Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Aug 2023 (v1), last revised 13 Oct 2023 (this version, v3)]
Title:Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
View PDFAbstract:In this work, we introduce the Qwen-VL series, a set of large-scale vision-language models (LVLMs) designed to perceive and understand both texts and images. Starting from the Qwen-LM as a foundation, we endow it with visual capacity by the meticulously designed (i) visual receptor, (ii) input-output interface, (iii) 3-stage training pipeline, and (iv) multilingual multimodal cleaned corpus. Beyond the conventional image description and question-answering, we implement the grounding and text-reading ability of Qwen-VLs by aligning image-caption-box tuples. The resulting models, including Qwen-VL and Qwen-VL-Chat, set new records for generalist models under similar model scales on a broad range of visual-centric benchmarks (e.g., image captioning, question answering, visual grounding) and different settings (e.g., zero-shot, few-shot). Moreover, on real-world dialog benchmarks, our instruction-tuned Qwen-VL-Chat also demonstrates superiority compared to existing vision-language chatbots. Code, demo and models are available at this https URL.
Submission history
From: Shuai Bai [view email][v1] Thu, 24 Aug 2023 17:59:17 UTC (5,795 KB)
[v2] Thu, 14 Sep 2023 17:08:39 UTC (4,670 KB)
[v3] Fri, 13 Oct 2023 02:41:28 UTC (5,291 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.