Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification
"> Figure 1
<p>Diagram of the proposed ship detection framework.</p> "> Figure 2
<p>The first three levels of the wavelet decomposition: (<b>a</b>) input image; (<b>b</b>) <span class="html-italic">j</span> = 1; (<b>c</b>) <span class="html-italic">j</span> = 2; and (<b>d</b>) <span class="html-italic">j</span> = 3.</p> "> Figure 3
<p>The feature maps from the <span class="html-italic">Lab</span> color space: (<b>a</b>) <span class="html-italic">j</span> = 1; (<b>b</b>) <span class="html-italic">j</span> = 2; (<b>c</b>) <span class="html-italic">j</span> = 3; (<b>d</b>) <span class="html-italic">j</span> = 4; (<b>e</b>) <span class="html-italic">j</span> = 5; (<b>f</b>) <span class="html-italic">j</span> = 6; (<b>g</b>) <span class="html-italic">j</span> = 7; and (<b>h</b>) <span class="html-italic">j</span> = 8.</p> "> Figure 4
<p>Feature vector and feature maps of multi-channel, multi-scale and multi-direction.</p> "> Figure 5
<p>Multi-level maps: (<b>a</b>) input image; (<b>b</b>) <span class="html-italic">j</span> = 1; (<b>c</b>) <span class="html-italic">j</span> = 2; (<b>d</b>) <span class="html-italic">j</span> = 3; (<b>e</b>) <span class="html-italic">j</span> = 4; (<b>f</b>) <span class="html-italic">j</span> = 5; (<b>g</b>) <span class="html-italic">j</span> = 6; (<b>h</b>) <span class="html-italic">j</span> = 7; (<b>i</b>) <span class="html-italic">j</span> = 8; and (<b>j</b>) <span class="html-italic">j</span> = 9.</p> "> Figure 6
<p>Binary images with different spatial structures, but with the same histogram.</p> "> Figure 7
<p>The entropy values of the eight images using different standard deviations <span class="html-italic">σ</span>.</p> "> Figure 8
<p>The entropy values of the chips.</p> "> Figure 9
<p>Some confusing chips. (<b>a</b>) very few target pixels in the chips, or the edges are covered with clouds; (<b>b</b>) the edges are covered with islands and coasts; and (<b>c</b>) the non-ship targets are inside the chips.</p> "> Figure 10
<p>The illustration for the ten judgment conditions.</p> "> Figure 11
<p>Visual comparison of the saliency maps: (<b>a</b>) input image; (<b>b</b>) WGS; (<b>c</b>) ITTI; (<b>d</b>) AIM; (<b>e</b>) GBVS; (<b>f</b>) CA; (<b>g</b>) LC; (<b>h</b>) MSSS; (<b>i</b>) SDSP; (<b>j</b>) RARE; (<b>k</b>) SR; and (<b>l</b>) Nevrez.</p> "> Figure 11 Cont.
<p>Visual comparison of the saliency maps: (<b>a</b>) input image; (<b>b</b>) WGS; (<b>c</b>) ITTI; (<b>d</b>) AIM; (<b>e</b>) GBVS; (<b>f</b>) CA; (<b>g</b>) LC; (<b>h</b>) MSSS; (<b>i</b>) SDSP; (<b>j</b>) RARE; (<b>k</b>) SR; and (<b>l</b>) Nevrez.</p> "> Figure 12
<p>Visual comparison of the saliency maps: (<b>a</b>) input image; (<b>b</b>) WGS; (<b>c</b>) ITTI; (<b>d</b>) AIM; (<b>e</b>) GBVS; (<b>f</b>) CA; (<b>g</b>) LC; (<b>h</b>) MSSS; (<b>i</b>) SDSP; (<b>j</b>) RARE; (<b>k</b>) SR; and (<b>l</b>) Nevrez.</p> "> Figure 12 Cont.
<p>Visual comparison of the saliency maps: (<b>a</b>) input image; (<b>b</b>) WGS; (<b>c</b>) ITTI; (<b>d</b>) AIM; (<b>e</b>) GBVS; (<b>f</b>) CA; (<b>g</b>) LC; (<b>h</b>) MSSS; (<b>i</b>) SDSP; (<b>j</b>) RARE; (<b>k</b>) SR; and (<b>l</b>) Nevrez.</p> "> Figure 13
<p>Some input images and the corresponding ground-truth maps: (<b>a</b>) input images; and (<b>b</b>) ground-truth maps.</p> "> Figure 14
<p>The ROC curves and the AUC values of different saliency models:(<b>a</b>) ROC curves; and (<b>b</b>) AUC.</p> "> Figure 15
<p>The detection results for multi-size images. (<b>a</b>) Input image; (<b>b</b>) 300 × 210; (<b>c</b>) 406 × 283; (<b>d</b>) 505 × 354; and (<b>e</b>) 612 × 428.</p> "> Figure 16
<p>The final detection results after the multi-level discrimination.</p> ">
Abstract
:1. Introduction
2. Candidate Extraction Based on Visual Saliency
2.1. Overall Framework
2.2. Wavelet Decomposition
2.3. Feature Map Generation
2.4. Global Saliency Map Construction
2.5. Saliency Map Enhancement
3. Potential Ship Region Extraction
4. Target Discrimination
4.1. Entropy Discrimination
4.2. Pixel Distribution Discrimination
5. Experimental Results and Discussion
5.1. Subjective Visual Evaluation of Saliency Models
5.2. Objective Quantitative Analysis
5.3. Overall Result Statistics
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. First comparison of Sentinel-1 and TerraSAR-X data in the framework of maritime targets detection: south Italy case. IEEE J. Ocean. Eng. 2016, 41, 993–1006. [Google Scholar]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; Schie, B.V. Ship surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1092–1101. [Google Scholar] [CrossRef]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P. Synthetic aperture radar ship detection using Haar-like features. IEEE Trans. Geosci. Remote Sens. Lett. 2017, 14, 154–158. [Google Scholar]
- Proia, N.; Pagé, V. Characterization of a Bayesian ship detection method in optical satellite images. IEEE Trans. Geosci. Remote Sens. 2010, 7, 226–230. [Google Scholar] [CrossRef]
- Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A complete processing chain for ship detection using optical satellite imagery. Int. J. Remote Sens. 2010, 31, 5837–5854. [Google Scholar]
- Xu, Q.Z.; Li, B.; He, Z.F.; Ma, C. Multiscale contour extraction using level set method in optical satellite images. IEEE Trans. Geosci. Remote Sens. Lett. 2011, 8, 854–858. [Google Scholar]
- Yang, G.; Li, B.; Ji, S.F.; Gao, F.; Xu, Q.Z. Ship detection from optical satellite images based on sea surface analysis. IEEE Trans. Geosci. Remote Sens. 2014, 11, 641–645. [Google Scholar]
- Sun, H.; Sun, X.; Wang, H.Q.; Li, Y.; Li, X.J. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words models. IEEE Trans. Geosci. Remote Sens. Lett. 2012, 9, 109–113. [Google Scholar]
- Cheng, G.; Han, J.W.; Zhou, P.C.; Guo, L. Multi-class geospatial object detection and geosgraphic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [Google Scholar]
- Cheng, G.; Han, J.W.; Guo, L.; Qian, X.L.; Zhou, P.C.; Yao, X.W.; Hu, X.T. Object detection in remote sensing imagery using a discriminatively trained mixture model. ISPRS J. Photogramm. Remote Sens. 2013, 85, 32–43. [Google Scholar]
- Cheng, G.; Han, J.W. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Yokoya, N.; Iwasaki, A. Object detection based on sparse representation and Hough voting foroptical remote sensing imagery. IEEE J. Sel. Top. Appl. Obs. Remote Sens. 2015, 8, 2053–2062. [Google Scholar] [CrossRef]
- Wang, X.; Shen, S.Q.; Ning, C.; Huang, F.C.; Gao, H.M. Multi-class remote sensing object recognition based on discriminative sparse representation. Appl. Opt. 2016, 55, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.R.; Zhou, H.; Wang, R.S.; Guo, J. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446–3456. [Google Scholar] [CrossRef]
- Shi, Z.W.; Yu, X.R.; Jiang, Z.G.; Li, B. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4511–4523. [Google Scholar]
- Tang, J.X.; Deng, C.W.; Huang, G.B.; Zhao, B.J. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174–1185. [Google Scholar] [CrossRef]
- Zou, Z.X.; Shi, Z.W. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832–5845. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, J. Visual Saliency Using Binary Spectrum of Walsh–Hadamard Transform and Its Applications to Ship Detection in Multispectral Imagery. Neural Proc. Lett. 2017, 45, 759–776. [Google Scholar] [CrossRef]
- Bi, F.K.; Zhu, B.C.; Gao, L.N.; Bian, M. A visual search inspired computational model for ship detection in optical satellite images. IEEE Trans. Geosci. Remote Sens. Lett. 2012, 9, 749–753. [Google Scholar]
- Zhu, J.; Qiu, Y.; Zhang, R.; Huang, J.; Zhang, W. Top-down saliency detection via contextual pooling. J. Signal Process. Syst. 2014, 74, 33–46. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar]
- Bruce, N.D.; Tsotsos, J.K. Saliency based on information maximization. Adv. Neural Inf. Process. Syst. 2006, 18, 155–162. [Google Scholar]
- Harel, J.; Koch, C.; Perona, P. Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 2006, 19, 545–552. [Google Scholar]
- Stas, G.; Lihi, Z.M.; Ayellet, T. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1915–1926. [Google Scholar]
- Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006. [Google Scholar]
- Achanta, R.; Süsstrunk, S. Saliency detection using maximum symmetric surround. In Proceedings of the International Conference on Image Processing, Hong Kong, China, 1–4 September 2010. [Google Scholar]
- Riche, N.; Mancas, M.; Duvinage, M.; Dutoit, T. RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Proc. Image Commun. 2013, 28, 642–658. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, Z.Y.; Li, H.Y. SDSP: A novel saliency detection method by combining simple priors. In Proceedings of the IEEE International Coference on Image Processing, Melbourne, Australia, 15–18 September 2013. [Google Scholar]
- Hou, X.D.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Guo, C.L.; Ma, Q.; Zhang, L.M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AL, USA, 23–28 June 2008. [Google Scholar]
- Ding, Z.H.; Yu, Y.; Wang, B.; Zhang, L.M. An approach for visual attention based on biquaternion and its application for ship detection in multispectral imagery. Neurocomputing 2012, 76, 9–17. [Google Scholar] [CrossRef]
- Li, J.; Levine, M.D.; An, X.J.; Xu, X.; He, H.G. Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Xie, X.D.; Lam, K.M.; Zhong, Y.S. Efficient saliency analysis based on wavelet transform and entropy theory. J. Vis. Commun. Image R. 2015, 30, 201–207. [Google Scholar] [CrossRef]
- Murray, N.; Vanrell, M.; Otazu, X.; Parraga, C.A. Saliency estimation using a non-parametric low-level vision model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- İmamoğlu, N.; Lin, W.S.; Fang, Y.M. A saliency detection model using low-level features based on wavelet transform. IEEE Trans. Multimed. 2013, 15, 96–105. [Google Scholar] [CrossRef]
- Xu, F.; Liu, J.H.; Sun, M.C.; Zeng, D.D.; Wang, X. A Hierarchical Maritime Target Detection Method for Optical Remote Sensing Imagery. Remote Sens. 2017, 9, 280. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A.; Castelhano, M.S.; Henderson, J.M. Top-down control of visual attention in object detection. In Proceedings of the International Conference on Image Processing, Barcelona, Catalonia, Spain, 14–18 September 2003. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic/Elsevier: London, UK, 2009. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyber. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Xia, D.H.; Ma, C.; Song, S.Z.; Jin, W.X.; Behnamian, Y.; Fan, H.Q.; Wang, J.H.; Gao, Z.M.; Hu, W.B. Atmospheric corrosion assessed from corrosion images using fuzzy Komorov-Sinai entropy. Corros. Sci. 2017, 120, 251–256. [Google Scholar] [CrossRef]
Model | WGS | ITTI | AIM | GBVS | CA | LC | MSSS | SDSP | RARE | SR | Nevrez |
---|---|---|---|---|---|---|---|---|---|---|---|
Time (s) | 2.033 | 0.688 | 11.779 | 7.010 | 32.337 | 0.011 | 0.696 | 0.102 | 0.887 | 0.090 | 2.784 |
Code | M | M | M | M | M | M | M | M | M | M | M |
Stage | Nt | Ntt | Nfa | Cr (%) | Far (%) | Mr (%) |
---|---|---|---|---|---|---|
WGS | 557 | 540 | 401 | 96.948 | 42.614 | 3.052 |
SCD | 557 | 535 | 322 | 96.050 | 37.573 | 3.950 |
IED | 557 | 509 | 69 | 91.382 | 11.938 | 8.618 |
PDD | 557 | 509 | 31 | 91.382 | 5.741 | 8.618 |
Size | SCD | IED | PDD |
---|---|---|---|
17 × 18 | 9.332 × 10−7 | 1.9 × 10−3 | 2.58 × 10−4 |
51 × 30 | 1.554 × 10−6 | 3.1 × 10−3 | 3.42 × 10−4 |
64 × 64 | 1.867 × 10−6 | 3.7 × 10−3 | 3.93 × 10−4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Liu, J.; Dong, C.; Wang, X. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification. Remote Sens. 2017, 9, 985. https://doi.org/10.3390/rs9100985
Xu F, Liu J, Dong C, Wang X. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification. Remote Sensing. 2017; 9(10):985. https://doi.org/10.3390/rs9100985
Chicago/Turabian StyleXu, Fang, Jinghong Liu, Chao Dong, and Xuan Wang. 2017. "Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification" Remote Sensing 9, no. 10: 985. https://doi.org/10.3390/rs9100985
APA StyleXu, F., Liu, J., Dong, C., & Wang, X. (2017). Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification. Remote Sensing, 9(10), 985. https://doi.org/10.3390/rs9100985