A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover
"> Figure 1
<p>Workflow of the AMUSES pruning algorithm. (1) Brightness normalization is applied on the original image and spectral library to avoid the brightness bias of the original MUSIC-PA. (2) MUSIC-PA: the image is represented as 15 eigenvectors and the distance (<span class="html-italic">dist</span>) of each library spectrum to this set of eigenvectors is determined. (3) Spectra are sorted according to their MUSIC-PA distance. A fraction of the most relevant spectra (<span class="html-italic">%retain</span>) is retained, a fraction of the least relevant (<span class="html-italic">%remove</span>) is discarded. The other spectra are evaluated using the JMSA spectral separability metric (combining Jeffries Matusita distance and Spectral Angle): a spectrum is only retained if it is sufficiently dissimilar (JMSA larger than a threshold, <span class="html-italic">thold</span>) from the already selected spectra. (4) The JMSA threshold is determined in function of the normalized MUSIC-PA distance (<span class="html-italic">nDist</span>) for each spectrum: the higher the distance, the less relevant the spectrum is to the image under consideration and the more dissimilar it needs to be from the already selected spectra in order to get selected.</p> "> Figure 2
<p>Orthophoto (<b>left</b>) and digitized validation data (<b>right</b>) of the twenty 100 × 100 m blocks used to create the simulated dataset of Brussels. The image blocks can be categorized into four distinct urban structure types: industrial/commercial (blocks 1–7), green areas/parks (blocks 8–11), dense residential (blocks 12–15) and sparse residential (blocks 16–20).</p> "> Figure 3
<p>Berlin study area, along with the HyMap image (R = 833 nm, G = 1652 nm, B = 632 nm) and high resolution reference data for the three validation areas (polygons indicate the urban blocks used for validation).</p> "> Figure 4
<p>Performance comparison of IES and AMUSES pruning algorithms on the 20 image blocks of the Brussels dataset. Left: Spectral separability between pruned and true endmember libraries. Right: MESMA mapping accuracies (presented by kappa value) based on the respective libraries compared to using the true set of endmembers present in the image blocks (TRUE). Data points are color coded in function of the urban structure type of the image blocks.</p> "> Figure 5
<p>Comparison of true endmembers versus pruned libraries generated using IES, the original MUSIC-PA and the proposed AMUSES algorithm for image blocks 3, 13 and 18 (cf. <a href="#remotesensing-09-00565-f002" class="html-fig">Figure 2</a>). The symbol “n” represents the size of the spectral library. The number of spectra to be retained by MUSIC-PA was manually set to match the true number of endmembers in the respective image blocks.</p> "> Figure 6
<p>In case of image block 18, the original MUSIC-PA mainly selects vegetation spectra (upper right panel), whereas the image itself is mainly dominated by roof (illustrated by the true endmembers in the upper left panel). When decreasing the number of spectra in the final library size to 60 (lower left panel), no roof is selected at all, which would have severe implications on the subsequent mapping of this image. This panel also shows the brightness bias of MUSIC-PA, mainly selecting bright spectra. By applying brightness normalization (nMUSIC-PA, lower right panel), this bias is clearly reduced.</p> "> Figure 7
<p>Reference land cover map compared to the different land cover maps produced for the Brussels case study by applying MESMA on different spectral libraries, i.e., the true endmembers present in the image blocks, a library obtained using Iterative Endmember Selection (IES) and one obtained using the newly proposed AMUMSES algorithm. The classification product developed using the true endmembers slightly deviates from the reference data due to the noise introduced in the simulated image and minor modelling errors in the MESMA-based classification procedure.</p> "> Figure 8
<p>Comparison of reference (<span class="html-italic">x</span>-axis) versus modelled (<span class="html-italic">y</span>-axis) land cover fractions for 72 image blocks of the Berlin dataset. Modelled results are obtained by applying MESMA on a spectral library pruned using IES (left) and AMUSES (right). The original spectral library consisted of a mixture of Berlin and Brussels spectral libraries (experiment 3 in <a href="#remotesensing-09-00565-t003" class="html-table">Table 3</a>). PAVE = pavement; WVEG = woody vegetation; NWVEG = non-woody vegetation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Library Pruning Methodologies
2.1.1. Iterative Endmember Selection (IES)
2.1.2. MUSIC-PA
2.1.3. Proposed Algorithm: AMUSES
2.2. Spectral Unmixing Using MESMA
2.3. Case Study 1: Simulated APEX Data Brussels
2.3.1. Spectral Library
2.3.2. Reference Data and Simulated Image
2.3.3. Experimental Setup
2.4. Case Study 2: Real HyMap Data Berlin
2.4.1. Berlin Data
2.4.2. Bonn Spectral Library
2.4.3. Experimental Setup
3. Results
3.1. Case Study 1: Simulated APEX Data Brussels
3.1.1. Library Pruning
3.1.2. Land Cover Mapping
3.2. Case Study 2: Real HyMap Data Berlin
4. Discussion
4.1. Library Pruning Using AMUSES
4.1.1. Performance and Advantages
4.1.2. Potential for Processing Generic Spectral Libraries
4.1.3. Additional Applications
4.2. Urban Land Cover Mapping Using Hyperspectral Imagery
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015, 167, 6–19. [Google Scholar] [CrossRef]
- Herold, M.; Gardner, M.E.; Roberts, D.A. Spectral resolution requirements for mapping urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1907–1919. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Asner, G.P.; Lobell, D.B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sens. Environ. 2000, 74, 99–112. [Google Scholar] [CrossRef]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Sparse Unmixing of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef]
- Somers, B.; Tits, L.; Roberts, D.A.; Wetherley, E.B. Endmember library approaches to resolve spectral mixing problems in remotely sensed data: Potential, challenges, and applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A.; Somers, B. MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4364–4382. [Google Scholar] [CrossRef]
- Deng, C. Automated Construction of Multiple Regional Libraries for Neighborhoodwise Local Multiple Endmember Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4232–4246. [Google Scholar] [CrossRef]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 2007, 111, 537–552. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Kotthaus, S.; Smith, T.E.L.; Wooster, M.J.; Grimmond, C.S.B. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Hostert, P. Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning. Remote Sens. Environ. 2015, 158, 69–80. [Google Scholar] [CrossRef]
- Roberts, D.; Alonzo, M.; Wetherley, E.B.; Dudley, K.L.; Dennison, P.E. Multiscale Analysis of Urban Areas Using Mixing Models. In Integrating Scale in Remote Sensing and GIS; CRC Press: New York, NY, USA, 2016; pp. 247–282. [Google Scholar]
- Priem, F.; Canters, F. Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping. Remote Sens. 2016, 8, 787. [Google Scholar] [CrossRef]
- Wetherley, E.B.; Roberts, D.A.; McFadden, J. Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens. Environ. 2017, 195, 170–183. [Google Scholar] [CrossRef]
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
- Dennison, E.P.; Roberts, A.D. Endmenber selection for multiple endmenber spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Gardner, M.E.; Hetzel, Y.; Ustin, S.L.; Lee, C.T. Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1297–1310. [Google Scholar] [CrossRef]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Schaaf, A.N.; Dennison, P.E.; Fryer, G.K.; Roth, K.L.; Roberts, D.A. Mapping plant functional types at multiple spatial resolutions using imaging spectrometer data. GIScience Remote Sens. 2011, 48, 324–344. [Google Scholar] [CrossRef]
- García-Haro, F.J.; Sommer, S.; Kemper, T. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). Int. J. Remote Sens. 2005, 26, 2135–2162. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens. Environ. 2013, 133, 251–264. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, C. Development of a Class-Based Multiple Endmember Spectral Mixture Analysis (C-MESMA) Approach for Analyzing Urban Environments. Remote Sens. 2016, 8, 349. [Google Scholar] [CrossRef]
- Zhang, C.; Cooper, H.; Selch, D.; Meng, X.; Qiu, F.; Myint, S.W.; Roberts, C.; Xie, Z. Mapping urban land cover types using object-based multiple endmember spectral mixture analysis. Remote Sens. Lett. 2014, 5, 521–529. [Google Scholar] [CrossRef]
- Fan, F.; Deng, Y. Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 290–301. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Tang, T.F. Spectral Unmixing Using a Sparse Multiple-Endmember Spectral Mixture Model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5846–5861. [Google Scholar] [CrossRef]
- Bienvenu, G.; Kopp, L. Adaptivity to background noise spatial coherence for high resolution passive methods. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal, Denver, CO, USA, 9–11 April 1980. [Google Scholar]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Degerickx, J.; Iordache, M.-D.; Okujeni, A.; Hermy, M.; van der Linden, S.; Somers, B. Spectral unmixing of urban land cover using a generic library approach. In Proceedings of the SPIE 10008, Remote Sensing Technologies and Applications in Urban Environments, Edinburgh, UK, 26 September 2016. [Google Scholar]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Conceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Nascimento, J.M.P. Hyperspectral Subspace Identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef]
- Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sens. Environ. 2004, 93, 480–492. [Google Scholar] [CrossRef]
- Padma, S.; Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 138–151. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A. Characterizing variability of the urban physical environment for a suite of cities in Rondônia, Brazil. Earth Interact. 2008, 12, 1–32. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Chan, J.C.W.; Van De Voorde, T. Multiple endmember unmixing of CHRIS/proba imagery for mapping impervious surfaces in urban and suburban environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3409–3424. [Google Scholar] [CrossRef]
- Biesemans, J.; Sterckx, S.; Knaeps, E.; Vreys, K.; Adriaensen, S.; Hooy-, J. Image Processing Workflows for Airborne Remote. In Proceedings of the 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007; pp. 1–14. [Google Scholar]
- Vreys, K.; Iordache, M.D.; Biesemans, J.; Meuleman, K. Geometric correction of APEX hyperspectral data. Misc. Geogr. 2016, 20, 11–15. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Bernstein, L.S.; Acharya, P.K.; Dothe, H.; Matthew, M.W.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Richtsmeier, S.C.; Pukall, B.; et al. MODTRAN4 radiative transfer modeling for atmospheric correction. Pcoceedings of the Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, Denver, CO, USA, 18 July 1999. [Google Scholar]
- Sterckx, S.; Vreys, K.; Biesemans, J.; Iordache, M.-D.; Bertels, L.; Meuleman, K. Atmospheric correction of APEX hyperspectral data. Misc. Geogr. 2016, 20, 16–20. [Google Scholar] [CrossRef]
- Somers, B.; Delalieux, S.; Verstraeten, W.W.; Verbesselt, J.; Lhermitte, S.; Coppin, P. Magnitude- and Shape-Related Feature Integration in Hyperspectral Mixture Analysis to Monitor Weeds in Citrus Orchards. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3630–3642. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 57–66. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Hostert, P. Berlin-Urban-Gradient Dataset 2009—An EnMAP Preparatory Flight Campaign (Datasets). Available online: http://dataservices.gfz-potsdam.de/enmap/showshort.php?id=escidoc:1823890 (accessed on 27 March 2017).
- Okujeni, A.; van der Linden, S.; Tits, L.; Somers, B.; Hostert, P. Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens. Environ. 2013, 137, 184–197. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Jakimow, B.; Rabe, A.; Verrelst, J.; Hostert, P. A comparison of advanced regression algorithms for quantifying urban land cover. Remote Sens. 2014, 6, 6324–6346. [Google Scholar] [CrossRef]
- Tompkins, S.; Mustard, J.F.; Pieters, C.M.; Forsyth, D.W. Optimization of endmembers for spectral mixture analysis. Remote Sens. Environ. 1997, 59, 472–489. [Google Scholar] [CrossRef]
- USGS Digital Spectral Library 06. Available online: http://purl.access.gpo.gov/GPO/LPS89885 (accessed on 26 March 2017).
- Hueni, A.; Nieke, J.; Schopfer, J.; Kneubühler, M.; Itten, K.I. The spectral database SPECCHIO for improved long-term usability and data sharing. Comput. Geosci. 2009, 35, 557–565. [Google Scholar] [CrossRef]
- Jilge, M.; Heiden, U.; Habermeyer, M.; Mende, A.; Juergens, C.; Glauchau, D. Identifying pure urban image spectra using a learning urban image spectral archive (LUISA). In Proceedings of the SPIE 10008, Remote Sensing Technologies and Applications in Urban Environments, Edinburgh, UK, 26 September 2016. [Google Scholar]
- Tuia, D.; Marcos, D.; Camps-Valls, G. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization. ISPRS J. Photogramm. Remote Sens. 2016, 120, 1–12. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Collaborative Sparse Regression for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2014, 52, 341–354. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Günther, S.; Müller, A. Object-oriented mapping and analysis of urban land use/cover using IKONOS data. In Proceedings of the 22nd Earsel Symposium Geoinformation for European-Wide Integration, Prague, Czech Republic, 4–7 June 2002. [Google Scholar]
- Tong, X.; Xie, H.; Weng, Q. Urban Land Cover Classification with Airborne Hyperspectral Data: What Features to Use? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3998–4009. [Google Scholar] [CrossRef]
- Akbari, D.; Homayouni, S.; Safari, A.; Mehrshad, N. Mapping urban land cover based on spatial-spectral classification of hyperspectral remote-sensing data. Int. J. Remote Sens. 2016, 37, 440–454. [Google Scholar] [CrossRef]
- Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361–375. [Google Scholar] [CrossRef]
Land Cover Classes | Material/Type | Number of Spectra | Simulation |
---|---|---|---|
Roof | Bitumen | 26 | x |
Bright roof material | 22 | x | |
Dark ceramic tile | 31 | x | |
Dark shingle | 29 | ||
Fiber cement | 24 | ||
Glass | 11 | x | |
Gray metal | 26 | x | |
Gravel roofing | 25 | x | |
Green metal | 16 | x | |
Hydrocarbon roofing | 24 | ||
Paved terrace | 12 | ||
Red ceramic tile | 33 | x | |
Solar panel | 25 | ||
Pavement | Artificial turf | 22 | |
Asphalt | 24 | x | |
Bright gravel | 15 | ||
Cobblestone | 16 | ||
Concrete | 38 | x | |
Dark gravel | 1 | ||
Green surface | 24 | x | |
Railroad track | 25 | ||
Red concrete pavers | 18 | ||
Red gravel | 22 | ||
Tartan | 16 | ||
Woody vegetation | Deciduous broadleaf shrub | 8 | x |
Deciduous broadleaf tree | 32 | x | |
Evergreen broadleaf shrub | 7 | ||
Evergreen coniferous shrub | 6 | x | |
Evergreen coniferous tree | 26 | x | |
Non-woody vegetation | Cereals | 16 | |
Extensive green roof | 20 | x | |
Horticultural crops | 17 | ||
Lawn | 22 | x | |
Meadow | 22 | x | |
Other herbaceous | 2 | ||
Soil | Bare soil | 17 | x |
Sand | 11 | x | |
Water | Water | 21 | x |
Total | 752 | 461 |
Land Cover Class | Berlin | Bonn | ||
---|---|---|---|---|
Material/Type | No. of Spectra | Material/Type | No. of Spectra | |
Roof | Bitumen | 15 | Bitumen | 5 |
Bright roof material | 27 | Brick | 6 | |
Brown roof material | 10 | Glass | 5 | |
Grey roof material | 25 | Gravel | 7 | |
Red cement tile | 8 | Green metal | 9 | |
Red clay tile | 7 | Industrial | 4 | |
Other metal | 7 | |||
PVC | 8 | |||
Red brick | 3 | |||
Slate | 16 | |||
Pavement | Artificial turf | 2 | Asphalt | 18 |
Asphalt | 17 | Bridge | 3 | |
Rail track | 3 | Cobblestone | 9 | |
Red gravel | 3 | Parking lot | 10 | |
Red tartan | 5 | Road | 3 | |
Woody vegetation | Deciduous broadleaf tree | 35 | Trees | 22 |
Evergreen coniferous tree | 3 | |||
Non-woody vegetation | Cropland | 2 | Lawn | 9 |
Dry grass | 4 | Meadow | 9 | |
Lawn | 8 | |||
Mossed roof | 2 | |||
Soil | Bare soil | 5 | Bare soil | 22 |
Sand | 3 | |||
Water | Water | 5 | Water | 7 |
Total | 189 | 182 |
ID | Initial Library | Generic Nature | Library Size |
---|---|---|---|
1 | Berlin | None | 189 |
2 | Berlin + Bonn | Same sensor, but different locations | 371 |
3 | Berlin + Brussels | Different sensors and different locations (2) | 440 |
4 | Berlin + Bonn + Brussels | Different sensors and different locations (3) | 622 |
5 | Bonn + Brussels | Different sensors and different locations + no image-specific spectra present | 433 |
ID | Pruning Method | RMSE | # Spectra | % Non-Berlin | Non-Berlin in MESMA | |||||
---|---|---|---|---|---|---|---|---|---|---|
ROOF | PAVE * | WVEG * | NWVEG * | SOIL | Overall | |||||
1 | IES | 0.27 | 0.20 | 0.10 | 0.16 | 0.30 | 0.20 | 41 | 0 | 0 |
AMUSES | 0.11 | 0.16 | 0.14 | 0.19 | 0.10 | 0.14 | 37 | 0 | 0 | |
2 | IES | 0.17 | 0.20 | 0.10 | 0.12 | 0.11 | 0.14 | 65 | 37 | 10,286 |
AMUSES | 0.11 | 0.17 | 0.12 | 0.16 | 0.10 | 0.13 | 31 | 5 | 1739 | |
3 | IES | 0.20 | 0.20 | 0.17 | 0.15 | 0.16 | 0.17 | 87 | 61 | 13,355 |
AMUSES | 0.10 | 0.17 | 0.12 | 0.18 | 0.10 | 0.13 | 46 | 2 | 49 | |
4 | IES | 0.20 | 0.17 | 0.15 | 0.13 | 0.15 | 0.16 | 97 | 71 | 22,554 |
AMUSES | 0.12 | 0.18 | 0.13 | 0.17 | 0.10 | 0.14 | 51 | 7 | 3681 | |
5 | IES | 0.23 | 0.16 | 0.22 | 0.23 | 0.23 | 0.21 | 69 | 100 | All |
AMUSES | 0.25 | 0.19 | 0.23 | 0.18 | 0.25 | 0.22 | 33 | 100 | All |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degerickx, J.; Okujeni, A.; Iordache, M.-D.; Hermy, M.; Van der Linden, S.; Somers, B. A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover. Remote Sens. 2017, 9, 565. https://doi.org/10.3390/rs9060565
Degerickx J, Okujeni A, Iordache M-D, Hermy M, Van der Linden S, Somers B. A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover. Remote Sensing. 2017; 9(6):565. https://doi.org/10.3390/rs9060565
Chicago/Turabian StyleDegerickx, Jeroen, Akpona Okujeni, Marian-Daniel Iordache, Martin Hermy, Sebastian Van der Linden, and Ben Somers. 2017. "A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover" Remote Sensing 9, no. 6: 565. https://doi.org/10.3390/rs9060565
APA StyleDegerickx, J., Okujeni, A., Iordache, M.-D., Hermy, M., Van der Linden, S., & Somers, B. (2017). A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover. Remote Sensing, 9(6), 565. https://doi.org/10.3390/rs9060565