Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar
"> Figure 1
<p>The Titan’s operational wavelengths with reference to reflectance spectra of different land cover features and the Landsat 8 Operational Land Imager (OLI) passive imaging bands.</p> "> Figure 2
<p>Pulse repetition frequency (PRF) versus range operation regions for NCALM’s Titan sensor. The graph shows both regions of operation (<b>white</b>) as well as range ambiguity regions depicted as the solid colored bands.</p> "> Figure 3
<p>Laser shot density envelope for a single pass and single channel of the Titan sensor.</p> "> Figure 4
<p>The Titan multspectral lidar sensor integrated into a DHC-6 Twin Otter aircraft: (<b>a</b>) Overview of installation layout from the port side of sensor head; (<b>b</b>) View from front looking aft, sensor control rack is in the foreground, sensor head in the background; (<b>c</b>) View of the sensor head through the mapping port of the aircraft. The laser output window is the rectangular window on the right, and the DIMAC camera lens is behind the circular window.</p> "> Figure 5
<p>Intensity and structural images generated from the Titan multispectral data. (<b>a</b>) Intensity image generated from the 1550 nm channel; (<b>b</b>) intensity image for the 1064 nm channel; (<b>c</b>) intensity image for the 532 nm channel; (<b>d</b>) false color multispectral intensity image generated by using the 1550 nm intensity for the red channel and the 1064 and 532 nm intensities for the green and blue channels; (<b>e</b>) structural image based on the spread of the returns height; (<b>f</b>) structural image based on the height above ground; (<b>g</b>) structural image based on the number of returns per pulse; (<b>h</b>) ground cloud classification results map.</p> "> Figure 6
<p>Spectral and spatial data products derived with the Titan sensor of the archaeological site of Teotihuacan in central Mexico. (<b>a</b>) False color multispectral lidar intensity image generated by using the 1550 nm intensity for the red channel and the 532 and 1064 nm intensities for the green and blue channels; (<b>b</b>) digital surface model (DSM) derived from the lidar spatial data; (<b>c</b>) perspective view generated by overlaying the false color multispectral intensity image over a 3D surface model based on the lidar DSM.</p> "> Figure 7
<p>Potential spectral separability of loose and compacted snow, roads with compacted ice and snow are marked with yellow arrows in the figures. (<b>a</b>) Aerial oblique image of McMurdo Station at the time of lidar data collection; (<b>b</b>) Perspective view of a 3D surface model overlaid with a false color lidar intensity image; (<b>c</b>) Active intensity image generated from the 1550 nm channel; (<b>d</b>) Active intensity image generated from the 1064 nm channel.</p> "> Figure 8
<p>Illustration of the bathymetric test area: the East Pass near Destin, FL, USA. The solid red line represents the test line that was flown multiple times with different configurations. The white solid line represents the track of the validation samples obtained with an acoustic Doppler current profiler. The yellow rectangle represents the coverage of one the acquired test lines, and the bathymetric elevations derived from that test line dataset are presented as a color map that is offset to the east of the pass.</p> "> Figure 9
<p>Small sample of a bathymetric survey surrounding the Green Cay, Bahamas: (<b>a</b>) Rendering of the point cloud of the first returns of the bathymetric channel colored by flight line and intensity; (<b>b</b>) Topographic and bathymetric color map showing water depths and island elevations.</p> "> Figure 10
<p>Bathymetric depth accuracy assessment equipment and results. (<b>a</b>) Photo of the SonTek acoustic Doppler current profiler (ADCP) and GPS antenna mounted on a small catamaran; (<b>b</b>) Dispersion plot showing results from the bathymetric depth accuracy assessment.</p> "> Figure 11
<p>Illustration of Titan’s footprints and surface illumination from a single pass of the sensor. (<b>a</b>) Intensity rendering of a test swath generated from Titan channel 1; (<b>b</b>) Graph that plots the position and footprints of returns from all of Titan’s channels for the red square sample of the test swath. This graphs illustrated how much of the target surface is illuminated by the laser beams.</p> "> Figure 12
<p>Image maps for the Taylor and Pearse valleys in Antarctica. (<b>a</b>) Image map showing the topographic relief of the valleys based on the lidar DEM; (<b>b</b>) Image map showing the laser return density obtained from the valleys.</p> ">
Abstract
:1. Introduction
2. Titan Instrument Description
3. Field Testing of Capabilities
3.1. Multispectral Capabilities
3.1.1. Land Cover Classification Based on Active Spectral and Structural Data
3.1.2. Qualitative Multispectral Observations
3.2. Bathymetric Capabilities
3.2.1. Maximum Water Penetration
3.2.2. Accuracy Assessment of Measured Water Depths and Bathymetric Elevations
3.3. Canopy Penetration and Canopy Characterization Capabilities
3.3.1. Canopy Penetration
3.3.2. Range Resolution/Canopy Characterization
3.4. Special Operational Capabilities
3.5. Precision and Accuracy Assessments of Topographic Elevations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Dietrich, W.E. Geodetic imaging with airborne lidar: The earth’s surface revealed. Rep. Prog. Phys. Phys. Soc. 2013, 76, 086801. [Google Scholar] [CrossRef]
- Antonarakis, A.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne lidar. Remote Sens. Environ. 2008, 112, 2988–2998. [Google Scholar] [CrossRef]
- Stevens, C.W.; Wolfe, S.A. High-resolution mapping of wet terrain within discontinuous permafrost using lidar intensity. Permafr. Periglac. Process. 2012, 23, 334–341. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; Habib, A.; Kersting, A.P. Improving classification accuracy of airborne lidar intensity data by geometric calibration and radiometric correction. ISPRS J. Photogramm. Remote Sens. 2012, 67, 35–44. [Google Scholar] [CrossRef]
- Kashani, A.; Olsen, M.; Parrish, C.; Wilson, N. A review of lidar radiometric processing: From AD HOC intensity correction to rigorous radiometric calibration. Sensors 2015, 15, 28099. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, S.; Hyyppa, H.; Kukko, A.; Litkey, P.; Ahokas, E.; Hyyppa, J.; Lehner, H.; Jaakkola, A.; Suomalainen, J.; Akujarvi, A. Radiometric calibration of lidar intensity with commercially available reference targets. IEEE Trans. Geosci. Remote Sens. 2009, 47, 588–598. [Google Scholar] [CrossRef]
- Goepfert, J.; Soergel, U.; Brzank, A. Integration of intensity information and echo distribution in the filtering process of lidar data in vegetated areas. In Proceedings of the SilviLaser, Edinburgh, UK, 17–19 September 2008.
- Wang, C.; Glenn, N.F. Integrating lidar intensity and elevation data for terrain characterization in a forested area. IEEE Geosci. Remote Sens. Lett. 2009, 6, 463–466. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and lidar remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L. Using discrete laser pulse return intensity to model canopy transmittance. Photogramm. J. Finl. 2007, 20, 16–26. [Google Scholar]
- Hopkinson, C.; Chasmer, L. Testing lidar models of fractional cover across multiple forest ecozones. Remote Sens. Environ. 2009, 113, 275–288. [Google Scholar] [CrossRef]
- Donoghue, D.N.; Watt, P.J.; Cox, N.J.; Wilson, J. Remote sensing of species mixtures in conifer plantations using lidar height and intensity data. Remote Sens. Environ. 2007, 110, 509–522. [Google Scholar] [CrossRef]
- Renslow, M.S. Manual of Airborne Topographic Lidar; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2012. [Google Scholar]
- Feigels, V.; Kopilevich, Y.I. Lasers for lidar bathymetry and oceanographic research: Choice criteria. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS’94, Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Amherst, MA, USA, 8–12 August 1994; pp. 475–478.
- Fernandez-Diaz, J.C.; Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Sartori, M.P.; Singhania, A.; Legleiter, C.J.; Overstreet, B.T. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne lidar sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 623–635. [Google Scholar] [CrossRef]
- Briese, C.; Pfennigbauer, M.; Lehner, H.; Ullrich, A.; Wagner, W.; Pfeifer, N. Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 335–340. [Google Scholar] [CrossRef]
- Hartzell, P.; Glennie, C.; Biber, K.; Khan, S. Application of multispectral lidar to automated virtual outcrop geology. ISPRS J. Photogramm. Remote Sens. 2014, 88, 147–155. [Google Scholar] [CrossRef]
- Chen, Y.; Räikkönen, E.; Kaasalainen, S.; Suomalainen, J.; Hakala, T.; Hyyppä, J.; Chen, R. Two-channel hyperspectral lidar with a supercontinuum laser source. Sensors 2010, 10, 7057–7066. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, I.H.; Nichol, C.; Sinclair, P.; Jack, J.; Morsdorf, F.; Malthus, T.J.; Patenaude, G. A multispectral canopy lidar demonstrator project. IEEE Geosci. Remote Sens. Lett. 2011, 8, 839–843. [Google Scholar] [CrossRef]
- Wei, G.; Shalei, S.; Bo, Z.; Shuo, S.; Faquan, L.; Xuewu, C. Multi-wavelength canopy lidar for remote sensing of vegetation: Design and system performance. ISPRS J. Photogramm. Remote Sens. 2012, 69, 1–9. [Google Scholar] [CrossRef]
- Pfennigbauer, M.; Ullrich, A. Multi-wavelength airborne laser scanning. In Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, LA, USA, 7–9 February 2011.
- Fernandez Diaz, J.C.; Carter, W.E.; Glenie, C.; Shrestha, R.L. Multicolor terrain mapping documents critical environments. Eos Trans. Am. Geophys. Union 2016, 97, 10–15. [Google Scholar] [CrossRef]
- Spieler, H. Class Notes: Introduction to Radiation Detectors and Electronics. Available online: http://www-physics.lbl.gov/~spieler/physics_198_notes/ (accessed on 7 November 2016).
- Lackowicz, J.R. Principle of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; Volume 1, p. 954. [Google Scholar]
- Optech_Inc. Overcoming the Timing Limit with Multipulse Technology Altm Gemini. 2007. Available online: http://www.geo-konzept.de/data/downloads/AltMaxPaperWEB.pdf (accessed on 7 November 2016).
- Roth, R.; Thompson, J. Practical application of multiple pulse in air (mpia) lidar in large area surveys. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 183–188. [Google Scholar]
- Wang, C.K.; Tseng, Y.H.; Chu, H.J. Airborne dual-wavelength lidar data for classifying land cover. Remote Sens. 2014, 6, 700–715. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. Airborne multispectral lidar data for land-cover classification and land/water mapping using different spectral indexes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 217–224. [Google Scholar] [CrossRef]
- Wallace, A.M.; McCarthy, A.; Nichol, C.J.; Ren, X.; Morak, S.; Martinez-Ramirez, D.; Woodhouse, I.H.; Buller, G.S. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4942–4954. [Google Scholar] [CrossRef]
- Doneus, M.; Briese, C. Airborne laser scanning in forested areas—Potential and limitations of an archaeological prospection technique. In Remote Sensing for Archaeological Heritage Management; Cowley, D.C., Ed.; Europae Archaeologica Consilium (EAC): Brussels, Belgium, 2011. [Google Scholar]
- Hartzell, P.J.; Fernandez-Diaz, J.C.; Wang, X.; Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Singhania, A.; Sartori, M.P. Comparison of Synthetic Images Generated from Lidar Intensity and Passive Hyperspectral Imagery. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1345–1348.
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S. Hyperspectral and lidar data fusion: Outcome of the 2013 grss data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 1999; Volume 3. [Google Scholar]
- Hopkinson, C.; Chasmer, L.; Gynan, C.; Mahoney, C.; Sitar, M. Multisensor and multispectral lidar characterization and classification of a forest environment. Can. J. Remote Sens. 2016, 42, 501–520. [Google Scholar] [CrossRef]
- Habib, A.F.; Kersting, A.P.; Shaker, A.; Yan, W.-Y. Geometric calibration and radiometric correction of lidar data and their impact on the quality of derived products. Sensors 2011, 11, 9069–9097. [Google Scholar] [CrossRef] [PubMed]
- Briese, C.; Pfennigbauer, M.; Ullrich, A.; Doneus, M. Multi-wavelength airborne laser scanning for archaeological prospection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 119–124. [Google Scholar] [CrossRef]
- Starek, M.J.; Vemula, R.K.; Slatton, K.C.; Shrestha, R.L.; Carter, W.E. Shoreline based feature extraction and optimal feature selection for segmenting airborne lidar intensity images. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16–19 September 2007; pp. IV-369–IV-372.
- Crasto, N.; Hopkinson, C.; Forbes, D.; Lesack, L.; Marsh, P.; Spooner, I.; van der Sanden, J. A lidar-based decision-tree classification of open water surfaces in an arctic delta. Remote Sens. Environ. 2015, 164, 90–102. [Google Scholar] [CrossRef]
- Baker, K.; Smith, R. Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance. In Ocean Optics VI; International Society for Optics and Photonics: Bellingham, WA, USA, 1980; pp. 60–63. [Google Scholar]
- Austin, R.W.; Halikas, G. The Index of Refraction of Seawater. 1976. Available online: https://escholarship.org/uc/item/8px2019m#page-1 (accessed on 7 November 2016).
- Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.; Legleiter, C.; Overstreet, B. Performance assessment of high resolution airborne full waveform lidar for shallow river bathymetry. Remote Sens. 2015, 7, 5133–5159. [Google Scholar] [CrossRef]
- Legleiter, C.; Overstreet, B.; Glennie, C.; Pan, Z.; Fernandez-Diaz, J.; Singhania, A. Evaluating the capabilities of the casi hyperspectral imaging system and aquarius bathymetric lidar for measuring channel morphology in two distinct river environments. Earth Surf. Process. Landf. 2015. [Google Scholar] [CrossRef]
- Wright, C.W. Eaarl-B missions, calibration and validation. In Proceedings of the 15th Annual JALBTCX Airborne Coastal Mapping and Charting Workshop, Mobile, AL, USA, 10–12 June 2014.
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating individual trees from lidar data: A comparison of vector-and raster-based segmentation approaches. Remote Sens. 2013, 5, 4163–4186. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating tree detection and segmentation routines on very high resolution uav lidar data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Hopkinson, C. The influence of lidar acquisition settings on canopy penetration and laser pulse return characteristics. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 2420–2423.
- Chasmer, L.; Hopkinson, C.; Treitz, P. Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar. Can. J. Remote Sens. 2006, 32, 116–125. [Google Scholar] [CrossRef]
- Hopkinson, C. The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution. Can. J. Remote Sens. 2007, 33, 312–324. [Google Scholar] [CrossRef]
- Massaro, R.; Zinnert, J.; Anderson, J.; Edwards, J.; Crawford, E.; Young, D. Lidar flecks: Modeling the influence of canopy type on tactical foliage penetration by airborne, active sensor platforms. In SPIE Defense, Security, and Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; pp. 836008–836010. [Google Scholar]
- Hsu, W.C.; Shih, P.T.Y.; Chang, H.C.; Liu, J.K. A study on factors affecting airborne lidar penetration. Terr. Atmos. Ocean. Sci. 2015, 26, 241–251. [Google Scholar] [CrossRef]
- Fernandez-Diaz, J.C.; Lee, H.; Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Singhania, A.; Sartori, M.P.; Hauser, D.L. Optimizing ground return detection through forest canopies with small footprint airborne mapping lidar. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1963–1966.
- Axelsson, P. DEM generation from laser scanner data using adaptive tin models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 111–118. [Google Scholar]
- Vierling, K.T.; Vierling, L.A.; Gould, W.A.; Martinuzzi, S.; Clawges, R.M. Lidar: Shedding new light on habitat characterization and modeling. Front. Ecol. Environ. 2008, 6, 90–98. [Google Scholar] [CrossRef]
- Zolkos, S.; Goetz, S.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Baltsavias, E.P. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 1999, 54, 199–214. [Google Scholar] [CrossRef]
- Parrish, C.E.; Jeong, I.; Nowak, R.D.; Smith, R.B. Empirical comparison of full-waveform lidar algorithms. Photogramm. Eng. Remote Sens. 2011, 77, 825–838. [Google Scholar] [CrossRef]
- Slatton, K.C.; Carter, W.E.; Shrestha, R.L.; Dietrich, W. Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Cossio, T.K.; Slatton, K.C.; Carter, W.E.; Shrestha, K.Y.; Harding, D. Predicting small target detection performance of low-snr airborne lidar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 672–688. [Google Scholar] [CrossRef]
- Fernandez-Diaz, J.; Carter, W.; Shrestha, R.; Glennie, C. Now you see it… now you don’t: Understanding airborne mapping lidar collection and data product generation for archaeological research in mesoamerica. Remote Sens. 2014, 6, 9951–10001. [Google Scholar] [CrossRef]
- Penttinen, J.T. The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems; John Wiley & Sons: Chichester, UK, 2015. [Google Scholar]
- Laneman, J.N.; Martinian, E.; Wornell, G.W.; Apostolopoulos, J.G. Source-channel diversity for parallel channels. IEEE Trans. Inf. Theory 2005, 51, 3518–3539. [Google Scholar] [CrossRef]
- Glennie, C. Rigorous 3D error analysis of kinematic scanning lidar systems. J. Appl. Geod. Jag 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Heidemann, H.K. Lidar Base Specification (Version 1.2, November 2014). Available online: https://pubs.usgs.gov/tm/11b4/pdf/tm11-B4.pdf (accessed on 7 November 2016).
Channel 1 | Channel 2 | Channel 3 | |
---|---|---|---|
Laser Wavelength (nm) | 1550 | 1064 | 532 |
Look angle (degrees) | 3.5 forward | nadir | 7.0 forward |
Pulse Repetion Frequency (kHz) | 50–300 | 50–300 | 50–300 |
Beam Divergence (mRad) | ~0.36 | ~0.3 | ~1.0 |
Pulse Energy (μJ) | 50–20 | ~15 | ~30 |
Pulse Width (ns) | ~2.7 | 3–4 | ~3.7 |
Project/Test Location | Collection Year and Day of Year | Primary Application | Laser on Time (H) |
---|---|---|---|
Baytown, TX, USA | 2014: 289, 300 2015: 47, 222 2016: 127–129 | System test | |
Houston, TX, USA | 2014: 289 | System test | 0.4 |
Jordan, MT, USA | 2014: 291 | Geomorphology | 0.7 |
Hebgen Lake, MT, USA | 2014: 292 | Tectonics | 1.1 |
Big Creek River, ID, USA | 2014: 293 | River bathymetry | 1.0 |
Greys River, WY, USA | 2014: 295 | River bathymetry | 1.3 |
Bishop, CA, USA | 2014: 296 | Geomorphology | 0.7 |
Wheeler Ridge, CA, USA | 2014: 296 | Geomorphology | 0.8 |
Yucaipa, CA, USA | 2014: 297 | Forestry | 0.9 |
Beaver, UT, USA | 2014: 299 | River morphology | 0.7 |
McMurdo Dry Valleys, Antractica | 2014: 338 to 2015: 19 | Geomorphology | 47.5 |
El Ceibal, Peten, Guatemala | 2015: 77–82 | Archaeology | 5.5 |
Zacapu, Michoacan, Mexico | 2015: 88 | Archaeology | 0.7 |
Angamuco, Michoacan, Mexico | 2015: 88 | Archaeology | 0.8 |
Teotihuacan, Mexico | 2015: 91–92 | Archaeology | 1.69 |
Laser Servicing | |||
Trinity River, TX, USA | 2015: 219–222 | River morphology | 4.8 |
NASA JSC Clear Lake, TX, USA | 2015: 223–227 | Climate change resiliency | 5.1 |
Barataria Bay, LA, USA | 2015: 228–230 | Marsh response to oil spill | 6.8 |
Destin Inlet, FL, USA | 2015: 231 | Bathymetry test | 1.5 |
Apalachicola, FL | 2015: 232–233 | Aquatic ecosystem | 1.6 |
Redfish Bay, TX | 2015: 235 | Bathymetry test | 0.8 |
Texas Gulf Coast, USA | 2015: 235 | Coastal morphology | 0.5 |
Reynolds Creek, ID, USA | 2015: 289, 294 | Ecology | 2.6 |
Santa Clara River, CA, USA | 2015: 291–293 | River morphology | 3.4 |
Calhoun Creek, SC, USA | 2016: 057 | Ecology | 2.2 |
Laser Servicing | |||
Campeche, Mexico | 2016: 138–141 | Archaeology | 7.6 |
Lake Peak Fault, CA, USA | 2016: 155 | Tectonics | 1 |
Inyo Domes, CA, USA | 2016: 158 | Geomorphology | 0.5 |
Monterey, CA, USA | 2016: 157, 159 | Urban spectral classification | 0.7 |
Bastrop, TX, USA | 2016: 161 | Orthophotos | 0.3 |
NorthWestern Belize | 2016: 184–186 | Archaeology, Geomorphology | 5.0 |
San Salvador, Bahamas | 2016: 189–191 | Island hydrology | 7.0 |
Mayan Biosphere Reserve, Peten, Guatemala | 2016: 197–207 | Archeaology, Ecology | 23.7 |
Class | Training | Validation |
---|---|---|
Grass | 169 | 1269 |
Tree | 123 | 771 |
Residential | 24 | 412 |
Commercial | 172 | 1089 |
Road | 520 | 1203 |
Image Stack | Mahalanobis Distance | Maximum Likelihood | ||
---|---|---|---|---|
Overall Accuracy (%) | Kappa Coefficient | Overall Accuracy (%) | Kappa Coefficient | |
1550, 1064, 532 nm + 5 st | 80.59 | 0.75 | 88.15 | 0.85 |
1550, 1064 nm + 5 st | 76.94 | 0.7 | 87.27 | 0.83 |
1064, 532 nm + 5 st | 82.33 | 0.77 | 90.22 | 0.87 |
1550 nm + 5 st | 63.41 | 0.53 | 67.96 | 0.58 |
1064 nm + 5 st | 77.16 | 0.71 | 89.89 | 0.87 |
532 nm + 5 st | 60.15 | 0.5 | 80.31 | 0.74 |
5 st (only structural) | 55.63 | 0.45 | 63.12 | 0.52 |
1550, 1064 and 532 nm | 74.18 | 0.67 | 78.64 | 0.72 |
Flying Height | PRF | Depth Cutoff (m) | Return Density (m) | ||
---|---|---|---|---|---|
(m) | (kHz) | Bay | Gulf | Bay | Gulf |
300 | 75 | 5.9 | 10 | 2.8 | 3 |
300 | 150 | 5.7 | 10.1 | 5.8 | 6 |
300 | 200 | 6.0 | 10.4 | 7.5 | 8 |
500 | 75 | 5.8 | 9.1 | 2 | 2.1 |
500 | 150 | 5.8 | 9.6 | 4 | 4.1 |
500 | 175 | 5.7 | 9.0 | 4.6 | 5 |
Configuration | Laser Shots | Shots/m2 | Returns/Shot | Ground Returns | Shots W Grnd | Grnd/m2 |
---|---|---|---|---|---|---|
Calakmul | ||||||
125 kHz·W 500 m | 1,732,770 | 6.19 | 1.54 | 162,860 | 9.4% | 0.58 |
100 kHz·W 500 m | 1,018,028 | 3.64 | 1.71 | 163,024 | 16.0% | 0.58 |
70 kHz·W 500 m | 725,078 | 2.59 | 1.98 | 195,382 | 26.9% | 0.70 |
100 kHz 500 C1 | 591,352 | 2.11 | 2.58 | 395,748 | 66.9% | 1.41 |
100 kHz 500 C2 | 596,128 | 2.13 | 3.04 | 448,277 | 75.2% | 1.6 |
100 kHz 500 C3 | 587,335 | 2.10 | 2.18 | 350,696 | 59.7% | 1.25 |
Lamanai | ||||||
300 kHz 650 m C1 | 3,291,439 | 5.14 | 1.34 | 160,239 | 4.9% | 0.25 |
300 kHz 650 m C2 | 3,314,884 | 5.17 | 1.85 | 234,873 | 7.1% | 0.37 |
300 kHz 650 m C3 | 3,282,482 | 5.12 | 1.69 | 140,492 | 4.3% | 0.22 |
175 kHz 550 m C1 | 2,709,159 | 4.23 | 1.57 | 198,713 | 7.3% | 0.31 |
175 kHz 550 m C2 | 2,715,926 | 4.24 | 1.97 | 242,570 | 8.9% | 0.37 |
175 kHz 550 m C3 | 2,708,299 | 4.23 | 1.79 | 147,443 | 5.4% | 0.23 |
75 kHz 550 m C1 | 1,026,081 | 1.60 | 1.68 | 98,613 | 9.6% | 0.15 |
75 kHz 550 m C2 | 1,035,340 | 1.62 | 2.00 | 107,097 | 10.3% | 0.17 |
75 kHz 550 m C3 | 1,019,546 | 1.59 | 1.76 | 61,154 | 6.0% | 0.10 |
El Ceibal | ||||||
100 kHz 700 m C1 | 933,915 | 2.29 | 1.78 | 59,417 | 6.4% | 0.15 |
100 kHz 700 m C2 | 933,550 | 2.29 | 1.75 | 40,572 | 4.3% | 0.10 |
100 kHz 700 m C3 | 905,700 | 2.22 | 1.36 | 19,643 | 2.2% | 0.05 |
150 kHz 700 m C1 | 1,382,953 | 3.39 | 1.71 | 76,700 | 5.5% | 0.19 |
150 kHz 700 m C2 | 1,383,895 | 3.39 | 1.77 | 57,607 | 4.2% | 0.14 |
150 kHz 700 m C3 | 1,333,620 | 3.27 | 1.33 | 26,178 | 2.0% | 0.06 |
150 kHz 600 m C1 | 1,558,967 | 3.82 | 1.81 | 93,086 | 6.0% | 0.22 |
150 kHz 600 m C2 | 1,557,677 | 3.82 | 1.91 | 74,269 | 4.8% | 0.18 |
150 kHz 600 m C3 | 1,545,070 | 3.79 | 1.51 | 37,294 | 2.4% | 0.09 |
150 kHz 400 m C1 | 2,978,301 | 7.31 | 2.11 | 188,587 | 6.3% | 0.46 |
150 kHz 400 m C2 | 2,969,762 | 7.28 | 2.31 | 174,980 | 5.9% | 0.42 |
150 kHz 400 m C3 | 2,958,431 | 7.26 | 2.17 | 125,777 | 4.3% | 0.31 |
2014 Gemini | 2016 Titan @ 100 kHz | |||||
---|---|---|---|---|---|---|
125 kHz | 100 kHz | 70 kHz | C1 | C2 | C3 | |
Number of Shots | 694,825 | 381,483 | 262,265 | 226,802 | 229,250 | 223,838 |
Shots with 2 Returns | 214,904 | 129,270 | 92,123 | 67,336 | 47,747 | 82,178 |
Shots with 3 Returns | 78,030 | 64,087 | 61,024 | 67,980 | 64,078 | 57,482 |
Shots with >3 Returns | 8289 | 10,712 | 17,607 | 46,092 | 93,873 | 20,073 |
Only 2 Returns | ||||||
Min | 1.535 | 1.577 | 1.502 | 0.678 | 0.666 | 0.662 |
1% | 2.782 | 2.606 | 2.434 | 0.989 | 0.888 | 0.928 |
3% | 3.217 | 3.015 | 2.828 | 1.208 | 1.044 | 1.103 |
1st–2nd | ||||||
Min | 1.495 | 1.475 | 1.321 | 0.665 | 0.663 | 0.675 |
1% | 2.122 | 2.031 | 1.894 | 0.832 | 0.789 | 0.83 |
3% | 2.452 | 2.342 | 2.19 | 0.965 | 0.883 | 0.937 |
2nd–3rd | ||||||
Min | 1.51 | 1.652 | 1.55 | 0.659 | 0.662 | 0.7 |
1% | 2.43 | 2.247 | 2.084 | 0.863 | 0.774 | 0.848 |
3% | 2.746 | 2.553 | 2.379 | 1.002 | 0.891 | 0.971 |
3rd–Last | ||||||
Min | 1.683 | 1.73 | 1.582 | 0.691 | 0.653 | 0.71 |
1% | 2.386 | 2.278 | 2.112 | 1.06 | 0.986 | 1.03 |
3% | 2.73 | 2.555 | 2.36 | 1.241 | 1.197 | 1.256 |
300 kHz | 650 m | 175 kHz | 550 m | 75 kHz | 550 m | |
---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | C1 | C2 | |
Number of Shots | 3,292,063 | 3,315,493 | 2,709,669 | 2,716,424 | 1,026,408 | 1,035,563 |
Shots with 2 Returns | 827,019 | 1,118,222 | 819,056 | 894,329 | 320,157 | 338,856 |
Shots with 3 Returns | 133,990 | 544,008 | 272,968 | 501,007 | 128,830 | 196,336 |
Shots with >3 Returns | 8973 | 208,025 | 62,132 | 250,047 | 38,421 | 102,401 |
Only 2 Returns | ||||||
Min | 0.667 | 0.662 | 0.669 | 0.661 | 0.666 | 0.662 |
1% | 0.907 | 0.804 | 0.896 | 0.81 | 0.898 | 0.808 |
3% | 1.044 | 0.942 | 1.064 | 0.953 | 1.076 | 0.949 |
1st–2nd | ||||||
Min | 0.705 | 0.658 | 0.668 | 0.663 | 0.673 | 0.666 |
1% | 0.837 | 0.769 | 0.824 | 0.77 | 0.809 | 0.767 |
3% | 0.936 | 0.881 | 0.952 | 0.885 | 0.953 | 0.883 |
2nd–3rd | ||||||
Min | 0.67 | 0.664 | 0.643 | 0.648 | 0.661 | 0.659 |
1% | 0.872 | 0.784 | 0.842 | 0.777 | 0.848 | 0.778 |
3% | 0.968 | 0.896 | 0.976 | 0.894 | 0.981 | 0.894 |
3rd–Last | ||||||
Min | 0.684 | 0.638 | 0.678 | 0.653 | 0.675 | 0.66 |
1% | 0.879 | 0.803 | 0.89 | 0.804 | 0.879 | 0.804 |
3% | 0.978 | 0.933 | 1.023 | 0.943 | 1.023 | 0.943 |
Channel | Number of Shots | Shot Density 1/m2 | Illuminated Surface m2 | % of Surface Illuminated |
---|---|---|---|---|
C1 | 2666 | 2.58 | 257.76 | 25.0% |
C2 | 2650 | 2.56 | 186.37 | 18.0% |
C3 | 2699 | 2.61 | 861.09 | 83.3% |
All Channels | 8015 | 7.75 | 910.73 | 88.2% |
PRF | Range | Number of Samples | Height RMSE (m) | |||||
---|---|---|---|---|---|---|---|---|
(kHz) | (m) | C1 | C2 | C3 | C1 | C2 | C3 | C123 |
Precision | ||||||||
100 | 900 | 658 | - | 667 | 0.02 | - | 0.018 | 0.030 |
200 | 900 | 1411 | 93 | 1542 | 0.018 | 0.028 | 0.018 | 0.020 |
300 | 800 | 2535 | 756 | 4766 | 0.019 | 0.026 | 0.017 | 0.048 |
100 | 500 | 1038 | 1061 | 1060 | 0.019 | 0.018 | 0.021 | 0.045 |
200 | 500 | 2208 | 2280 | 2255 | 0.020 | 0.018 | 0.021 | 0.022 |
300 | 350 | 7476 | 7218 | 7380 | 0.017 | 0.016 | 0.016 | 0.027 |
Accuracy | ||||||||
100 | 900 | 207 | - | 179 | 0.051 | - | 0.082 | 0.048 |
200 | 900 | 347 | 27 | 324 | 0.055 | 0.037 | 0.060 | 0.044 |
300 | 800 | 420 | 82 | 465 | 0.073 | 0.044 | 0.059 | 0.0649 |
100 | 500 | 219 | 236 | 242 | 0.022 | 0.037 | 0.022 | 0.042 |
200 | 500 | 434 | 487 | 500 | 0.018 | 0.035 | 0.020 | 0.030 |
300 | 350 | 917 | 895 | 914 | 0.019 | 0.033 | 0.021 | 0.026 |
Location | Configuration | Number of Test Points | RMSE (m) |
---|---|---|---|
Teotihuacan, Mexico | 250 × 3 kHz, 900 m | 581 | 0.041 |
University of Houston, Texas | 250 × 3 kHz, 500 m | 1018 | 0.035 |
Orange Walk, Belize | 175 × 3 kHz, 550 m | 2238 | 0.044 |
NASA JSC, Texas | 150 × 3 kHz, 750 m | 2923 | 0.049 |
Calhoun Creek, South Carolina | 100 × 3 kHz, 700 m | 6314 | 0.033 |
Monterey, California | 100 × 3 kHz, 700 m | 1086 | 0.037 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Sartori, M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens. 2016, 8, 936. https://doi.org/10.3390/rs8110936
Fernandez-Diaz JC, Carter WE, Glennie C, Shrestha RL, Pan Z, Ekhtari N, Singhania A, Hauser D, Sartori M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sensing. 2016; 8(11):936. https://doi.org/10.3390/rs8110936
Chicago/Turabian StyleFernandez-Diaz, Juan Carlos, William E. Carter, Craig Glennie, Ramesh L. Shrestha, Zhigang Pan, Nima Ekhtari, Abhinav Singhania, Darren Hauser, and Michael Sartori. 2016. "Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar" Remote Sensing 8, no. 11: 936. https://doi.org/10.3390/rs8110936
APA StyleFernandez-Diaz, J. C., Carter, W. E., Glennie, C., Shrestha, R. L., Pan, Z., Ekhtari, N., Singhania, A., Hauser, D., & Sartori, M. (2016). Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sensing, 8(11), 936. https://doi.org/10.3390/rs8110936