )fl n(1 - x2)n- I{ x2 n - 2lc(lc - l ) } 

2[n(n + I) - le (k - l )] , 

If we use for brevity the notation 

(25) 
and 

2 n - 2lc(lc-l ) 
I n,k 2[n(n + 1) - lc(lc - l)] ' (26) 
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we have 

P' (x) = - 'Y (I - x2)n - l(X 2 - S~,k) } 

P (X)='Y i l (I - t2)n-l(t2 - s;,k) dt . (2 7) 

If (i) is satisfied we see that S;'.k'::; 0, so that from (27 ) 
P' (x)'::; O for Ixl'::; l. In this case P (x) is non­
increasing in the interval - 1 ::; x.::; + 1, since P (1) = ° 
this means P (x)?: O for Ix l '::; l so that also g(e)?: o. 

We assume next tha t (ii) is satisfied, then '\;',k> O. 
Since 'Y > O and P (x) = 'Y Q(x, Sn.k), we see that state­
ment (D ) follows immediately from lemma 3. 

(E ) If the numbers bl , •.. , bn are ob tained from 
the first consecutive (n + 2 ) integers by omitting the 
two integers k and p where I '::; k '::; p - 1 '::;n, then 
gee) is nonnegative if and only if a cer tain polynomial 
Q(x) of th e second degree is nonnegative for Ixl '::; l. 
H ere 

Q(x) = 4x2+ 4[n - L (n , k , p )]x+ 2n 2+ (n - 2)-

4nL(n, k , p )+N(n, le , p ), (28) 
where 

(29) 

P roof: In this case bn=n+ 2, so that according to 
lemma 1 A (x) is a polynomial of the second degree, 
A(x) = ax2+ bx+ c. From (12 ), (2) and (3) we have 

P (x)=( 1-x)n(a x2 + bx + c) 
n 

= Vo+ ~(-l)m~m Tb (x). (3 0) 
m=l m 

From this relation we can determine the coefficients 
a, b , and c. A somewhat t edious elemen tary 
computa tion shows that 

We obtain 

H ere 

This completes the proof of stat emen t (E ) which 
follows immediately from (30). 

Certain particular cases can b e discussed easily 
(a ) If k= p - I =n thenN(n, n, n + 1) = L (n,n,n + 1) 

= 0 so that Q(x)= 4x2+ 4nx+ 2n2 + n - 2. The dis­
criminantofQ (x) is then - 16 (n - 1)(n + 2) and is 
nega tive for n> l. Therefore, Q (x) ?: ° for all x so 
that gee) must be nonnegative. 

(b) If k < n while p = (n + 1) then L (n, le , n + 1)= 0 
and 

N( k + 1)=_(n+2)(2n + I )(n2- k 2). 
n, ,n (n+ 2)2-P 

Q(x) and its discriminant can b e compu ted easily 
and it can be shown that gee) is nonnega tive if and 
only if 

(c) If k = n- 1 and p= n then N(n,n - l ,n)= Oand 

n(n + 2) 
L (n, n- 1, n)=3(n+ 1) ' 

The discriminant of Q(x) is then 

which is negative if n?:3 so that in this case gee) ?: o. 
If n = 2, Q(x) has two roots in the in terval 
- 1 .::; x .::; + 1 so tha t 9 (e) assumes also nega ti ve 
values 

We proceed to discuss a more complicated case 
by assuming tha t the b], b2, .. . , bn ar e obtained 
from the firs t (n + 2) odd integers by omit ting two 
odd integers (2k - 1) and (2p - 1) where 

(3 1) 

so that bn= 2n + 3. 
We see then from lemma 2 tha t B (x) is a poly­

nomial of degree four. By the procedure employed 
in case (C) it is possible to determine the coeffi­
cients of this polynomial. 

(3 2) 

'Y = 2 2n(2n+ 3)~n> 0 , 1 
a = 2 { - 2(n+ 1)2(3n+ 5) + (n+ 1)(2n + 5) [le (k - 1)+p(p- 1)]- 4le (le - 1)p(p - I ) } 

[(n + 2)(n+ 1) - k (le - l )][(n + 2)(n + 1)-p(p - I )] . (33) 

b {-(n + 1)(3n + 4) + 2(n + 1) [k (le -1)+p(p - l )]- 4k (k - l )p (p - I )} I 
[(n + 2)(n+ 1) - k(k- l )][(n + 2)(n+ l )-p(p- I )] ) 
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The trigonometric polynomial g(O) is nonnegative if 
and only if 

P (x) = 'Y.r ( I -t2)n -I(4 t4+ at2- b)dt~ 0 for all lx l ~ l. 
(3 4) 

The nonnegativity of the polynomial P (x) depends 
on the nature of the roots of the polynomial 
B (x) = 4x4+ ax2 - b. This introduces the need to 
distinguish a number of cases. For this purpose 
we write 

h(r) = 4T 2+ aT- b= 4(T-TI)(T- T ~ Where } 

- a - , /a2+ I6b - a + ,1a2+ I6b ' (3 5) 
1'1= 1'2= 8 

We arc D OW in a position to formulate sta tement (F ). 
(F ) If the numbers bl , b2 , ••• , bn arc obtained 
from th e first consecutive (n+2) odd integer s by 
omi tting the t wo integers 2k - 1 and 2p - 1 (where 
I~k ~p - I ~n) then t he trigonometric polyno·· 
mial g(O) i nonn egative if and only if one of the 
following four, mutually exclusive, conditions is 
satisfied 

(a) a ~ O a nd b ~ O , 
(f3) a< O and a2 + I6b ~O , 
(1') a~O and 0< b< 4 + a and also 

R 2 ( 1'2) -1'IR I ( 1'2) ~ O . 
a 2 

(0) O> a> - 4 and - 16< b< a+ 4 and also 

H ere 

R2(,r;~) - TIR I ( 1' 2) ~ O , and if 1'1 > 0 
R2(- ,I:;:;) - T2R l(- TI)~ O. 

R t(z)= f~z( I - t2)n-It2(i-I)(t2-z2)dt fori = I , 2 , (3 6) 

so that R I( z)= R (z) a given by (23). 

Proof: If h(T)=4T2+aT- b ~ 0 for O ~T~ I , then 
P' (x) = - 'Y (I -x2)n- Ih(x2) ~ O for - 1 ~x~ 1. Since 
P (I )= O we see that P (x) ~ O for - 1 ~x~ + 1. 

Clearly h(T) =( 21'+~y - ~~- b , therefore 

F • 

We next derive the condit ion for the validity of 
(37) when a< O. Clearly h' (T)=8T+a, hl/ (-r) = 8, so 
that h( 1') ha a minimum at 1'= -a/8. 

We consider first the ca e lal / = - a/ < 1, we 
have then 

min h (-r) = h ( -a) =_ a2+ I6b . 
0:51':51 8 16 

R elation (37) is therefore satisfied if - 8< a< 0 and 
a2+ I6b ~ 0. If la l/ ~ I weseethat h' (-r)~8(T - I)~ 0 
in O ~T~ I , so that min h(-r)= h(I )=4+a-b. 

0<1'<1 
The function h(T) is nOllllegative if a~ -8 and 
4+ a - b ~ 0 . But a2+ I6b=(a+8)2- I6 (4 + a - b) for 
any a , hence if a2+ I6b ~Owe always have4 + a - b> O. 
The alternatives discussed for case a< O can there­
fore be joined so tha t condition ((3) is es tablished. 
To complet.e the discussion we must consider the 
r emaining cases, namely 

(1") 
and 
(0') 

a ~ O and b> O, 

In case (1") we see from (35) that 1'1 < 0 while 1'2> 0. 

Since P (x) = 41' II (1 _ t2) n-j (t2 - 1'1) (t2 - 1'2) dt , i t fol-

lows that P (x) ~ O if 1'2 ~ 1, tha t is if ,1a2 + I6b ~ a+8, 
bu t this occurs if and only if b ~4+a. 

Thus P(x)~ O for - I ~x~ l if a ~ O andb ~ 4 +a , 
therefore (1") redu ces to the case 

In this case bo th roo t 1'1 and 1'2 are real and a 
simple compu tation shows that min P (x) = P ( -,1~), 

-1<x<l 
hence P (x) ~ 0 in Ixl ~ 1 if and oi1ly if 

p ( - ,r;;) = 41' II _ (l _ t2)n-1 ([2- TJ (t2- 1'2) dt ~ O. 
-";72 

That is if 

h (-r) ~ O in ° ~ T ~ 1 if and only if (3 7) or , wri tten in a more concise no tation 

( 2 +~)2>a2+ I6b . 0< < 1 
. l' 4 - 16 III _1'_ . (38) 

If a ~ 0, (38) holds if and only if b ~ 0, bu t this is 
exactly condi tion (a) . 

R2(,r;;) - TIR I ( 1' 2) ~ 0, 

so tha t (1') is established . 
We proceed with the discussion of the last case 

(B' )a< O and a2+ I6b> 0 a nd show first that always 
a+ 4> 0. From (33) we ob tain easily 

(a+ 4) 2(n+ I )2(n2+ n - 1) +(n+ 1) [k (lc - I ) +p(p- I )J- 2lc (k- I )PcP-I) 
- 2-= [(n + 2) (n + l )- k (k - I )][(n+2) (n+ I )-p(P- I)], . 
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On account of (3 1) this fraction has always a pos-
,itive denominator so that its sign is determined by 
the sign of the numerator which we denote by 
M(n,k,p). We have then 

M (n,k,p) = p(P- 1) [(n + 1) - 2k(k - 1)1+ 

(n + 1)k (k - 1)+ 2(n + 1)2(n2+n- 1) 

= k (k - 1) [(n + 1)-2p(p-1)1 + 

(n + 1)p(P- 1)+2(n+ 1)2(n2+n- 1). 

If (n+1) - 2k(k - 1) 2:: 0 then M(n,k ,p»O. If on 
the other hand (n+1)- 2k(k - 1) < 0 then also 

. (n+ 1) - 2p (p - 1) < 0. ThereforeM(n,k,p) decreases 
for fixed k and increasing p as well as for fixed p and 
increasing k. Hence M(n,k ,p) attaips its mio.imum 
value if k and p are as large as poss1ble, that 1S 

M(n,k,p ) 2:: M(n,n,n + l) 

= 2(n+ 1)2(n2+n - 1) - 2n2(n + 1) (n - 2) 

2:: 2n2(n+ 1)2 - 2n2(n + 1) (n - 2) if n2:: l. 

Therefore M(n ,k ,p) 2:: 6n2(n+ 1) > 0 if n.2:: ~ so. that 
also a+ 4> 0. It is therefore no l'estnctlOn If we 
write the case (0') in the form 

We must first consider the case 

We have then a2+ 16b> 0 so that h(7) has two real 
roo ts ; from (35) we see that 71 < ° while 722:: l. 
Therefore 

P (X) = 4'Y.r (1-t'l)n- I(t2_71)(t2-7~dt~0 

for - 1 <x < 1 so that (01) does not yield nonnegative 
trigonometnc polynomials. We finally have to in­
vestigate the possibility that 

holds. Again a2+ 16b> 0 and 71,(7) has two real 
roots 71 and 72' It follows then from (35) that 
12:: 72>71>-l. 

Assume first that 71> 0. 
By a simple computation it is seen that P(x) has 

the two minjma+v'~ and-.[T; inside the interval 
(- 1,+ 1). P(x) is therefore nonnegative for 
- 1 <x < 1 if and only if P (,fTJ 2:: 0 and P( --{i;) 2:: 0. 
Accordfrig to (34) and (35) this means that 

J 1 (l-t'l)n-It2(t2- T~dt­
--F2 

71J 1 (l_ t'l)" - 1 (t2_T~dt2::O 
--F2 

-l 
and 

or, using the notation of (36) 

Rll"T0-TI RI( 72 2:: 0 

and simultaneously R2(--/Tl)- T2RI( - -/Tl) 2:: 0. 

If 71 ~ ° then there is only one minim.um for p.(x), 
and therefore only the first conditlOn remams. 
This establishes condition (0) and completes the 
proof of statement (F). . 

In this section we give proof of lemma 3, whlCh 
was stated on page 141. We write 

(8= 0,1) 

and want to determine the conditions which .\ has 
to satisfy in order that the polynomial 

Q(x,'\) = P I(x) _.\2PO(X) (40) 

should be nonnega tive for - 1 ~ x ~ + 1. 
Clearly 0< P 1 (x) < PO(x) for - 1 ~x< + 1. There­

fore Q(x,'\) < O for Ix l<1 if .\ 2:: l. If for some value 
.\0 such that 1.\01<1 the function Q(x,.\o) 2:: 0 for 
i x l~ l then also Q(x,.\)2::O for I x l ~1 and 1..\ !.~ 1.\01. 

To obtain a criterion for the nonnegatlvlty of 
Q(x,.I) in Ixl ~ 1 we have to determine the greatest 
possible .\ such that 1.\1<1 and Q(x,.\) 2:: 0 for Ixl ~ 1. 

An elementary computation shows that the func­
tion Q(x,.I) has exactly one minimum in the interval 
- 1< x< + 1 which is located at x=-,I. 

We consider next the equation R (z) == Q( -z, z)= O 
or, written in gr eater detail, 

J~. (1-t2)n -l(t2-z'l)dt= PI(-z)- z2Po(-z)= 0. (41) 

Clearly R(O» O while R(I) = P I(- l) - Po(- l) < O so 
that the equation (41) has at least one root in (0,1). 
Moreover 

dR=_2Z f 1 (l -t'l)n- Idt 
d z _. 

so that dR/dz vanishes in the interval O~ z< 1 only 
at the point z= O, therefore the equation (41) has 
exactly one root z" in the interval (0,1). 

Since min Q(x, zn)= R (zn)= ° we see that Q(x, zn) 
-I<x< l . 

2:: 0 in Ixl~ l and therefore Q(x , .\)2:: 0 m I xl~1 
if .\~ zn' 

If however ,I> Zn then 

Q(-z", .\) = P I(-zn)- .\2Po(-zn) 

= _(.\2_ Z!)pO(-z,,)<0 
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so that Q(x, S-) assumes also negative values. This 
es tablishe the fu's t part of lemma 3. We still have 
to discuss the asymp totic behaviour of the solution 
of equation (41 ) . 

We derive first a useful inequality. By definition 
Zn is a root of equation (41 ) , therefore 

If we set 

(42) 

then we see that 

or 

£1 1 2 £1 1 (1_ t)n- l(2 dt-~ (1- t)n- 1t- z elt ;::: O • 
• 0 + 1 . 0 n -

2 

W e see therefore that 

r (n)r (~) W~ r (n)r (~) 
( 3)--1 ( 1) >0 

r n+2" n+2" r n+2" 

o tha t 

(4 3) 

In order to derive an asymp totic estimate for w" 
we rewri te (41 ) by dividing the interval of integra­
t ion into two parts (- z,O) and (0,1). The integrals 
over the second interval may be easily expressed in 
t erms of gamma functions. A simple computation 
yields: 

1 r (~) f en) (1 ) 
R (Z)= 2" ( 1) 2n + l - z2 

r n+-
2 

If we write 

L (z) 
2 (n+~) r (n+~) 

' r (n) R (z) 

and 

we have 

From the asymptotic formula for log r ex) it is een 
that 

r (n+~) 
( n+~)!r(n) 

hence 

We next transform the integral I n. L et O< x< l 
then (l -x)ex< l and (l _ x)n- l<e-(n-l)X, therefore 

Since eX> l + x we have al o (1- x)ex> 1- x2 and 
1-(1- x)eX< x2 so that finally ° < 1-(1- x)n- le (n-l)'" 

« n - 1)x2 or 0<e-(n- l)x_(1- x) n- l« n - 1)x2 • We 
replace here x by z2t2 and see tha t 0<e-(n-l)z2t2_ 

(l _z2t2) n- l« n - 1)z 4t4 for z 2t2< 1, so tha t 

(1-z2t2)n- l=e- (n- l)02t2-(n - 1)8nz4t4 for z2t2< 1 

with 0< 8n< 1. 
We ubstitute t his into the expression (44) for I n 
and obtain 

I n= (1 e-(n-l)z2t2 (1_ t2)elt _ 20n (n - 1)z4 (46) 
.10 35 

for z2< 1 with 0< 0,,< 1. 
We have 

_'!'Z2t2 3 ( _.!.Z2t2 ) 
Since O< l - e 2 < 2" z2t2we eethat 1- e 2 

= 1J Z2t2 with 0< 1J < 3/2 and hence 

therefore 

2"-+_ z2e-(n-l)z2" 
15 

(44) with O< cr < l dnd O < "-< ~' 
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ubstituting this into (46) we hav e 

1,,= .f e- (n++) z2 t2(1_ t2)dt+ 

2)" Z2 e- (n- J)z2 q _ 2on(n - l )z4 
15 35 

(47) 

with O< on< l , 0< a- < 1, O < ),, <~' 

We introduce next a ~ew variable Wn=~n+ ~ z , 

using (45) and (47) we see that W n satisfies the 
equation 

For each value of n this equation has a root W n , by 
(43) we see that the set of these roots is bound ed. 
We consider any accumulation point p of this set 
and a subsequence {Wnj} of the sequence { wn} such 
that lim wn;= p. From (48 ) it is seen that p satisfies 

1-->0> 

the equation 

and by transforming the integral we obtain finally 
for p the equation 

To complete the proof of lemma 3 we have only to 
show that the sequence {wn } converges. We dem-

I onstrate this by showing that { w n } bas only one 
accumulation point, and this follows if we how that 

F (p) = O has only one root in (O,~~). 

We see easily that F (O» O and F( ~~)<O so 

that there is at least one root in the interval. 
From (50) we see that 

F f (p)=- 2 p [ ';;+ 2 f: e-x' dx ] 

so that F'(p)<O for (»0. This shows that F (p) 
has exactly one root. 

The equation (41 ) has been evaluated for certain 
values of n, similarly the asymptotic solution p has 
been found from (50). This was done in part at the 
Computation Laboratory of the National Bureau of 
Standards, Washington, D. Co, and in part at the 
computation department of the Institute for Numeri­
cal Analysis in Los Angeles, Calif. 'I:he results are 
given in the following table, which shows also the 
values of W n o 

n Zn W n 

2 038197 060394 
3 032114 060079 
4 028244 . 59915 
5 025505 o 59814 
6 023434 059745 

.7 o 21798 o 59696 
8 020463 059659 
9 o 19346 059630 

10 o 18395 059606 
15 . 15122 059536 
20 o 19141 059500 

p= Oo5939157 

WASHINGTON, May 25, 1951 
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