BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections
<p>Distribution of selected GNSS stations with 1 s (blue and yellow dots) and 30 s (red dots) sampling intervals data. The star is the epicenter of the 2015 Mw 7.8 Gorkha, Nepal, earthquake.</p> "> Figure 2
<p>RMS of differences of BDS WHU orbit compared with GBM and COM in along-track, cross-track, and radial directions (unit: cm). PRN: Pseudo Random Noise.</p> "> Figure 3
<p>Comparisons of BDS WHU 1 s clocks with respect to COM, GBM, and WHU 30 s products.</p> "> Figure 4
<p>Number of observed satellites and the times series of PPP results with BDS and GPS (LASA station, from 10:00:00 UTC, 24 April 2015).</p> "> Figure 5
<p>The displacement waveforms from GPS PPP and BDS PPP at LASA and from strong motion station LSA over the period from 6:14:00 to 6:17:00 (UTC).</p> "> Figure 6
<p>STD of BDS clock interpolation error for 5 s, 30 s, and 300 s intervals.</p> "> Figure 7
<p>Accuracy of BDS PPP in the east, north, and vertical components with clock intervals of 1 s, 5 s, 30 s, and 300 s, starting from 15:00:00 (UTC) 24 April 2015.</p> "> Figure 8
<p>The displacement waveforms from BDS PPP with 1 s, 5 s, 30 s and 300 s clock intervals over the period from 6:14:00 to 6:17:00 (UTC).</p> ">
Abstract
:1. Introduction
2. Data Collection
2.1. GNSS Stations with 1 s Sampling Rate Data
2.2. GNSS Stations with 30 s Sampling Rate Data
3. BDS Precise Orbit and Clock Products Generation
3.1. Processing Strategy
3.2. Quality of the BDS WHU Orbits
3.2.1. Comparison with the Other ACs
3.2.2. SLR Residuals
3.2.3. Quality of BDS WHU 1 s Clocks
4. Application to Earthquake Monitoring
4.1. PPP Prior to the Earthquake
4.2. PPP during the Earthquake
5. BDS PPP with Different Clock Interval
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Kouba, J.; Héroux, P. Precise Point Positioning using IGS Orbit and Clock Products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Galetzka, J.; Melgar, D.; Genrich, J.F.; Geng, J.; Owen, S.; Lindsey, E.O.; Xu, X.; Bock, Y.; Avouac, J.-P.; Adhikari, L.B.; et al. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 2015, 349, 1091–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, H.K.; Rau, R.J. Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan’s dense high-rate GPS network. J. Geophys. Res. Solid Earth 2013, 118, 332–345. [Google Scholar] [CrossRef]
- Shi, C.; Lou, Y.; Zhang, H.; Zhao, Q.; Geng, J.; Wang, R.; Fang, R.; Liu, J. Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations. Adv. Space Res. 2010, 46, 228–235. [Google Scholar] [CrossRef]
- Kouba, J. Measuring seismic waves induced by large earthquakes with GPS. Stud. Geophys. Geod. 2003, 47, 741–755. [Google Scholar] [CrossRef]
- Wright, T.J.; Houlie, N.; Hildyard, M.; Iwabuchi, T. Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake. Geophys. Res. Lett. 2012, 39, L12302. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.; Hu, Z.; Liu, J. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut. 2013, 17, 103–119. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P.; Hugentobler, U.; Teunissen, P.; Nakamura, S. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut. 2013, 17, 211–222. [Google Scholar] [CrossRef]
- Li, M.; Qu, L.; Zhao, Q.; Guo, J.; Su, X.; Li, X. Precise point positioning with the BeiDou navigation satellite system. Sensors 2014, 14, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Xu, Z.; Xu, X.; Zhu, H.; Sui, X.; Sun, H. Precise Point Positioning Using the Regional BeiDou Navigation Satellite Constellation. J. Navig. 2014, 67, 523–537. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Guo, J.; Liu, X. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia-Pacific Region. Sensors 2015, 15, 29970–29983. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Xu, A.; Xu, Z.; Ge, M.; Xu, X.; Zhu, H.; Sui, X. Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors 2013, 13, 4514–4526. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Xie, X.; Fang, R.; Su, X.; Zhao, Q.; Liu, G.; Li, H.; Shi, C.; Liu, J. Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 Mw 7.8 Nepal earthquake. Geophys. Res. Lett. 2016, 42, 161–167. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Khachikyan, R.; Weber, G.; Langley, R.B.; Mervart, L.; Hugentobler, U. IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science. Inside GNSS 2014, 9, 42–49. [Google Scholar]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Bock, H.; Dach, R.; Jäggi, A.; Beutler, G. High-rate GPS clock corrections from CODE: Support of 1 Hz applications. J. Geod. 2009, 83, 1083–1094. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Zhou, X.; Pei, X.; Wang, J.; Wu, B. GNSS clock corrections densification at SHAO: From 5 min to 30 s. Sci. China Phys. Mech. Astron. 2013, 57, 166–175. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E.; Kroes, R. Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solut. 2005, 9, 226–235. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.L.; Li, M.; Tang, W.M.; Hu, Z.G.; Lou, Y.D.; Zhang, H.P.; Niu, X.; Liu, J.N. Precise orbit determination of Beidou Satellites with precise positioning. Sci. China Earth Sci. 2012, 55, 1079–1086. [Google Scholar] [CrossRef]
- Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F. Absolute IGS antenna phase center model igs08.atx: Status and potential improvements. J. Geod. 2016, 90, 343–364. [Google Scholar] [CrossRef]
- Wu, J.T.; Wu, S.C.; Hajj, G.; Bertiger, W.I. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar]
- McCarthy, D.D.; Petit, G.E. IERS Conventions (2003); International Earth Rotation and Reference Systems Service (IERS): Frankfurt, Germany, 2004. [Google Scholar]
- Springer, T.; Beutler, G.; Rothacher, M. A new solar radiation pressure model for GPS satellites. GPS Solut. 1999, 2, 50–62. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S.; Perosanz, F.; Prange, L.; Dach, R.; Uhlemann, M.; Gendt, G.; Montenbruck, O. Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Boore, D.M. Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am. 2001, 91, 1199–1211. [Google Scholar] [CrossRef]
- Fang, R.X.; Shi, C.; Song, W.W.; Wang, G.X.; Liu, J.N. Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning. Geophys. J. Int. 2014, 196, 461–472. [Google Scholar] [CrossRef]
- Allen, R.M.; Ziv, A. Application of real-time GPS to earthquake early warning. Geophys. Res. Lett. 2011, 38, L16310. [Google Scholar] [CrossRef]
- Crowell, B.W.; Bock, Y.; Melgar, D. Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys. Res. Lett. 2012, 39, L09305. [Google Scholar] [CrossRef]
Institution | ID | Orbit | Clock | Remarks |
---|---|---|---|---|
CODE | COM | 15 min | 5 min | Since October 2013 |
GFZ | GBM | 5 min | 30 s | Since 3 May 2015 |
WHU | WUM | 15 min | 5 min | Since January 2013 |
Item | Models |
---|---|
Observations Combination | Ionosphere-free code and carrier phase combination |
Carrier phase signal | Global Positioning System (GPS): L1/L2, BDS: B1/B2 |
Sampling rate | 30 s for POD, 1 s for PCE and PPP |
Elevation cutoff | 7° |
Observation weight | 0.002 m and 2.0 m for raw phase and code observables, respectively, and elevation-dependent data weighting |
Satellite antenna phase center | Corrected using MGEX values [22] |
Receiver antenna phase center | Corrected using GPS values [22] |
Phase-windup effect | Phase polarization effects applied [23] |
Troposphere delay | Saastamoinen model for wet and dry hydrostatic delay with Global Mapping Function (GMF), estimated as piecewise constant function with 2 h parameter for residual wet delay |
Ionosphere delay | First-order effect eliminated by forming the ionosphere-free combinations |
Station displacement | Solid Earth tide, pole tide, ocean tide loading, International Earth Rotation and Reference Systems Service (IERS) Convention 2003 [24] |
Satellite orbit | Estimated in POD; fixed in PCE and PPP |
Satellite clock | Estimated in POD and PCE, white noise; fixed in PPP |
Receiver clock | Estimated as random walk process, NNOR as reference clock |
Station coordinate | Tightly constrained for POD; fixed for PCE; estimated in epoch-wise kinematic mode for PPP |
Phase ambiguities | Real constant value for each ambiguity arc |
EOP parameters | Polar motions and UT1 from IERS C04 series aligned to International Terrestrial Reference Frame (ITRF) 2008 |
Attitude model | Nominal attitude with yaw maneuver for medium Earth orbit (MEO) and inclined geosynchronous orbit (IGSO), yaw-fixed attitude mode used for geostationary Earth orbit (GEO) [13] |
Geopotential | EIGEN_GL04C up to 12 × 12 |
Tide | Solid Earth tide, pole tide, ocean tide, IERS Conventions 2003 |
N-body gravitation | Sun, Moon, and other planets; JPL DE405 ephemeris used |
Relativity effect | IERS Conventions 2003 |
Solar radiation | ECOM(Extended CODE Orbit Model) model 5-parameter with no initial value [25] |
GBM vs. WHU | COM vs. WHU | COM vs. GBM | |||||||
---|---|---|---|---|---|---|---|---|---|
Along | Cross | Radial | Along | Cross | Radial | Along | Cross | Radial | |
GEO | 268.9 | 230.5 | 34.5 | - | - | - | - | - | - |
IGSO | 37.1 | 29.3 | 6.3 | 37.8 | 29.7 | 6.0 | 9.6 | 16.7 | 7.8 |
MEO | 4.9 | 5.4 | 2.1 | 4.1 | 9.6 | 2.7 | 9.4 | 11.7 | 6.7 |
PRN | NPs | WHU | COM | GBM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AVE | STD | RMS | AVE | STD | RMS | AVE | STD | RMS | ||
C01 | 9 | −73.9 | 16.3 | 75.7 | −102.0 | 12.8 | 102.8 | |||
C08 | 17 | −2.7 | 7.0 | 7.5 | 0.2 | 8.9 | 8.9 | 12.7 | 9.4 | 15.8 |
C10 | 22 | −0.9 | 3.9 | 4.0 | −6.7 | 6.8 | 9.6 | −11.3 | 8.1 | 13.9 |
C11 | 35 | −0.7 | 2.5 | 2.6 | −3.9 | 8.2 | 9.1 | −0.9 | 8.1 | 8.1 |
Types | WHU 1 s vs. COM | WHU 1 s vs. GBM | WHU 1 s vs. WHU 30 s |
---|---|---|---|
GEO | 0.63 | 0.05 | |
IGSO | 0.17 | 0.26 | 0.07 |
MEO | 0.10 | 0.08 | 0.08 |
Mode | East | North | Up |
---|---|---|---|
BDS-only | 0.6 | 0.8 | 4.3 |
GPS-only | 0.9 | 0.9 | 2.8 |
Sessions (3 min) | East | North | Up |
---|---|---|---|
1 | 0.47 | 0.35 | 1.25 |
2 | 0.32 | 0.29 | 1.10 |
3 | 0.39 | 0.35 | 0.81 |
4 | 0.40 | 0.39 | 0.94 |
5 | 0.42 | 0.37 | 1.14 |
Ave | 0.40 | 0.35 | 1.05 |
Sessions | 1 | 2 | 3 | 4 | 5 | Mean |
---|---|---|---|---|---|---|
East component | ||||||
1 s | 0.28 | 0.63 | 0.29 | 0.30 | 0.32 | 0.36 |
5 s | 0.32 | 0.64 | 0.32 | 0.32 | 0.35 | 0.39 |
30 s | 0.43 | 0.75 | 0.58 | 0.56 | 0.43 | 0.55 |
300 s | 0.83 | 1.02 | 0.70 | 0.72 | 0.92 | 0.84 |
North component | ||||||
1 s | 0.41 | 0.64 | 0.68 | 0.57 | 0.62 | 0.58 |
5 s | 0.43 | 0.65 | 0.72 | 0.63 | 0.65 | 0.62 |
30 s | 0.55 | 0.69 | 0.92 | 0.96 | 0.77 | 0.78 |
300 s | 0.90 | 0.98 | 1.38 | 1.58 | 1.09 | 1.19 |
Up component | ||||||
1 s | 0.96 | 1.17 | 1.31 | 1.41 | 1.11 | 1.19 |
5 s | 1.12 | 1.24 | 1.35 | 1.46 | 1.18 | 1.27 |
30 s | 1.46 | 1.50 | 1.86 | 1.49 | 1.68 | 1.60 |
300 s | 3.15 | 2.95 | 3.01 | 2.85 | 2.15 | 2.82 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, T.; Su, X.; Fang, R.; Xie, X.; Zhao, Q.; Liu, J. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Sensors 2016, 16, 2192. https://doi.org/10.3390/s16122192
Geng T, Su X, Fang R, Xie X, Zhao Q, Liu J. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Sensors. 2016; 16(12):2192. https://doi.org/10.3390/s16122192
Chicago/Turabian StyleGeng, Tao, Xing Su, Rongxin Fang, Xin Xie, Qile Zhao, and Jingnan Liu. 2016. "BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections" Sensors 16, no. 12: 2192. https://doi.org/10.3390/s16122192
APA StyleGeng, T., Su, X., Fang, R., Xie, X., Zhao, Q., & Liu, J. (2016). BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Sensors, 16(12), 2192. https://doi.org/10.3390/s16122192