Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone
<p>Accumulated crop evapotranspiration (ET<sub>C</sub>) and irrigation doses applied. FI, full irrigated at 100% ET<sub>C</sub>; SDI<sub>50</sub>, sustained deficit irrigation at 50% of ET<sub>C</sub>; and, LFDI, low-frequency deficit irrigation.</p> "> Figure 2
<p>False colored images taken by using ThermaCam (Flir One, Flir Systems, USA) connected to a smartphone (<b>A</b>) and with a conventional ThermaCam (Flir SC660, Flir Systems, USA) (<b>B</b>).</p> "> Figure 3
<p>Weather conditions during the experimental period. T<sub>air</sub>, average air temperature; RH, relative humidity; ET<sub>0</sub> evapotranspiration; VPD, vapour pressure deficit.</p> "> Figure 4
<p>Temporal dynamics of leaf water potential (Ψ<sub>leaf</sub>); stomatal conductance (g<sub>s</sub>), canopy temperature readings with a Flir SC660 camera (T<sub>TIC</sub>); and with a Flir One camera connected to a smartphone (T<sub>SPH</sub>). FI, Full irrigated treatment at 100% ET<sub>C</sub>; SDI<sub>50</sub>, sustained deficit irrigation treatment at 50% ET<sub>C</sub>; LFDI, low-frequency deficit irrigation, irrigated in terms of Ψ<sub>leaf</sub> values. Black arrows correspond to the beginning of water stress period, white arrows to the moment in which irrigation is suppressed in all of the treatments (seven days before the harvesting). The asterisks show those moments in which significant differences between FI and stressed treatments were reached. Vertical lines represent the standard error for each value.</p> "> Figure 5
<p>Linear relationship between the canopy temperature values obtained by using a Flir SC660 camera (T<sub>TIC</sub>); a Flir One camera connected to a smartphone (T<sub>SPH</sub>). Dotted line corresponds to the function <span class="html-italic">y</span> = <span class="html-italic">x</span>. RSS: Residual Sum of Squares.</p> "> Figure 6
<p>Non-water stressed baselines between the vapour pressure deficit (VPD) and the difference between the canopy and air temperature for both cameras Flir One thermal camera connected to smartphone (ΔT<sub>SPH</sub>) and a Flir SC660 camera (ΔT<sub>TIC</sub>).</p> "> Figure 7
<p>Relationships among different thermal parameters (T<sub>SPH</sub>; ΔT<sub>SPH</sub>) taken with Flir One thermal camera connected to smartphone; and the crop water stress index (CWSI)) and the leaf-water potential (Ψ<sub>Leaf</sub>). RSS: Residual Sum of Squares.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Irrigation Treatments
2.3. Experimental Design and Plant Measurements
2.4. Statistical Analysis
3. Results
3.1. Weather and Plant Physiological Parameters
3.2. Infrared Thermal Parameters: TTIC vs. TSPH
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iglesias, A.; Garrote, L.; Diz, A.; Schlickenrieder, J.; Martin-Carrasco, F. Re-thinking water policy priorities in the Mediterranean region in view of climate change. Environ. Sci. Policy 2011, 14, 744–757. [Google Scholar] [CrossRef] [Green Version]
- García-Tejero, I.F.; Durán, Z.V.H. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops; Academic Press-Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-01-281-3164-0. [Google Scholar]
- Barros, V.; Field, C.B. (Eds.) IPCC Climate Change 2014. Impacts, Adaptations and Vulnerabilities. Part B. Regional Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Towards sustainable irrigated Mediterranean agriculture: Implications for Water conservation in semi-arid environments. Water Int. 2014, 39, 635–648. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Rodríguez, C.R.; Muriel-Fernández, J.L. Water and Sustainable Agriculture; SpringerBriefs in Agriculture Series; Springer: Dordrecht, The Netherlands, 2011; pp. 1–94. [Google Scholar]
- COM Comunicación de la Comisión al Parlamento Europeo y al Consejo sobre la cooperación de innovación europea. ‘Productividad y sostenibilidad agrícolas, Bruselas. 29 February 2012. Available online: http://ec.europa.eu/agriculture/eip/pdf/com2012-79_es.pdf (accessed on 20 December 2016).
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Jiménez-Bocanegra, J.A.; Fernández, J.L. Improved water use efficiency by deficit irrigation programs: Implications for saving water in citrus orchards. Sci. Hort. 2011, 124, 278–282. [Google Scholar]
- Spinelli, G.M.; Snyder, R.L.; Sanden, B.L.; Shackel, K.A. Water stress causes stomatal closure but does not reduce canopy evapotranspiration in almond. Agric. Water Manag. 2016, 168, 11–22. [Google Scholar] [CrossRef]
- Shackel, K. A plant-based approach to deficit irrigation in trees and vines. HortScience 2011, 46, 173–177. [Google Scholar]
- Nortes, P.A.; Pérez-Pastor, A.; Egea, G.; Conejero, W.; Domingo, R. Comparison of changes in stem diameter and water potential values for detecting water stress in young almond trees. Agric. Water Manag. 2005, 77, 296–307. [Google Scholar] [CrossRef]
- Gomes-Laranjo, J.; Coutinho, J.P.; Galhano, V.; Cordeiro, V. Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential. Agric. Water Manag. 2006, 83, 261–265. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Costa, J.M.; Egipto, R.; Durán-Zuazo, V.H.; Lima, R.S.; Lopes, C.M.; Chaves, M.M. Thermal data to monitor crop-water status in irrigated Mediterranean viticulture. Agric. Water Manag. 2016, 176, 80–90. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L.; Jiménez-Bocanegra, J.A. Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus orchards. Funct. Plant Biol. 2011, 38, 106–117. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Fereres, E. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric. For. Meteorol. 2014, 198–199, 94–104. [Google Scholar] [CrossRef]
- García-Tejero, I.; Durán-Zuazo, V.H.; Arriaga, J.; Hernández, A.; Vélez, L.M.; Muriel-Fernández, J.L. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 2012, 67, 463–474. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Hernández, A.; Padilla-Diaz, C.M.; Diaz-Espejo, A.; Fernández, J.E. Assessing plant water status in a hedgerow olive orchard from thermography at plant level. Agric. Water Manag. 2017, 188, 50–60. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2014, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- García-Tejero, I.F.; Hernández, A.; Viñuela, I.; Apolo, O.E.; Montes, C.; Fernández, J.L.; Zuazo, V.H. Gestión sostenible de los recursos hídricos en el cultivo del almendro: Determinación de los coeficientes de cultivo y efectos del riego deficitario. Revista de Fruticultura 2014, 36, 2–11. [Google Scholar]
- Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013, 64, 3937–3949. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water-stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by termal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Fereres, E.; Girona, J. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Hernández, A.; Iglesias-Contreras, M.; Moreno, J.M.; Ortega-Arévalo, C.J.; Souza, L.; Durán-Zuazo, V.H. Fostering sustainable water use in almond (Prunus dulcis Mill.) orchards in a semiarid Mediterranean environment. Agron. Sustain. Dev. 2017. under review. [Google Scholar]
- Eichi, V.R. Water Use Efficiency in Almonds (Prunnus dulcis (Mill) D.A. Web). Master’s Thesis, School of Agriculture, Food and Wine Faculty of Science, University of Adelaide, Adelaide, Australia, 2013. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/87112/8/02whole.pdf (accessed on 3 December 2016).
- Klein, I.; Esparza, G.; Weinbaum, S.A.; DeJong, T.M. Effects of irrigation deprivation during the harvest period on leaf persistence and function in mature almond trees. Tree Physiol. 2001, 21, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; Botía, P.; García, F. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees. Plant Soil 2014, 260, 169–181. [Google Scholar] [CrossRef]
- Pou, A.; Diago, M.P.; Medrano, H.; Baluja, J.; Tardaguila, J. Validation of thermal indices for water stress status identification in grapevine. Agric. Water Manag. 2014, 134, 60–72. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Rubio, A.E.; Viñuela, I.; Hernández, A.; Rodríguez-Pleguezuelo, C.R.; Durán-Zuazo, V.H. Infrared thermal imaging to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies. Agric. Water Manag. 2017. under review. [Google Scholar]
- Testi, L.; Goldhamer, D.A.; Iniesta, F.; Salinas, M. Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrig. Sci. 2008, 26, 395–405. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Tejero, I.F.; Ortega-Arévalo, C.J.; Iglesias-Contreras, M.; Moreno, J.M.; Souza, L.; Tavira, S.C.; Durán-Zuazo, V.H. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors 2018, 18, 1050. https://doi.org/10.3390/s18041050
García-Tejero IF, Ortega-Arévalo CJ, Iglesias-Contreras M, Moreno JM, Souza L, Tavira SC, Durán-Zuazo VH. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors. 2018; 18(4):1050. https://doi.org/10.3390/s18041050
Chicago/Turabian StyleGarcía-Tejero, Iván Francisco, Carlos José Ortega-Arévalo, Manuel Iglesias-Contreras, José Manuel Moreno, Luciene Souza, Simón Cuadros Tavira, and Víctor Hugo Durán-Zuazo. 2018. "Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone" Sensors 18, no. 4: 1050. https://doi.org/10.3390/s18041050
APA StyleGarcía-Tejero, I. F., Ortega-Arévalo, C. J., Iglesias-Contreras, M., Moreno, J. M., Souza, L., Tavira, S. C., & Durán-Zuazo, V. H. (2018). Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors, 18(4), 1050. https://doi.org/10.3390/s18041050