Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity
"> Figure 1
<p>Location of the study area (<b>a</b>) (marked with red asterisk) and map of the test stands in the study area (<b>b</b>) (© National Land Survey of Finland, 2016).</p> "> Figure 2
<p>(<b>a</b>) The UAV and the installed instrumentation (RGB+VNIR sensors), (<b>b</b>) VNIR sensor, and (<b>c</b>) SWIR sensor (not installed in <a href="#remotesensing-10-00714-f002" class="html-fig">Figure 2</a>a,d) RGB camera.</p> "> Figure 3
<p>Flight areas and flight lines. The background image is an RGB orthomosaic for M1, and a composite of VNIR bands (895, 636, 555 nm for M3 and composite SWIR bands (1299, 1347, 1553 nm) for M4 (topographic map © National Land Survey of Finland 2016).</p> "> Figure 4
<p>Extracts of RGB, VNIR, and SWIR images from M3 area, showing the resolution and amount of detail in each image.</p> "> Figure 5
<p>(<b>a</b>) The dense point cloud for the VNIR flight M4 and (<b>b</b>) the view angles (in degrees) in each point in the image mosaics.</p> "> Figure 6
<p>Reflectances of the (<b>a</b>) deciduous and (<b>b</b>) evergreen tree species in the range of the applied HS bands.</p> "> Figure 7
<p>Results for DN features in tree genus (gen.) and species (sp.) classification: kappa and proportion of correct classifications using (<b>a</b>) GA+k-nn method and (<b>b</b>) RF method.</p> "> Figure 8
<p>Results for reflectance features in tree genus (gen.) and species (sp.) classification: kappa and proportion of correct classifications using (<b>a</b>) the GA+k-nn method and (<b>b</b>) the RF method.</p> "> Figure 9
<p>(<b>a</b>) Producer’s and user’s accuracy of tree genus classes, SWIR+VNIR with/without 3D features (GA + k-nn classification, reflectance features). (<b>b</b>) Producer’s and user’s accuracy of tree species classes, SWIR+VNIR with/without 3D features (GA + k-nn classification, reflectance features).</p> "> Figure 9 Cont.
<p>(<b>a</b>) Producer’s and user’s accuracy of tree genus classes, SWIR+VNIR with/without 3D features (GA + k-nn classification, reflectance features). (<b>b</b>) Producer’s and user’s accuracy of tree species classes, SWIR+VNIR with/without 3D features (GA + k-nn classification, reflectance features).</p> "> Figure A1
<p>Point cloud profiles of sample trees of evergreen coniferous genera.</p> "> Figure A2
<p>Point cloud profiles of sample trees of deciduous tree genera.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Data
2.2. Remote Sensing Data
2.2.1. FPI Hyperspectral Cameras
2.2.2. Acquisition of Remote Sensing Data
2.3. Image Data Processing
- (1)
- Applying laboratory calibration corrections to the images;
- (2)
- Determination of the geometric imaging model, including interior and exterior orientations of the images;
- (3)
- Using dense image matching to create photogrammetric digital surface model (DSM);
- (4)
- Determination of a radiometric imaging model to transform the digital number (DNs) data to reflectance;
- (5)
- Calculating the HS image mosaics;
- (6)
- Extracting spectral and other image and 3D structural features for test trees; and
- (7)
- Classification of the species/genus.
2.3.1. Geometric Processing
2.3.2. Radiometric Processing
2.4. Extraction of Spectral and 3D Features
- (1)
- Thirty-six VNIR and 24 SWIR spectral bands with both digital number (DN) and reflectance values;
- (2)
- The first 9 and 12 principal components (PC) calculated from the VNIR and SWIR DN bands, respectively;
- (3)
- The first 17 and 15 PCs calculated from the VNIR and SWIR reflectance bands, respectively; and
- (4)
- Three bands of RGB imagery.
- (1)
- Spectral averages (AVG);
- (2)
- Standard deviations (STD);
- (3)
- Spectral averages (AVG50) of the brightest 50% of the pixel values; and
- (4)
- Spectral averages (AVG25) of the brightest 25% of the pixel values,
- (1)
- H, where the percentages of vegetation points (0%, 5%, 10%, 20%, …, 80%, 85%,90%, 95%, 100%) were accumulated [m] (e.g., H0, H05, ..., H95, H100);
- (2)
- Canopy densities corresponding to the proportion of points above the fraction nos. 0, 1, …, 9 to the total number of points (D0, D1, …, D9); and
- (3)
- The proportion of vegetation points with an H greater or equal to the corresponding percentile of H (i.e., P20 is the proportion of points where H ≥ H20) (%)*; where H = height above ground; vegetation point = point with H ≥ 2 m (* the range of H was divided into 10 fractions (0, 1, 2, …, 9) of equal distance).
2.5. Feature Selection and Classification of Tree Species
2.5.1. The k-Nearest Neighbor Method (k-nn)
2.5.2. Random Forest Method (RF)
3. Results
3.1. Spectral and 3D Data
3.2. Classification Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. Commun. Inst. For. Fenn. 1982, 108, 1–74. [Google Scholar]
- Repola, J. Biomass equations for birch in Finland. Silva Fenn. 2008, 42, 605–624. [Google Scholar] [CrossRef]
- Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 2009, 43, 625–647. [Google Scholar] [CrossRef]
- Hynynen, J.; Ahtikoski, A.; Siitonen, J.; Sievänen, R.; Liski, J. Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For. Ecol. Manag. 2005, 207, 5–18. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Gibbs, J.N. Intercontinental Epidemiology of Dutch Elm Disease. Annu. Rev. Phytopathol. 1978, 16, 287–307. [Google Scholar] [CrossRef]
- Nevalainen, S.; Pouttu, A. Metsätuhot Vuonna 2015; Luonnonvarakeskus: Helsinki, Finland, 2016; Available online: https://jukuri.luke.fi/bitstream/handle/10024/535832/luke-luobio_32_2016.pdf (accessed on 5 May 2018).
- Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1163–1174. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.S. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Puliti, S.; Gobakken, T.; Ørka, H.O.; Næsset, E. Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scand. J. For. Res. 2017, 32, 68–79. [Google Scholar] [CrossRef]
- Waser, L.T.; Ginzler, C.; Kuechler, M.; Baltsavias, E.; Hurni, L. Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from Airborne Digital Sensor (ADS40) and RC30 data. Remote Sens. Environ. 2011, 115, 76–85. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Pant, P. Optimizing Spectral Bands of Airborne Imager for Tree Species Classification Paras Pant Optimizing Spectral Bands of Airborne Imager for Tree Species Classification; University of Eastern Finland: Joensuu, Finland, 2015; Volume 177. [Google Scholar]
- Zhang, K.; Hu, B. Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sens. 2012, 4, 1741–1757. [Google Scholar] [CrossRef]
- Jackson, R.D.; Teillet, P.M.; Slater, P.N.; Fedosejevs, G.; Jasinski, M.F.; Aase, J.K.; Moran, M.S. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery. Remote Sens. Environ. 1990, 32, 189–202. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Pellikka, P.; King, D.J.; Leblanc, S.G. Quantification and reduction of bidirectional effects in aerial cir imagery of deciduous forest using two reference land surface types. Remote Sens. Rev. 2000, 19, 259–291. [Google Scholar] [CrossRef]
- Holopainen, M.; Wang, G. The calibration of digitized aerial photographs for forest stratification. Int. J. Remote Sens. 1998, 19, 677–696. [Google Scholar] [CrossRef]
- King, D.J. Determination and reduction of cover type brightness variations with view angle in airborne multispectral video imagery. Photogramm. Eng. Remote Sens. 1991, 57, 1571–1577. [Google Scholar]
- Tuominen, S.; Pekkarinen, A. Local radiometric correction of digital aerial photographs for multi source forest inventory. Remote Sens. Environ. 2004, 89, 72–82. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; Tommaselli, A. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Tuominen, S.; Näsi, R.; Honkavaara, E.; Balazs, A.; Hakala, T.; Viljanen, N.; Pölönen, I.; Saari, H.; Reinikainen, J. Tree species recognition in species rich area using UAV-borne hyperspectral imagery and stereo-photogrammetric point cloud. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Istanbul, Turkey, 2017; Volume 42. [Google Scholar]
- Brandtberg, T.; Walter, F. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Mach. Vis. Appl. 1998, 11, 64–73. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Biging, G.S. Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 351–357. [Google Scholar] [CrossRef]
- Baltsavias, E.; Gruen, A.; Eisenbeiss, H.; Zhang, L.; Waser, L.T. High-quality image matching and automated generation of 3D tree models. Int. J. Remote Sens. 2008, 29, 1243–1259. [Google Scholar] [CrossRef]
- Haala, N.; Hastedt, H.; Wolf, K.; Ressl, C.; Baltrusch, S. Digital Photogrammetric Camera Evaluation—Generation of Digital Elevation Models. Photogramm Fernerkund. Geoinf. 2010, 2010, 99–115. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, B.; Vega, C.; Fournier, R.A.; Hu, Y. Mapping canopy height using a combination of digital stereo-photogrammetry and LiDAR. Int. J. Remote Sens. 2008, 29, 3343–3364. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Büttner, A.; Röser, H.-P. Hyperspectral Remote Sensing with the UAS “Stuttgarter Adler”—System Setup, Calibration and First Results. Photogramm. Fernerkund. Geoinf. 2014, 2014, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 2012, 4, 2736–2752. [Google Scholar] [CrossRef]
- Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS—Imaging spectroscopy from a multirotor unmanned aircraft system. J. F. Robot. 2014, 31, 571–590. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Mäkynen, J.; Holmlund, C.; Saari, H.; Ojala, K.; Antila, T. Unmanned aerial vehicle (UAV) operated megapixel spectral camera. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications V; International Society for Optics and Photonics: Prague, Czech Republic, 2011; Volume 8186, p. 81860Y. [Google Scholar]
- Saari, H.; Pellikka, I.; Pesonen, L.; Tuominen, S.; Heikkilä, J.; Holmlund, C.; Mäkynen, J.; Ojala, K.; Antila, T. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII; Neale, C.M.U., Maltese, A., Eds.; International Society for Optics and Photonics: Prague, Czech Republic, 2011; Volume 8174, p. 81740H. [Google Scholar]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Tuominen, S.; Saari, H.; Pölönen, I.; Hakala, T.; Viljanen, N.; Soukkamäki, J.; Näkki, I.; Ojanen, H.; Reinikainen, J. UAS based tree species identification using the novel FPI based hyperspectral cameras in visible, NIR and SWIR spectral ranges. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1143–1148. [Google Scholar] [CrossRef]
- Mannila, R.; Holmlund, C.; Ojanen, H.J.; Näsilä, A.; Saari, H. Short-wave infrared (SWIR) spectral imager based on Fabry-Perot interferometer for remote sensing. In Sensors, Systems, and Next-Generation Satellites XVIII; Meynart, R., Neeck, S.P., Shimoda, H., Eds.; International Society for Optics and Photonics: Prague, Czech Republic, 2014; Volume 9241, p. 92411M. [Google Scholar]
- Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [Google Scholar] [CrossRef]
- Häkli, P. Practical test on accuracy and usability of virtual reference station method in Finland. In FIG Working Week; International Federation of Surveyors: Athens, Greece, 2004; pp. 22–27. [Google Scholar]
- Honkavaara, E.; Rosnell, T.; Oliveira, R.; Tommaselli, A. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes. ISPRS J. Photogramm. Remote Sens. 2017, 134, 96–109. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Packalén, P.; Maltamo, M. Predicting the Plot Volume by Tree Species Using Airborne Laser Scanning and Aerial Photographs. For. Sci. 2006, 52, 611–622. [Google Scholar]
- Packalén, P.; Maltamo, M. Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can. J. For. Res. 2008, 38, 1750–1760. [Google Scholar] [CrossRef]
- Beyer, K.; Goldstein, J.; Ramakrishnan, R.; Shaft, U. When is “nearest neighbor” meaningful? In Proceedings of the 7th International Conference on Database Theory, Jerusalem, Israel, 10–12 January 1999; Beeri, C., Buneman, P., Eds.; Springer: Jerusalem, Israel, 1999; Volume 1540, pp. 217–235. [Google Scholar]
- Hinneburg, A.; Aggarwal, C.C.; Keim, D.A. What Is the Nearest Neighbor in High Dimensional Spaces? In Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 10–14 September 2000; El Abbadi, A., Brodie, W.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K.-Y., Eds.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000; pp. 506–515. [Google Scholar]
- Kilkki, P.; Päivinen, R. Reference Sample Plots to Combine Field Measurements and Satellite Data in Forest Inventory; Research Notes; Department of Forest Mensuration and Management, University of Helsinki: Helsinki, Finland, 1987. [Google Scholar]
- Muinonen, E.; Tokola, T. An application of remote sensing for communal forest inventory. In Proceedings from SNS/IUFRO Workshop; International Union of Forest Research Organizations: Umeå, Sweden, 1990; pp. 35–42. [Google Scholar]
- Tomppo, E. Satellite image-based national forest inventory of Finland. Int. Arch. Photogramm. Remote Sens. 1991, 28, 419–424. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 1987; ISBN 9780898627763. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 2 March 2017).
- Willighagen, E.; Ballings, M. Genalg: R Based Genetic Algorithm. Available online: https://cran.r-project.org/web/packages/genalg/index.html (accessed on 2 March 2017).
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1979; ISBN 0716710455. [Google Scholar]
- Broadhurst, D.; Goodacre, R.; Jones, A.; Rowland, J.J.; Kell, D.B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 1997, 348, 71–86. [Google Scholar] [CrossRef]
- Moser, P.; Vibrans, A.C.; McRoberts, R.E.; Næsset, E.; Gobakken, T.; Chirici, G.; Mura, M.; Marchetti, M. Methods for variable selection in LiDAR-assisted forest inventories. Forestry 2017, 90, 112–124. [Google Scholar] [CrossRef]
- Tuominen, S.; Balazs, A.; Honkavaara, E.; Pölönen, I.; Saari, H.; Hakala, T.; Viljanen, N. Hyperspectral UAV-Imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fenn. 2017, 51. [Google Scholar] [CrossRef]
- Breiman, L.E.O. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Stephens, T. Titanic: Getting Started With R—Part 5: Random Forests. Available online: http://trevorstephens.com/kaggle-titanic-tutorial/r-part-5-random-forests/ (accessed on 14 March 2017).
- Hovi, A.; Raitio, P.; Rautiainen, M. A spectral analysis of 25 boreal tree species. Silva Fenn. 2017, 51. [Google Scholar] [CrossRef]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef]
- Kim, S.; McGaughey, R.J.; Andersen, H.-E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, F. Mapping individual tree species in an urban forest using airborne LiDAR data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 2012, 78, 1079–1087. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests. Remote Sens. 2012, 4, 2510–2529. [Google Scholar] [CrossRef]
- Mickelson, J.G.; Civco, D.L.; Silander, J.A. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote Sens. 1998, 64, 891–904. [Google Scholar]
Tree Species | No. of Trees |
---|---|
Abies amabilis Dougl. ex Forbes | 9 |
Abies balsamea (L.) Mill. | 8 |
Abies fraseri (Pursh) Poir. | 11 |
Abies koreana E.H. Wilson | 27 |
Abies mariesii Mast. | 4 |
Abies sachalinensis F. Schmidt | 17 |
Abies sibirica Ledeb. | 19 |
Abies veitchii Lindley | 9 |
Acer platanoides L. | 13 |
Betula pendula Roth | 5 |
Fraxinus pennsylvanica Marshall | 40 |
Larix kaempferi (Lamb.) Carr. | 16 |
Picea abies [L.] Karst. | 34 |
Picea jezoensis (Siebold & Zucc.) Carr. | 13 |
Picea omorika (Pančić) Purkyne | 85 |
Pinus peuce Griseb. | 65 |
Pinus sylvestris L. | 107 |
Populus tremula L. | 19 |
Pseudotsuga menziesii (Mirb.) Franco | 27 |
Quercus robur L. | 53 |
Quercus rubra L. | 43 |
Thuja plicata Donn. | 20 |
Tilia cordata Mill. | 4 |
Tsuga heterophylla (Raf.) Sarg. | 9 |
Tsuga mertensiana (Bong.) Carr. | 11 |
Ulmus glabra Huds. | 5 |
Total | 673 |
VNIR λ0 (nm): 408.69, 419.50, 429.94, 440.71, 449.62, 459.44, 470.30, 478.47, 490.00, 499.97, 507.77, 522.60, 540.87, 555.49, 570.47, 583.08, 598.31, 613.71, 625.01, 636.32, 644.10, 646.78, 656.88, 670.45, 699.03, 722.39, 745.66, 769.86, 799.25, 823.37, 847.30, 871.17, 895.28, 925.42, 949.45, 973.20 |
VNIR FWHM (nm): 12.00, 14.58, 13.64, 14.12, 12.41, 13.05, 12.66, 12.42, 12.10, 13.52, 12.62, 12.87, 12.72, 12.50, 12.24, 12.34, 11.57, 11.98, 11.45, 10.26, 11.61, 14.31, 11.10, 13.97, 13.79, 13.49, 13.62, 13.20, 12.95, 12.97, 12.66, 13.18, 12.35, 12.74, 12.59, 10.11 |
SWIR λ0 (nm): 1154.10, 1168.58, 1183.68, 1199.22, 1214.28, 1228.18, 1245.71, 1261.22, 1281.65, 1298.55, 1312.93, 1330.66, 1347.22, 1363.18, 1378.69, 1396.72, 1408.07, 1426.26, 1438.52, 1452.60, 1466.99, 1479.35, 1491.84, 1503.81, 1516.66, 1529.30, 1541.57, 1553.25, 1565.48, 1575.53, 1581.87, 1578.26 |
SWIR FWHM (nm): 27.04, 26.98, 26.48, 26.05, 26.73, 26.98, 26.36, 26.30, 26.17, 26.54, 26.60, 25.80, 25.80, 25.62, 26.54, 27.35, 26.85, 28.15, 27.22, 27.10, 28.58, 27.65, 27.90, 27.22, 28.83, 28.52, 28.89, 29.75, 30.43, 27.47, 20.49, 20.06 |
Area | Date | Sensors | Flying Time | Solar Angles (°) | |||
---|---|---|---|---|---|---|---|
RGB | VNIR | SWIR | UTC + 3 | Azimuth | Elevation | ||
M1 | 20 August 2015 | x | x | 10:38–10:59 | 134 | 35 | |
M3 | 20 August 2015 | x | x | 15:02–15:24 | 216 | 37 | |
M4 | 20 August 2015 | x | x | 16:32–16:56 | 241 | 29 | |
M1 | 21 August 2015 | x | x | 10:47–11:09 | 137 | 35 | |
M3 | 21 August 2015 | x | x | 12:05–12:25 | 160 | 40 | |
M4 | 21 August 2015 | x | x | 14:31–14:50 | 206 | 39 |
Sensor | VNIR | SWIR | RGB |
---|---|---|---|
Spectral range (nm) | 400–1000 | 1100–1600 | R, G, B |
GSD ground; treetop (m) | 0.08; 0.04 | 0.20; 0.11 | 0.03; 0.015 |
Footprint f; cf (m) | 50; 77 | 50; 62 | 115; 172 |
Overlap f; cf (%), ground | 80; 60 | 80; 50 | 98; 80 |
Overlap f; cf (%), treetop | 70; 30 | 70; 20 | 70; 65 |
FOV f; cf (º) | ±11.5; ±18.5 | ±13; ±15.5 | ±26; ±36 |
Flight speed (m/s) | 4 | 4 | 4 |
Block | Number of Frames | Re-Projection Error (pixels) | Number of GCP | Point Density (points/m2) |
---|---|---|---|---|
M1—VNIR | 2397 | 0.466 | 4 | 318 |
M2—VNIR | 2248 | 0.462 | 5 | 330 |
M3M4—VNIR | 4400 | 0.511 | 8 | 328 |
M1—SWIR | 3188 | 0.281 | 8 | 318 |
M3—SWIR | 2839 | 0.259 | 7 | 330 |
M4—SWIR | 2784 | 0.191 | 6 | 316 |
SWIR | VNIR | 3D | Total | |
---|---|---|---|---|
DN | 10 | 14 | 6 | 30 |
Reflectance | 17 | 14 | 6 | 37 |
Genus | Abies | Acer | Betula | Fraxinus | Larix | Picea | Pinus | Populus | Pseudotsuga | Quercus | Thuja | Tilia | Tsuga | Ulmus | Total Obs. | Producer’s Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abies | 88 | 0 | 0 | 0 | 0 | 5 | 6 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 104 | 0.85 |
Acer | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 13 | 0.77 |
Betula | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 5 | 0.40 |
Fraxinus | 0 | 0 | 0 | 34 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 40 | 0.85 |
Larix | 0 | 0 | 0 | 0 | 13 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 16 | 0.81 |
Picea | 4 | 0 | 0 | 2 | 0 | 115 | 8 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 132 | 0.87 |
Pinus | 1 | 0 | 0 | 0 | 0 | 4 | 166 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 172 | 0.97 |
Populus | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 12 | 3 | 2 | 0 | 0 | 0 | 0 | 19 | 0.63 |
Pseudotsuga | 5 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 18 | 0 | 0 | 0 | 0 | 0 | 27 | 0.67 |
Quercus | 0 | 1 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 88 | 0 | 1 | 0 | 0 | 96 | 0.92 |
Thuja | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 20 | 0.95 |
Tilia | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 0.00 |
Tsuga | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 16 | 0 | 20 | 0.80 |
Ulmus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 5 | 0.80 |
Total class. | 102 | 12 | 2 | 43 | 15 | 127 | 183 | 14 | 25 | 105 | 22 | 1 | 17 | 5 | 673 | 0.73 |
User’s accuracy | 0.86 | 0.83 | 1.00 | 0.79 | 0.87 | 0.91 | 0.91 | 0.86 | 0.72 | 0.84 | 0.86 | 0.00 | 0.94 | 0.80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuominen, S.; Näsi, R.; Honkavaara, E.; Balazs, A.; Hakala, T.; Viljanen, N.; Pölönen, I.; Saari, H.; Ojanen, H. Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. Remote Sens. 2018, 10, 714. https://doi.org/10.3390/rs10050714
Tuominen S, Näsi R, Honkavaara E, Balazs A, Hakala T, Viljanen N, Pölönen I, Saari H, Ojanen H. Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. Remote Sensing. 2018; 10(5):714. https://doi.org/10.3390/rs10050714
Chicago/Turabian StyleTuominen, Sakari, Roope Näsi, Eija Honkavaara, Andras Balazs, Teemu Hakala, Niko Viljanen, Ilkka Pölönen, Heikki Saari, and Harri Ojanen. 2018. "Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity" Remote Sensing 10, no. 5: 714. https://doi.org/10.3390/rs10050714
APA StyleTuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N., Pölönen, I., Saari, H., & Ojanen, H. (2018). Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. Remote Sensing, 10(5), 714. https://doi.org/10.3390/rs10050714