Global Mycotoxin Occurrence in Feed: A Ten-Year Survey
<p>Occurrence of mycotoxins in 15 geographic regions. For each region, countries of sample origin are labeled in the map using a distinct color. The legend indicates percentage of positive samples and median of positive samples for each mycotoxin in each region. Each row represents one region and is labeled using the distinct color corresponding to the respective region in the map. n–sample number; AFB<sub>1</sub>–aflatoxin B<sub>1</sub>; DON–deoxynivalenol; ZEN–zearalenone; FUM–fumonisins (sum of fumonisins B<sub>1</sub>, B<sub>2</sub>,and B<sub>3</sub>); OTA–ochratoxin A; T-2–T-2 toxin.</p> "> Figure 2
<p>Year-to-year variation of mycotoxin concentrations in North America, South America, Northern Europe, Central Europe, Southern Europe, and Eastern Europe. The vertical axis shows mean concentrations of mycotoxins (Bayesian mean with error bars for 95% confidence level; see the Materials and Methods section for details on statistical analysis). The horizontal axis shows harvest years 2008–2017. Taking into account approximate seasons of crop growth and harvest, a year was defined to start in April and end in March of the subsequent calendar year for South America or to start in October and end in September of the subsequent calendar year for all other regions. Yellow circles and lines indicate maize samples. Blue circles and lines indicate finished feed samples. Data points are shown if ≥ 20 samples per year were available.</p> "> Figure 3
<p>Year-to-year variation of mycotoxin concentrations in Middle East/North Africa, South Africa, South Asia, Southeast Asia, and East Asia. The vertical axis shows mean concentrations of mycotoxins (Bayesian mean with error bars for 95% confidence level; see Materials and Methods section for details on statistical analysis). The horizontal axis shows harvest years 2008–2017. Taking into account approximate seasons of crop growth and harvest, a year was defined to start in April and end in March of the subsequent calendar year for South Africa or to start in October and end in September of the subsequent calendar year for all other regions. Yellow circles and lines indicate maize samples. Blue circles and lines indicate finished feed samples. Data points are shown if ≥ 20 samples per year were available.</p> "> Figure 4
<p>Correlation of zearalenone and deoxynivalenol concentrations in samples of maize (red circles) and wheat (turquoise circles). Both axes are in logarithmic scale.</p> "> Figure 5
<p>Rainfall and temperature in maize-growing areas of Central Europe, Southern Europe, Southeast Asia, and China in 2013–2017. Bars indicate weekly total rainfall. Green, black, and light blue bars correspond to the approximate maize growing season, silking period, and off-season, respectively (these timings can differ between regions and management practice, and are affected by weather). Orange dots indicate weekly mean temperature. The vertical axis shows rainfall (in mm) and temperature in (°C). The horizontal axis indicates the months (J–January, F–February, M–March, A–April, M–May, J–June, J–July, A–August, S–September, O–October, N–November, D–December).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Global Mycotoxin Occurrence
2.2. Regional Mycotoxin Occurrence
2.2.1. Northern Europe
2.2.2. Central Europe
2.2.3. Southern Europe
2.2.4. Eastern Europe
2.2.5. North America
2.2.6. Central America
2.2.7. South America
2.2.8. Middle East/North Africa
2.2.9. Sub-Saharan Africa
2.2.10. South Africa
2.2.11. Oceania
2.2.12. South Asia
2.2.13. Southeast Asia
2.2.14. East Asia
2.2.15. Central Asia
2.3. Co-Occurrence of Mycotoxins
3. Discussion
3.1. Global Patterns of Mycotoxin Occurrence in Different Commodities
3.2. Effects of Climate and Weather on Regional Patterns of Mycotoxin Occurrence
3.2.1. Aflatoxin B1
3.2.2. Deoxynivalenol and Zearalenone
3.2.3. Fumonisins
3.3. Co-Occurrence of Mycotoxins
4. Conclusions
5. Materials and Methods
5.1. Collection of Feed Samples
5.2. Mycotoxin Analysis
5.3. Analysis of Weather Data
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: A review. J. Food Sci. 2016, 81, 544–552. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission regulation (EU) No 574/2011 of 16 June 2011 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for nitrite, melamine, Ambrosia spp. and carry-over of certain coccidiostats and histomonostats and consolidating Annexes I and II thereto. Off. J. Eur. Union 2011, L 159, 7–24. [Google Scholar]
- European Commission. Commission recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, L 91, 12–15. [Google Scholar]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [PubMed]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Multi-mycotoxin screening of feed and feed raw materials from Africa. World Mycotoxin J. 2018, 11, 369–383. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nahrer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Blacutt, A.A.; Gold, S.E.; Voss, K.A.; Gao, M.; Glenn, A.E. Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology 2018, 108, 312–326. [Google Scholar] [CrossRef]
- Miller, J.D. Mycotoxins in small grains and maize: Old problems, new challenges. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 2008, 25, 219–230. [Google Scholar] [CrossRef]
- Wu, F.; Munkvold, G.P. Mycotoxins in ethanol co-products: Modeling economic impacts on the livestock industry and management strategies. J. Agric. Food Chem. 2008, 56, 3900–3911. [Google Scholar] [CrossRef]
- Schaafsma, A.W.; Limay-Rios, V.; Paul, D.E.; Miller, J.D. Mycotoxins in fuel ethanol co-products derived from maize: A mass balance for deoxynivalenol. J. Sci. Food Agric. 2009, 89, 1574–1580. [Google Scholar] [CrossRef]
- Zhang, Y.; Caupert, J. Survey of mycotoxins in U.S. distiller’s dried grains with solubles from 2009 to 2011. J. Agric. Food Chem. 2012, 60, 539–543. [Google Scholar] [CrossRef]
- Bowers, E.L.; Munkvold, G.P. Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: Implications for fermentation efficiency and DDGS co-product quality. Toxins 2014, 6, 2804–2825. [Google Scholar] [CrossRef]
- Battilani, P.; Rossi, V.; Giorni, P.; Pietri, A.; Gualla, A.; van der Fels-Klerx, H.J.; Booij, C.J.H.; Moretti, A.; Logrieco, A.; Miglietta, F.; et al. Modelling, Predicting and Mapping the Emergence of Aflatoxins in Cereals in the EU Due to Climate Change. 2012. Available online: http://www.efsa.europa.eu/en/supporting/pub/223e.htm (accessed on 27 June 2019). [CrossRef]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 2010, 27, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Mastilović, J.; Janic Hajnal, E.; Šarić, B. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control 2013, 34, 31–34. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Aflatoxin B1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control 2014, 40, 286–291. [Google Scholar] [CrossRef]
- Janic Hajnal, E.; Kos, J.; Krulj, J.; Krstovic, S.; Jajic, I.; Pezo, L.; Saric, B.; Nedeljkovic, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Decastelli, L.; Lai, J.; Gramaglia, M.; Monaco, A.; Nachtmann, C.; Oldano, F.; Ruffier, M.; Sezian, A.; Bandirola, C. Aflatoxins occurrence in milk and feed in Northern Italy during 2004–2005. Food Control 2007, 18, 1263–1266. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef]
- Assuncao, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal–an overview. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [PubMed]
- Van Asselt, E.D.; Booij, C.J.; van der Fels-Klerx, H.J. Modelling mycotoxin formation by Fusarium graminearum in maize in The Netherlands. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- De la Campa, R.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 2005, 159, 539–552. [Google Scholar] [CrossRef]
- Janse van Rensburg, B.; McLaren, N.W.; Flett, B.C. Grain colonization by fumonisin-producing Fusarium spp. and fumonisin synthesis in South African commercial maize in relation to prevailing weather conditions. Crop Protection 2017, 102, 129–136. [Google Scholar] [CrossRef]
- Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. Eur. J. of Plant Pathol. 2002, 108, 645–651. [Google Scholar] [CrossRef]
- Udovicki, B.; Djekic, I.; Stankovic, S.; Obradovic, A.; Rajkovic, A. Impact of climatic conditions on fumonisins in maize grown in Serbia. World Mycotoxin J. 2019, 12, 183–190. [Google Scholar] [CrossRef]
- Dabrowski, M.; Obremski, K.; Gajecka, M.; Gajecki, M.T.; Zielonka, L. Changes in the subpopulations of porcine peripheral blood lymphocytes induced by exposure to low doses of zearalenone (ZEN) and deoxynivalenol (DON). Molecules 2016, 21, 557. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J.; Tai, J.H.; Witt, M.F.; Dixon, D.E.; Forsell, J.H. Suppression of immune response in the B6C3F1 mouse after dietary exposure to the Fusarium mycotoxins deoxynivalenol (vomitoxin) and zearalenone. Food Chem. Toxicol. 1987, 25, 297–304. [Google Scholar] [CrossRef]
- Ren, Z.H.; Deng, H.D.; Wang, Y.C.; Deng, J.L.; Zuo, Z.C.; Wang, Y.; Peng, X.; Cui, H.M.; Fang, J.; Yu, S.M.; et al. The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets. Environ. Toxicol. Pharmacol. 2016, 41, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.H.; Lei, M.Y.; Zhang, N.Y.; Zhao, L.; Krumm, C.S.; Qi, D.S. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem. Toxicol. 2014, 74, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Szabo-Fodor, J.; Szabo, A.; Kocso, D.; Marosi, K.; Bota, B.; Kachlek, M.; Mezes, M.; Balogh, K.; Kover, G.; Nagy, I.; et al. Interaction between the three frequently co-occurring Fusarium mycotoxins in rats. J. Anim. Physiol. Anim. Nutr. 2018, 103, 370–382. [Google Scholar] [CrossRef]
- Ren, Z.H.; Deng, H.D.; Deng, Y.T.; Deng, J.L.; Zuo, Z.C.; Yu, S.M.; Shen, L.H.; Cui, H.M.; Xu, Z.W.; Hu, Y.C. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ. Toxicol. Pharmacol. 2016, 46, 62–70. [Google Scholar] [CrossRef]
- Liang, Z.; Ren, Z.; Gao, S.; Chen, Y.; Yang, Y.; Yang, D.; Deng, J.; Zuo, Z.; Wang, Y.; Shen, L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ. Toxicol. Pharmacol. 2015, 40, 686–691. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, P.; Cui, F.; Pi, F.; Zhang, Y.; Li, Y.; Wang, J.; Sun, X. The antagonistic effect of mycotoxins deoxynivalenol and zearalenone on metabolic profiling in serum and liver of mice. Toxins 2017, 9, 28. [Google Scholar] [CrossRef]
- Dilkin, P.; Zorzete, P.; Mallmann, C.A.; Gomes, J.D.F.; Utiyam, C.E.; Oetting, L.L.; Correa, B. Toxicological effects of chronic low doses of aflatoxin B1 and fumonisin B1-containing Fusarium moniliforme culture material in weaned piglets. Food Chem. Toxicol. 2003, 41, 1345–1353. [Google Scholar] [CrossRef]
- Harvey, R.B.; Edrington, T.S.; Kubena, L.F.; Elissalde, M.H.; Rottinghaus, G.E. Influence of aflatoxin and fumonisin B1-containing culture material on growing barrows. Am. J. Vet. Res. 1995, 56, 1668–1672. [Google Scholar] [PubMed]
- Miazzo, R.; Peralta, M.F.; Magnoli, C.; Salvano, M.; Ferrero, S.; Chiacchiera, S.M.; Carvalho, E.C.; Rosa, C.A.; Dalcero, A. Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poult. Sci. 2005, 84, 1–8. [Google Scholar] [CrossRef]
- Tessari, E.N.; Oliveira, C.A.; Cardoso, A.L.; Ledoux, D.R.; Rottinghaus, G.E. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br. Poult. Sci. 2006, 47, 357–364. [Google Scholar] [CrossRef]
- Ogido, R.; Oliveira, C.A.; Ledoux, D.R.; Rottinghaus, G.E.; Correa, B.; Butkeraitis, P.; Reis, T.A.; Goncales, E.; Albuquerque, R. Effects of prolonged administration of aflatoxin B1 and fumonisin B1 in laying Japanese quail. Poult. Sci. 2004, 83, 1953–1958. [Google Scholar] [CrossRef]
- Orsi, R.B.; Oliveira, C.A.; Dilkin, P.; Xavier, J.G.; Direito, G.M.; Correa, B. Effects of oral administration of aflatoxin B1 and fumonisin B1 in rabbits (Oryctolagus cuniculus). Chem. Biol. Interact. 2007, 170, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.M.; Theumer, M.; Masih, D.T.; Chulze, S.; Rubinstein, H.R. Experimental subchronic mycotoxicoses in mice: individual and combined effects of dietary exposure to fumonisins and aflatoxin B1. Food Chem. Toxicol. 2001, 39, 579–586. [Google Scholar] [CrossRef]
- Theumer, M.G.; Lopez, A.G.; Aoki, M.P.; Canepa, M.C.; Rubinstein, H.R. Subchronic mycotoxicoses in rats. Histopathological changes and modulation of the sphinganine to sphingosine (Sa/So) ratio imbalance induced by Fusarium verticillioides culture material, due to the coexistence of aflatoxin B1 in the diet. Food Chem. Toxicol. 2008, 46, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Tang, L.; Lin, S.; Xue, K.S.; Mitchell, N.J.; Su, J.; Gelderblom, W.C.; Riley, R.T.; Phillips, T.D.; Wang, J.S. Sequential dietary exposure to aflatoxin B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative of a synergistic interaction. Food Chem Toxicol 2016, 95, 188–195. [Google Scholar] [CrossRef]
- Gelderblom, W.C.; Marasas, W.F.; Lebepe-Mazur, S.; Swanevelder, S.; Vessey, C.J.; Hall Pde, L. Interaction of fumonisin B1 and aflatoxin B1 in a short-term carcinogenesis model in rat liver. Toxicology 2002, 171, 161–173. [Google Scholar] [CrossRef]
- Carlson, D.B.; Williams, D.E.; Spitsbergen, J.M.; Ross, P.F.; Bacon, C.W.; Meredith, F.I.; Riley, R.T. Fumonisin B1 promotes aflatoxin B1 and N-methyl-N’-nitro-nitrosoguanidine-initiated liver tumors in rainbow trout. Toxicol. Appl. Pharmacol. 2001, 172, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Schloerke, B.; Crowley, J.; Cook, D.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Larmarange, J. GGally: Extension to ‘ggplot2’. R package version 1.4.0. Available online: https://CRAN.R-project.org/package=GGally (accessed on 4 February 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. Available online: https://www.R-project.org/ (accessed on 11 December 2018).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.7.7. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 11 December 2018).
Mycotoxin | n1 | Positive Samples2 | Median of Positives (µg/kg) | 1st Quartile of Positives (µg/kg) | 3rd Quartile of Positives (µg/kg) | Maximum (µg/kg) | |
---|---|---|---|---|---|---|---|
n1 | % | ||||||
All samples | |||||||
Aflatoxin B1 | 51,475 | 11,941 | 23 | 4 | 2 | 17 | 10,918 |
Fumonisins3 | 46,477 | 27,890 | 60 | 723 | 240 | 1858 | 290,517 |
Zearalenone | 61,413 | 27,559 | 45 | 55 | 25 | 147 | 105,000 |
Deoxynivalenol | 59,107 | 37,940 | 64 | 388 | 200 | 885 | 84,860 |
Ochratoxin A | 32,271 | 4858 | 15 | 3 | 2 | 7 | 2000 |
T-2 Toxin | 27,850 | 5289 | 19 | 22 | 8 | 40 | 3,051 |
Finished feed | |||||||
Aflatoxin B1 | 16,563 | 4251 | 26 | 6 | 2 | 23 | 10,918 |
Fumonisins3 | 16,285 | 11,825 | 73 | 555 | 198 | 1297 | 290,517 |
Zearalenone | 19,171 | 10,676 | 56 | 41 | 20 | 102 | 9432 |
Deoxynivalenol | 18,649 | 13,004 | 70 | 294 | 134 | 600 | 32,893 |
Ochratoxin A | 11,990 | 2801 | 23 | 3 | 2 | 6 | 1582 |
T-2 Toxin | 9884 | 2246 | 23 | 10 | 4 | 22 | 1300 |
Maize | |||||||
Aflatoxin B1 | 15,889 | 3835 | 24 | 4 | 1 | 22 | 6,105 |
Fumonisins3 | 12,965 | 10,397 | 80 | 1300 | 520 | 2,940 | 218,883 |
Zearalenone | 15,860 | 7002 | 44 | 77 | 33 | 217 | 16,495 |
Deoxynivalenol | 12,660 | 8486 | 67 | 520 | 260 | 1240 | 51,374 |
Ochratoxin A | 6388 | 334 | 5 | 3 | 2 | 14 | 889 |
T-2 Toxin | 6087 | 727 | 12 | 25 | 11 | 53 | 978 |
Maize DDGS | |||||||
Aflatoxin B1 | 320 | 62 | 19 | 11 | 4 | 20 | 340 |
Fumonisins3 | 329 | 256 | 78 | 814 | 398 | 1870 | 26,828 |
Zearalenone | 368 | 275 | 75 | 102 | 60 | 237 | 2896 |
Deoxynivalenol | 381 | 316 | 83 | 1490 | 574 | 2579 | 84,860 |
Ochratoxin A | 280 | 62 | 22 | 4 | 2 | 11 | 53 |
T-2 Toxin | 52 | 3 | 6 | 40 | 35 | 43 | 46 |
Maize silage | |||||||
Aflatoxin B1 | 3104 | 188 | 6 | 2 | 1 | 4 | 342 |
Fumonisins3 | 3010 | 1114 | 37 | 138 | 45 | 416 | 7090 |
Zearalenone | 3735 | 1508 | 40 | 84 | 34 | 201 | 6239 |
Deoxynivalenol | 4206 | 2588 | 62 | 474 | 219 | 1092 | 34,861 |
Ochratoxin A | 2830 | 161 | 6 | 3 | 2 | 6 | 69 |
T-2 Toxin | 1800 | 58 | 3 | 20 | 10 | 51 | 685 |
Soybean grains | |||||||
Aflatoxin B1 | 916 | 186 | 20 | 1 | 1 | 2 | 74 |
Fumonisins3 | 794 | 135 | 17 | 68 | 29 | 223 | 7023 |
Zearalenone | 1024 | 364 | 36 | 43 | 26 | 71 | 4336 |
Deoxynivalenol | 975 | 284 | 29 | 416 | 160 | 640 | 5500 |
Ochratoxin A | 718 | 86 | 12 | 3 | 2 | 7 | 46 |
T-2 Toxin | 557 | 102 | 18 | 29 | 23 | 37 | 317 |
Soybean meal | |||||||
Aflatoxin B1 | 1692 | 490 | 29 | 2 | 1 | 4 | 109 |
Fumonisins3 | 1475 | 336 | 23 | 104 | 31 | 290 | 7210 |
Zearalenone | 1767 | 1072 | 61 | 47 | 33 | 83 | 3720 |
Deoxynivalenol | 802 | 247 | 31 | 119 | 25 | 424 | 5600 |
Ochratoxin A | 606 | 82 | 14 | 4 | 2 | 10 | 141 |
T-2 Toxin | 975 | 324 | 33 | 33 | 25 | 44 | 754 |
Wheat | |||||||
Aflatoxin B1 | 2210 | 221 | 10 | 1 | 1 | 3 | 161 |
Fumonisins3 | 2219 | 304 | 14 | 117 | 31 | 246 | 28,278 |
Zearalenone | 4925 | 1624 | 33 | 34 | 20 | 75 | 23,278 |
Deoxynivalenol | 5949 | 3866 | 65 | 369 | 218 | 865 | 49,307 |
Ochratoxin A | 1973 | 172 | 9 | 3 | 2 | 5 | 364 |
T-2 Toxin | 1993 | 439 | 22 | 25 | 13 | 35 | 1300 |
Barley | |||||||
Aflatoxin B1 | 727 | 64 | 9 | 1 | 1 | 2 | 120 |
Fumonisins3 | 776 | 65 | 8 | 53 | 17 | 366 | 10,485 |
Zearalenone | 3129 | 637 | 20 | 25 | 20 | 58 | 8952 |
Deoxynivalenol | 4046 | 2468 | 61 | 359 | 234 | 750 | 35,000 |
Ochratoxin A | 730 | 46 | 6 | 3 | 2 | 9 | 150 |
T-2 Toxin | 1225 | 272 | 22 | 26 | 9 | 51 | 404 |
Rice | |||||||
Aflatoxin B1 | 205 | 63 | 31 | 5 | 2 | 14 | 113 |
Fumonisins3 | 244 | 49 | 20 | 142 | 63 | 382 | 6895 |
Zearalenone | 220 | 74 | 34 | 60 | 34 | 107 | 1530 |
Deoxynivalenol | 226 | 60 | 27 | 266 | 87 | 436 | 3859 |
Ochratoxin A | 230 | 32 | 14 | 3 | 2 | 5 | 20 |
T-2 Toxin | 54 | 5 | 9 | 9 | 8 | 26 | 30 |
Region | Aflatoxin B11 | Fumonisins1 | Zearalenone1 | Deoxynivalenol1 | Ochratoxin A1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
% Exceeding | % Exceeding | % Exceeding | % Exceeding | % Exceeding | ||||||
5 µg/kg | 20 µg/kg | 5000 µg/kg | 60,000 µg/kg | 100 µg/kg | 2000 µg/kg | 900 µg/kg | 8000 µg/kg | 50 µg/kg | 250 µg/kg | |
Northern Europe | 2.4 | 0.4 | 0.0 | 0.0 | 6.2 | 0.1 | 21.5 | 1.0 | 0.2 | 0.0 |
Central Europe | 2.6 | 1.0 | 1.3 | 0.0 | 13.0 | 0.4 | 20.4 | 0.9 | 0.3 | 0.1 |
Southern Europe | 7.4 | 2.1 | 3.3 | 0.0 | 11.8 | 0.2 | 11.7 | 0.5 | 0.9 | 0.2 |
Eastern Europe | 5.4 | 0.2 | 0.3 | 0.0 | 4.8 | 0.1 | 4.3 | 0.1 | 0.4 | 0.2 |
North America | 6.2 | 3.4 | 3.9 | 0.2 | 16.8 | 0.6 | 19.1 | 0.8 | 0.1 | 0.0 |
Central America | 3.6 | 0.0 | 3.8 | 0.0 | 10.7 | 0.0 | 8.1 | 0.0 | 0.0 | 0.0 |
South America | 6.5 | 1.3 | 8.4 | 0.2 | 13.1 | 0.2 | 5.1 | 0.0 | 0.8 | 0.5 |
Middle East/North Africa | 7.5 | 3.5 | 1.1 | 0.0 | 8.6 | 0.0 | 5.6 | 0.0 | 0.9 | 0.0 |
Sub-Saharan Africa | 59.1 | 38.5 | 1.0 | 0.0 | 5.0 | 0.0 | 7.0 | 0.0 | 4.2 | 0.8 |
South Africa | 3.3 | 1.2 | 2.0 | 0.0 | 8.1 | 0.3 | 11.1 | 0.4 | 0.1 | 0.0 |
Oceania | 3.0 | 1.0 | 0.6 | 0.0 | 11.1 | 0.7 | 5.1 | 1.1 | 0.1 | 0.0 |
South Asia | 61.1 | 41.1 | 0.5 | 0.0 | 2.0 | 0.0 | 1.5 | 0.0 | 2.4 | 0.4 |
Southeast Asia | 37.9 | 20.9 | 2.0 | 0.0 | 10.1 | 0.4 | 4.8 | 0.5 | 0.4 | 0.0 |
East Asia | 10.2 | 6.6 | 3.9 | 0.0 | 27.3 | 1.3 | 20.6 | 0.7 | 0.3 | 0.0 |
Mycotoxin Combination1 | Finished Feed | Maize | Wheat |
---|---|---|---|
AFB1 + DON | 14% | 15% | 5% |
AFB1 + ZEN | 14% | 11% | 3% |
AFB1 + FUM | 22% | 24% | 1% |
AFB1 + OTA | 12% | 2% | 1% |
AFB1 + T-2 | 3% | 3% | 5% |
DON + ZEN | 48% | 39% | 28% |
DON + FUM | 48% | 49% | 8% |
DON + OTA | 15% | 3% | 6% |
DON + T-2 | 19% | 10% | 14% |
ZEN + FUM | 43% | 37% | 5% |
ZEN + OTA | 14% | 2% | 2% |
ZEN + T-2 | 18% | 9% | 9% |
FUM + OTA | 17% | 4% | 1% |
FUM + T-2 | 11% | 9% | 3% |
OTA + T-2 | 7% | 1% | 2% |
Finished Feed | Maize | Maize DDGS | Maize Silage | Soybean Grains | Soybean Meal | Wheat | Barley | Rice | Other Feed | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Northern Europe | 236 | 20 | 5 | 43 | 6 | 6 | 378 | 555 | 0 | 709 | 1958 |
Central Europe | 5328 | 3576 | 16 | 1431 | 208 | 67 | 3866 | 3172 | 27 | 3345 | 21,036 |
Southern Europe | 1463 | 869 | 8 | 177 | 78 | 36 | 197 | 91 | 4 | 604 | 3527 |
Eastern Europe | 1183 | 287 | 0 | 71 | 29 | 55 | 349 | 115 | 1 | 292 | 2382 |
North America | 1082 | 1959 | 118 | 481 | 93 | 69 | 109 | 21 | 1 | 1538 | 5471 |
Central America | 206 | 83 | 0 | 14 | 16 | 8 | 4 | 0 | 0 | 36 | 367 |
South America | 3428 | 8407 | 0 | 59 | 362 | 2233 | 205 | 2 | 10 | 2626 | 17,332 |
Middle East/North Africa | 543 | 178 | 4 | 46 | 38 | 13 | 69 | 11 | 0 | 173 | 1075 |
Sub-Saharan Africa | 92 | 40 | 0 | 1 | 9 | 7 | 9 | 4 | 0 | 46 | 208 |
South Africa | 324 | 306 | 0 | 111 | 32 | 7 | 12 | 5 | 1 | 279 | 1077 |
Oceania | 222 | 35 | 14 | 262 | 11 | 26 | 260 | 128 | 4 | 733 | 1695 |
South Asia | 557 | 211 | 1 | 5 | 43 | 38 | 17 | 0 | 22 | 242 | 1136 |
Southeast Asia | 1826 | 895 | 73 | 0 | 170 | 163 | 151 | 2 | 87 | 943 | 4310 |
East Asia | 5098 | 2930 | 150 | 1614 | 91 | 91 | 521 | 36 | 113 | 2588 | 13,232 |
Central Asia | 0 | 2 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 15 |
Total | 21,588 | 19,798 | 389 | 4315 | 1186 | 2819 | 6160 | 4142 | 270 | 14,154 | 74,821 |
Analyzer | Sample Number | Method1 | Limits of Detection (µg/kg)1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AFB1 | ZEN | DON | FB1 | FB2 | FB3 | OTA | T-2 | |||
Romer Labs (Tulln, Austria) | 13,438 | ELISA | 1 | 20 | 200 | 200 | 200 | n.a. | 1.9 | 10 |
Romer Labs (Tulln, Austria) | 10,873 | HPLC | 0.2 | 4 | 20 | 20 | 20 | n.a. | 0.2 | 2 |
Romer Labs (Tulln, Austria) | 9747 | LC-MS/MS | 0.2 | 4 | 20 | 20 | 20 | n.a. | 0.2 | 2 |
Romer Labs (Singapore) | 7052 | LC-MS/MS | 0.5 | 10 | 10 | 10 | 10 | n.a. | 0.5 | 10 |
BIOMIN (Shanghai, China) | 5282 | HPLC | 3 | 30 | 150 | 300 | 300 | n.a. | 1.7 | n.a. |
Romer Labs (Tulln, Austria) test strips operated by BIOMIN and commercial customers | 4769 | ELISA | 3 | 20 | 200 | 200 | 200 | n.a. | 2 | 20 |
Romer Labs (Union, USA) | 4689 | HPLC | 0.2 | 4 | 20 | 20 | 20 | n.a. | 0.2 | 2 |
Romer Labs (Union, USA) | 3636 | LC-MS/MS | 0.2 | 4 | 20 | 20 | 20 | n.a. | 0.2 | 2 |
Biofarma (Córdoba, Argentina) | 3058 | HPLC | 1 | 20 | 250 | 250 | 250 | n.a. | n.a. | 20 |
IFA-Tulln2 | 2696 | LC-MS/MS | 1.5 | 0.3 | 1.5 | 4 | 4 | 4 | 1.5 | 10 |
Labocéa (Plouzané, France) | 1665 | HPLC | 0.2 | 2.8 | 1.2 | 10 | 10 | n.a. | 0.06 | 25 |
SAMITEC (Santa Maria, Brazil) | 1191 | HPLC | 1 | 20 | 200 | 125 | 125 | n.a. | 2 | 100 |
Romer Labs (Union, USA) | 999 | ELISA | 1 | 20 | 200 | 200 | 200 | n.a. | 1.9 | 10 |
Spectrum®, VNITIP (Sergiev Posad, Russia) | 936 | LC-MS/MS | 2.01 | 1.8 | 7.2 | 5.4 | 5.4 | n.a. | 1.08 | 3.62 |
Biofarma (Córdoba, Argentina) | 909 | ELISA | 1 | 20 | 200 | 125 | 125 | n.a. | n.a. | 100 |
BIOMIN (Shanghai, China) | 760 | ELISA | 1 | 20 | 200 | 200 | 200 | n.a. | 1.9 | 10 |
Bayrischer Tiergesund-heitsdienst (Poing, Germany) | 642 | ELISA | n.a. | 50 | 100 | n.a. | n.a. | n.a. | n.a. | n.a. |
Royal Agricultural Stations (Thailand) | 616 | HPLC | 0.5 | 10 | 10 | 10 | 10 | n.a. | 0.5 | 10 |
BIOMIN (Binh Duong, Vietnam) | 405 | HPLC | 1 | 10 | 10 | 25 | 25 | n.a. | 1 | 15 |
ISU (Ames, Iowa) | 403 | LC-MS/MS | 5 | 100 | 100 | 100 | 100 | n.a. | 100 | 100 |
BioCheck (Leipzig, Germany) | 290 | ELISA | 0.5 | 6 | 10 | 25 | 25 | n.a. | 0.2 | 3 |
BioCheck (Leipzig, Germany) | 206 | HPLC | 2.7 | 0.5 | 3 | 1.5 | 1.5 | n.a. | 0.5 | 0.5 |
Actlabs (Ancaster, Canada) | 190 | LC-MS/MS | 1 | 30 | 60 | 100 | 100 | n.a. | 3 | 60 |
LAMIC (Santa Maria, Brazil) | 99 | HPLC | 1 | 20 | 200 | 125 | 125 | n.a. | n.a. | 100 |
LUFA (Oldenburg, Germany) | 80 | ELISA | n.a. | 10 | 300 | n.a. | n.a. | n.a. | n.a. | n.a. |
Uniwersytet Bydgoszcz (Bydgoszcz, Poland) | 41 | HPLC | n.a. | 0.2 | 6 | 5 | 5 | n.a. | 1.2 | 0.6 |
Southern African Grain Laboratory (The Willows, South Africa) | 36 | LC-MS/MS | 5 | 50 | 100 | 20 | 20 | 20 | 5 | 10 |
SGS (Hamburg, Germany) | 35 | LC-MS/MS | n.a. | 5 | 10 | n.a. | n.a. | n.a. | n.a. | n.a. |
Tierklinik (St. Veit, Austria) | 27 | ELISA | n.a. | 10 | 200 | n.a. | n.a. | n.a. | n.a. | n.a. |
SVÚ (Olomouc, Czech Republic) | 27 | ELISA | n.a. | 50 | 100 | n.a. | n.a. | n.a. | n.a. | 65 |
SVÚ (Jihlava, Czech Republic) | 9 | ELISA | n.a. | 50 | 100 | n.a. | n.a. | n.a. | n.a. | n.a. |
Sevaron Poradenství (Brno, Czech Republic) | 7 | ELISA | n.a. | 30 | 100 | n.a. | n.a. | n.a. | n.a. | 30 |
University Latvia (Riga, Latvia) | 7 | HPLC | 1 | 150 | 200 | n.a. | n.a. | n.a. | n.a. | 100 |
Zemědělská oblastní laboratoř (Chotýšany, Czech Republic) | 1 | ELISA | n.a. | 20 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. https://doi.org/10.3390/toxins11070375
Gruber-Dorninger C, Jenkins T, Schatzmayr G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins. 2019; 11(7):375. https://doi.org/10.3390/toxins11070375
Chicago/Turabian StyleGruber-Dorninger, Christiane, Timothy Jenkins, and Gerd Schatzmayr. 2019. "Global Mycotoxin Occurrence in Feed: A Ten-Year Survey" Toxins 11, no. 7: 375. https://doi.org/10.3390/toxins11070375
APA StyleGruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins, 11(7), 375. https://doi.org/10.3390/toxins11070375