Two New Shrinking-Circle Methods for Source Localization Based on TDoA Measurements
<p>Schematic diagram of target localization.</p> "> Figure 2
<p>The basic idea of the shrinking-circle method.</p> "> Figure 3
<p>Definition of the value of <math display="inline"><semantics> <mi>D</mi> </semantics></math> using circle <math display="inline"><semantics> <msub> <mi>O</mi> <mn>1</mn> </msub> </semantics></math> as a reference.</p> "> Figure 4
<p>The sign of <math display="inline"><semantics> <mi>D</mi> </semantics></math> depends on different conditions.</p> "> Figure 5
<p>The layout of four nodes in the simulation experiment.</p> "> Figure 6
<p>Four localization error distributions obtained by method SC-1 in the simulation experiment.</p> "> Figure 7
<p>Influence of threshold <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>H</mi> </mrow> </semantics></math> on the required time and mean localization error <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>Four localization error distributions obtained by method SC-2 in the simulation experiment.</p> "> Figure 9
<p>(<b>a</b>) Influence of <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on the required time and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>; (<b>b</b>) Influence of <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on the required time and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Four localization error distributions obtained by the conventional shrinking-circle (CSC) method.</p> "> Figure 11
<p>Localization error distributions obtained by (<b>a</b>) separated constrained weighted least-squares (SCWLS) method; (<b>b</b>) CWLS method; and (<b>c</b>) two-step weighted least-squares (2WLS) method.</p> "> Figure 12
<p>Relationship between <math display="inline"><semantics> <mi>β</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math>.</p> "> Figure 13
<p>Experimental setup in an indoor environment.</p> "> Figure 14
<p>Sketch map of speakers and test points in the indoor localization system.</p> "> Figure 15
<p>(<b>a</b>) Box plot of localization error of the six localization methods; (<b>b</b>) amount of bad results.</p> "> Figure 16
<p>Sketch map of speakers and test points.</p> "> Figure 17
<p>Experiment under the condition of one speaker being blocked. (<b>a</b>) Box plot of localization error; (<b>b</b>) amount of bad results.</p> ">
Abstract
:1. Introduction
2. Shrinking-Circle Method Based on Time Difference of Arrival (TDoA)
2.1. The Idea of the Shrinking-Circle Method
2.2. The First Shrinking-Circle Method Employing the Dichotomy
2.3. The Second Shrinking-Circle Method Employing the Dichotomy
2.4. Localization Error Parameters
3. Results
3.1. Simulation Experiment
3.1.1. Properties of Method SC-1
3.1.2. Properties of Method SC-2
3.1.3. Localization Error Distributions of Other Methods
3.1.4. Robustness
3.2. Indoor Localization Experiments Based on Acoustic Transducers
3.2.1. Accuracy and Time Consumption
3.2.2. Localization in Non-Line-of-Sight (NLOS) Environment
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stoica, P.; Li, J. Lecture notes-source localization from range-difference measurements. IEEE Signal Process. Mag. 2006, 23, 63–66. [Google Scholar] [CrossRef]
- Wang, C.; Qi, F.; Shi, G.; Ren, J. A linear combination-based weighted least square approach for target localization with noisy range measurements. Signal Process. 2014, 94, 202–211. [Google Scholar] [CrossRef]
- Ge, S.S.; Zhao, Z.; He, W.; Choo, Y.S. Localization of Drag Anchor in Mooring Systems Via Magnetic Induction and Acoustic Wireless Communication Network. IEEE J. Ocean. Eng. 2014, 39, 515–525. [Google Scholar] [CrossRef]
- Griffin, A.; Alexandridis, A.; Pavlidi, D.; Mastorakis, Y.; Mouchtaris, A. Localizing multiple audio sources in a wireless acoustic sensor network. Signal Process. 2015, 107, 54–67. [Google Scholar] [CrossRef]
- Zekavat, R.; Buehrer, R.M. Handbook of Position Location: Theory, Practice and Advances; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 27. [Google Scholar]
- Qu, X.; Xie, L.; Tan, W. Iterative Constrained Weighted Least Squares Source Localization Using TDOA and FDOA Measurements. IEEE Trans. Signal Process. 2017, 65, 3990–4003. [Google Scholar] [CrossRef]
- Fowler, M.L.; Hu, X. Signal models for TDOA/FDOA estimation. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1543–1550. [Google Scholar] [CrossRef]
- Yeredor, A.; Angel, E. Joint TDOA and FDOA Estimation: A Conditional Bound and Its Use for Optimally Weighted Localization. IEEE Trans. Signal Process. 2011, 59, 1612–1623. [Google Scholar] [CrossRef]
- Qi, Y.H.; Kobayashi, H.; Suda, H. Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Trans. Wirel. Commun. 2006, 5, 672–681. [Google Scholar]
- Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. 2005, 22, 70–84. [Google Scholar] [CrossRef]
- Ho, K.; Xu, W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 2004, 52, 2453–2463. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, H.; Wu, X.; Lu, Z.; Zhu, X.; Huang, Q. Gaussian filter for TDOA based sound source localization in multimedia surveillance. Multimed. Tools Appl. 2018, 77, 3369–3385. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, Y.; Huang, Y.; Xiong, J.; Deng, Z. A Novel Long-Time Accumulation Method for Double-Satellite TDOA/FDOA Interference Localization. Radio Sci. 2018, 53, 129–142. [Google Scholar] [CrossRef]
- Bull, J.F.; Ward, M.L. Interference Detection, Characterization and Location in a Wireless Communications or Broadcast System. U.S. Patent 9121923B2, 1 September 2015. [Google Scholar]
- Zhai, X.; Yang, J.; Cui, L. Wireless Network Localization via Alternating Projections with TDOA and FDOA Measurements. Adhoc Sens. Wirel. Netw. 2017, 38, 1–20. [Google Scholar]
- Chan, Y.-T.; Hang, H.Y.C.; Ching, P.-C. Exact and approximate maximum likelihood localization algorithms. IEEE Trans. Veh. Technol. 2006, 55, 10–16. [Google Scholar] [CrossRef]
- Mensing, C.; Plass, S. Positioning algorithms for cellular networks using TDOA. In Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14–19 May 2006; p. IV. [Google Scholar]
- Torrieri, D.J. Statistical-Theory of Passive Location Systems. IEEE Trans. Aerosp. Electron. Syst. 1984, 20, 183–198. [Google Scholar] [CrossRef]
- Friedlander, B. A Passive Localization Algorithm and Its Accuracy Analysis. IEEE J. Ocean. Eng. 1987, 12, 234–245. [Google Scholar] [CrossRef]
- Chan, Y.-T.; Ho, K. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Cheung, K.W.; So, H.C.; Ma, W.K.; Chan, Y.T. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality. EURASIP J. Adv. Signal Process. 2006, 2006, 1–24. [Google Scholar] [CrossRef]
- Lin, L.; So, H.C.; Chan, F.K.W.; Chan, Y.T.; Ho, K.C. A new constrained weighted least squares algorithm for TDOA-based localization. Signal Process. 2013, 93, 2872–2878. [Google Scholar] [CrossRef]
- Qu, X.; Xie, L. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements. Signal Process. 2016, 119, 142–152. [Google Scholar] [CrossRef]
- Ho, K.C. Bias Reduction for an Explicit Solution of Source Localization Using TDOA. IEEE Trans. Signal Process. 2012, 60, 2101–2114. [Google Scholar] [CrossRef]
- Marchand, N. Error distributions of best estimate of position from multiple time difference hyperbolic networks. IEEE Trans. Aerosp. Navig. Electron. 1964, 96–100. [Google Scholar] [CrossRef]
- Schmidt, R.O. A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. 1972, 821–835. [Google Scholar] [CrossRef]
- Mandal, A.; Lopes, C.V.; Givargis, T.; Haghighat, A.; Jurdak, R.; Baldi, P. Beep: 3D indoor positioning using audible sound. In Proceedings of the CCNC: 2005 2nd IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 6 January 2005; pp. 348–353. [Google Scholar]
- Moutinho, J.N.; Araújo, R.E.; Freitas, D. Indoor localization with audible sound—Towards practical implementation. Pervasive Mob. Comput. 2016, 29, 1–16. [Google Scholar] [CrossRef]
- Yanli, C.; Yuyao, H.; Yao, F. Multiple circle linkage’s search target localization of the vibration source algorithm. Opt. Int. J. Light Electron Opt. 2017, 131, 207–214. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Chen, X.; Cao, S.; Zhang, X. Two New Shrinking-Circle Methods for Source Localization Based on TDoA Measurements. Sensors 2018, 18, 1274. https://doi.org/10.3390/s18041274
Luo M, Chen X, Cao S, Zhang X. Two New Shrinking-Circle Methods for Source Localization Based on TDoA Measurements. Sensors. 2018; 18(4):1274. https://doi.org/10.3390/s18041274
Chicago/Turabian StyleLuo, Mingzhi, Xiang Chen, Shuai Cao, and Xu Zhang. 2018. "Two New Shrinking-Circle Methods for Source Localization Based on TDoA Measurements" Sensors 18, no. 4: 1274. https://doi.org/10.3390/s18041274
APA StyleLuo, M., Chen, X., Cao, S., & Zhang, X. (2018). Two New Shrinking-Circle Methods for Source Localization Based on TDoA Measurements. Sensors, 18(4), 1274. https://doi.org/10.3390/s18041274