Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression
<p>Flowchart of the main methods developed for radiometric normalization.</p> ">
<p>Operational pseudo-invariant features (PIFs) identification and radiometric normalization processing.</p> ">
<p>Location map of the Gorutuba region, Central Brazil. Color composite images of 2001 and 2011 (RGB: TM345).</p> ">
<p>(<b>a</b>) SCM<sub>CD</sub> image; (<b>b</b>) SAM<sub>CD</sub> image; (<b>c</b>) ED<sub>CD</sub> image; (<b>d</b>) PIF image considering 20% from SCM<sub>CD</sub> image; (<b>e</b>) PIF image considering 20% from SAM<sub>CD</sub> image; (<b>f</b>) PIF image considering 20% from ED<sub>CD</sub> image.</p> ">
<p>(<b>a</b>) Color composite made by combining PIFs from the SAM<sub>CD</sub> (20%) (Red), SCM<sub>CD</sub> (20%) (Green) and ED<sub>CD</sub> (20%) (Blue); (<b>b</b>) PIF image obtained from integration of similarity and distance measures.</p> ">
<p>Differences in PIFs detection between similarity and distance measures: (<b>a</b>) two temporal spectra that are identified as invariant point using SAM<sub>CD</sub> and SCM<sub>CD</sub> measures; and as a change point by ED<sub>CD</sub>; (<b>b</b>) two temporal spectra which are identified as invariant point by the ED<sub>CD</sub> and change point using SAM<sub>CD</sub> and SCM<sub>CD</sub> measures. Black line refers to 9 September 2001 and red line refers to 21 September 2011.</p> ">
<p>Multivariate Alteration Detection (MAD) components of study area obtained by subtraction between the canonical variates: (<b>a</b>) 1, (<b>b</b>) 2, (<b>c</b>) 3, (<b>d</b>) 4, (<b>e</b>) 5, and (<b>f</b>) 6.</p> ">
<p>Scatterplots between the sixth pair of canonical variable images.</p> ">
<p>Frequency histogram of the 1st MAD (black line) and 6th MAD images (red line).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Image Acquisition and Preprocessing
2.2. Pixel-by-Pixel Methods
2.2.1. Spectral Measures from the Original Images
2.2.2. Distance Measures from the Canonical Variates
2.3. Band-by-Band Methods
2.3.1. Ridge Method
2.3.2. Robust Statistical Method
2.4. Optional Use of a Mask
2.5. Radiometric Normalization Accuracy
3. Results
3.1. Results of the Pixel-by-Pixel Procedures
3.1.1. Distance and Similarity Measures from Original Images
3.1.2. Distance Measures from Canonical Variates (CVs)
3.1.3. Spectral Analysis from the Dark Radiometric Control Target
3.2. Results of the Band-by-Band Procedures
3.3. Program
4. Discussion
4.1. Comparison among Spectral Measures
4.2. Advantages and Drawbacks of the Proposed Method
5. Conclusion
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Teillet, P.M.; Barker, L.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar]
- Paolini, L.; Grings, F.; Sobrino, J.A.; Munoz, J.C.J.; Karszenbaum, H. Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies. Int. J. Remote Sens. 2006, 27, 685–704. [Google Scholar]
- Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar]
- Thome, K.; Markham, B.; Barker, J.; Slater, P.; Biggar, S. Radiometric calibration of Landsat. Photogramm. Eng. Remote Sensing 1997, 63, 853–858. [Google Scholar]
- Tokola, T.; Lofman, S.; Erkkila, A. Relative calibration of multitemporal Landsat data for forest cover change detection. Remote Sens. Environ. 1999, 68, 1–11. [Google Scholar]
- Vogelmann, J.E.; Helder, D.; Morfitt, R.; Choate, M.J.; Merchant, J.W.; Bulley, H. Effects of Landsat 5 thematic mapper and Landsat 7 enhanced thematic mapper plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sens. Environ. 2001, 78, 55–70. [Google Scholar]
- Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Geoets, S.J. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar]
- Yuan, D.; Elvidge, C.D. Comparison of relative radiometric normalization techniques. ISPRS J. Photogramm. 1996, 51, 117–126. [Google Scholar]
- Chavez, P.S.; Mackinnon, D.J. Automatic detection of vegetation changes in the southwestern United States using remotely sensed images. Photogramm. Eng. Remote Sensing 1994, 60, 571–583. [Google Scholar]
- Jensen, J.R. Urban/Suburban Land Use Analysis. In Manual of Remote Sensing, 2nd ed.; Colwell, R.N., Ed.; American Society of Photogrammetry: Falls Church, VA, USA, 1983; pp. 1571–1666. [Google Scholar]
- Caselles, V.; Lopez Garcia, M.J. An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int. J. Remote Sens. 1989, 10, 1127–1134. [Google Scholar]
- Hill, J.; Sturm, B. Radiometric correction of multitemporal thematic mapper data for use in agricultural landcover classification and vegetation monitoring. Int. J. Remote Sens. 1991, 12, 1471–1491. [Google Scholar]
- El Hajj, M.; Bégué, A.; Lafrance, B.; Hagolle, O.; Dedieu, G.; Rumeau, M. Relative radiometric normalization and atmospheric correction of a SPOT 5 time series. Sensors 2008, 8, 2774–2791. [Google Scholar]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalisation using pseudoinvariant features. Remote Sens. Environ. 1988, 26, 1–16. [Google Scholar]
- Eckhardt, D.W.; Verdin, J.P.; Lyford, G.R. Automated update of an irrigated lands GIS using SPOT HRV imagery. Photogramm. Eng. Remote Sensing 1990, 56, 1515–1522. [Google Scholar]
- Elvidge, C.D.; Yuan, D.; Weerackoon, R.D.; Lunetta, R.S. Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using an automatic scattergram-controlled regression. Photogramm. Eng. Remote Sensing 1995, 61, 1255–1260. [Google Scholar]
- Galiatsatos, N.; Donoghue, D.N.M.; Knox, D.; Smith, K. Radiometric Normalisation of Multisensor/Multitemporal Satellite Images with Quality Control for Forest Change Detection. Proceedings of the Fourth International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6.
- Heo, J.; Fitzhugh, T.W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm. Eng. Remote Sensing 2000, 66, 173–181. [Google Scholar]
- Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sens. Environ. 2005, 95, 388–398. [Google Scholar]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar]
- Andrefouet, S.; Muller-Karger, F.E.; Hochberg, E.J.; Hu, C.; Carder, K.L. Change detection in shallow coral reef environments using Landsat 7 ETM+ data. Remote Sens. Environ. 2001, 78, 150–162. [Google Scholar]
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar]
- Huber, P.J. Robust Statistics; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Rousseeuw, P.J.; Leroy, M.A. Robust Regression and Outlier Detection; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Carvalho Junior, O.A.; Guimarães, R.F.; Gomes, R.A.T.; Carvalho, A.P.F.; Silva, N.C. Normalization of Multi-temporal Images Using a New Change Detection Method based on the Spectral Classifier. Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 771–774.
- Carvalho Júnior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A.T. A new approach to change vector analysis using distance and similarity measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar]
- Townshend, J.R.G.; Justice, C.O.; Gurney, C.; McManus, J. The impact of misregistration on change detection. IEEE Trans. Geosci. Remote. Sens. 1992, 30, 1054–1060. [Google Scholar]
- Dai, X.; Khorram, S. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 1566–1577. [Google Scholar]
- Yang, X.; Lo, C.P. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm. Eng. Remote Sensing 2000, 66, 967–980. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heiedbrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar]
- Carvalho Júnior, O.A.; Meneses, P.R. Spectral Correlation Mapper (SCM): An Improving Spectral Angle Mapper. Proceedings Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–25 February 2000; pp. 65–74.
- Hotelling, H. Relations between two sets of variates. Biometrika 1936, 28, 321–377. [Google Scholar]
- Borga, M. Learning Multidimensional Signal Processing. 1998. [Google Scholar]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate Alteration Detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar]
- Furby, S.L.; Campbell, N.A. Calibrating images from different dates to “like-value” digital counts. Remote Sens. Environ. 2001, 77, 186–196. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C++. In The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 2002; pp. 705–711. [Google Scholar]
- Meer, P.; Mintz, D.; Rosenfeld, A. Robust regression methods for computer vision: A review. Int. J. Comput. Vis. 1991, 6. [Google Scholar]
- Andrews, D.E. A robust method for multiple linear regression. Technometrics 1974, 16, 523–531. [Google Scholar]
- Beaton, A.E.; Tukey, J.W. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 1974, 16, 147–185. [Google Scholar]
- Andersen, R. Modern Methods for Robust Regression. Quantitative Applications in the Social Sciences; Sage Publications: Los Angeles, CA, USA, 2008. [Google Scholar]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
Measures | Formulation | Characteristics |
---|---|---|
Euclidean Distance for change detection (EDCD) | Sensitive to offset and gain factor | |
Spectral Angle Mapper for change detection (SAMCD) | Negative correlation is not detected Invariant to gain factor | |
Spectral Correlation Mapper for change detection (SCMCD) | Negative correlation is detected Invariant to offset and gain factor |
SCMCD (20%) | SAMCD (20%) | EDCD (20%) | |
---|---|---|---|
SCMCD(20%) | 200,000 | 160,398 | 106,981 |
SAMCD(20%) | 160,398 | 200,000 | 102,774 |
EDCD(20%) | 106,981 | 102,774 | 200,000 |
Bands | SCMCD | SAMCD | EDCD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | β | RMSE | R | α | β | RMSE | R | α | β | RMSE | R | |
Band-1 | −7.33 | 1.114 | 5.437 | 0.865 | −3.316 | 1.061 | 5.121 | 0.851 | −0.869 | 0.99 | 2.805 | 0.93 |
Band-2 | −3.679 | 1.162 | 4.220 | 0.905 | −3.073 | 1.143 | 3.901 | 0.902 | 0.248 | 1.006 | 1.988 | 0.959 |
Band-3 | −3.675 | 1.144 | 6.615 | 0.944 | −2.547 | 1.122 | 6.307 | 0.93 | −0.263 | 1.026 | 3.254 | 0.977 |
Band-4 | −0.025 | 1.097 | 6.642 | 0.964 | 2.352 | 1.066 | 6.454 | 0.94 | 2.518 | 1.037 | 4.462 | 0.98 |
Band-5 | −1.345 | 1.06 | 11.398 | 0.974 | −1.315 | 1.068 | 11.688 | 0.954 | 2.539 | 0.991 | 5.086 | 0.993 |
Band-7 | −0.149 | 1.076 | 6.642 | 0.968 | 0.128 | 1.076 | 6.846 | 0.948 | 2.026 | 0.989 | 3.582 | 0.986 |
SCMCD | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 76.461 | 38.203 | 51.968 | 64.288 | 126.890 | 59.212 |
Normalized (2001) | 77.273 | 40.199 | 55.236 | 69.964 | 132.700 | 63.073 |
Reference (2011) | 77.830 | 40.713 | 55.783 | 70.484 | 133.170 | 63.540 |
Difference | 0.550 | 0.513 | 0.546 | 0.520 | 0.465 | 0.466 |
SAMCD | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 77.189 | 38.927 | 54.111 | 66.257 | 132.930 | 62.097 |
Normalized (2001) | 78.030 | 40.927 | 57.686 | 72.463 | 140.140 | 66.420 |
Reference (2011) | 78.546 | 41.431 | 58.182 | 72.987 | 140.630 | 66.921 |
Difference | 0.516 | 0.504 | 0.495 | 0.523 | 0.491 | 0.500 |
EDCD | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 72.809 | 34.229 | 44.099 | 56.736 | 108.240 | 48.797 |
Normalized (2001) | 70.809 | 34.229 | 44.412 | 60.840 | 109.33 | 49.791 |
Reference (2011) | 71.224 | 34.680 | 44.977 | 61.367 | 109.840 | 50.271 |
Difference | 0.414 | 0.4505 | 0.564 | 0.527 | 0.503 | 0.480 |
SCMCD | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 70.69438 | 59.44261 | 273.3577 | 480.6458 | 2131.235 | 562.5406 |
Normalized (2001) | 88.19824 | 79.76944 | 358.481 | 581.9668 | 2387.68 | 646.6398 | |
Reference (2011) | 117.2427 | 98.06528 | 401.5877 | 622.2835 | 2524.955 | 694.9333 | |
Range | Uncorrected (2001) | 78 | 62 | 113 | 148 | 253 | 143 |
Normalized (2001) | 87 | 72 | 129 | 162 | 255 | 153 | |
Reference (2011) | 99 | 73 | 128 | 148 | 255 | 163 | |
Coefficient of | Uncorrected (2001) | 0.109965 | 0.201812 | 0.318149 | 0.341022 | 0.363826 | 0.400559 |
Normalized (2001) | 0.121536 | 0.22218 | 0.342774 | 0.344807 | 0.36822 | 0.403169 | |
Reference (2011) | 0.139135 | 0.243237 | 0.359244 | 0.353919 | 0.377336 | 0.414881 | |
SAMCD | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 61.32971 | 50.99061 | 203.6081 | 275.8851 | 1223.483 | 361.7351 |
Normalized (2001) | 69.58914 | 66.44938 | 256.8769 | 315.0233 | 1392.437 | 418.5648 | |
Reference (2011) | 95.20167 | 81.86585 | 296.2384 | 355.2058 | 1531.65 | 465.3757 | |
Range | Uncorrected (2001) | 133 | 84 | 127 | 145 | 252 | 140 |
Normalized (2001) | 141 | 96 | 142 | 155 | 254 | 150 | |
Reference (2011) | 99 | 72 | 117 | 138 | 255 | 162 | |
Coefficient of | Uncorrected (2001) | 0.101456 | 0.183442 | 0.263701 | 0.250687 | 0.263134 | 0.306285 |
Normalized (2001) | 0.106908 | 0.199176 | 0.277837 | 0.244937 | 0.266286 | 0.308022 | |
Reference (2011) | 0.124221 | 0.218387 | 0.295823 | 0.258223 | 0.278294 | 0.32236 | |
EDCD | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 51.63264 | 44.39962 | 208.6694 | 451.3844 | 1791.989 | 443.5186 |
Normalized (2001) | 51.6276 | 44.39962 | 219.4595 | 488.523 | 1768.854 | 441.4567 | |
Reference (2011) | 58.49063 | 48.87633 | 230.1959 | 505.5454 | 1786.699 | 446.3774 | |
Range | Uncorrected (2001) | 91 | 65 | 113 | 148 | 253 | 140 |
Normalized (2001) | 90 | 65 | 115 | 154 | 251 | 138 | |
Reference (2011) | 99 | 69 | 119 | 141 | 254 | 135 | |
Coefficient of | Uncorrected (2001) | 0.098691 | 0.194667 | 0.327568 | 0.374467 | 0.391084 | 0.431584 |
Normalized (2001) | 0.101473 | 0.194667 | 0.333561 | 0.363291 | 0.384677 | 0.421984 | |
Reference (2011) | 0.107378 | 0.201592 | 0.337334 | 0.36639 | 0.384839 | 0.420275 |
NED-MAD | NED-MAD | NED-MAD | SCMCD | SAMCD | EDCD | |
---|---|---|---|---|---|---|
(All Bands) | (5 Bands) | (3 Bands) | ||||
NED-MAD (all bands) | 200,000 | 160,923 | 139,654 | 52,188 | 59,408 | 26,246 |
NED-MAD (5 bands) | 160,923 | 200,000 | 155,799 | 47,496 | 55,353 | 14,738 |
NED-MAD (3 bands) | 139,654 | 155,799 | 200,000 | 52,204 | 59,901 | 17,874 |
NED-MAD (All Components) | NED-MAD (Five Components) | NED-MAD (Three Components) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bands | α | β | RMSE | R | α | β | RMSE | R | α | β | RMSE | R |
Band-1 | −3.513 | 1.072 | 2.314 | 0.945 | −2.249 | 1.057 | 2.190 | 0.955 | −0.792 | 1.039 | 1.856 | 0.968 |
Band-2 | −0.469 | 1.128 | 1.721 | 0.967 | 0.563 | 1.104 | 1.607 | 0.973 | 1.439 | 1.079 | 1.578 | 0.974 |
Band-3 | 3.086 | 1.100 | 2.792 | 0.972 | 4.598 | 1.075 | 2.789 | 0.976 | 4.774 | 1.065 | 3.697 | 0.962 |
Band-4 | 13.533 | 0.983 | 3.646 | 0.962 | 14.757 | 0.967 | 3.594 | 0.961 | 18.918 | 0.888 | 5.929 | 0.913 |
Band-5 | 13.163 | 1.002 | 7.158 | 0.963 | 15.295 | 0.990 | 6.986 | 0.965 | 15.875 | 0.983 | 6.160 | 0.975 |
Band-7 | 5.482 | 1.038 | 4.053 | 0.966 | 8.028 | 1.004 | 5.218 | 0.945 | 8.203 | 1.002 | 5.066 | 0.952 |
NED-MAD (All Bands) | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 73.53389 | 34.98043 | 47.22892 | 59.63658 | 120.6294 | 54.58548 |
Normalized (2001) | 74.80974 | 38.51939 | 54.49465 | 71.60842 | 133.6294 | 61.72854 |
Reference (2011) | 75.29658 | 38.97923 | 55.02094 | 72.13204 | 134.0009 | 62.14728 |
Difference | 0.48684 | 0.45984 | 0.526285 | 0.52361 | 0.37149 | 0.41874 |
NED-MAD (5 Bands) | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 74.54509 | 35.99552 | 49.202 | 61.24536 | 125.102 | 57.13146 |
Normalized (2001) | 75.96249 | 39.72751 | 56.94335 | 73.55464 | 138.619 | 65.13146 |
Reference (2011) | 76.55546 | 40.28415 | 57.46744 | 73.98557 | 139.0883 | 65.3966 |
Difference | 0.59298 | 0.55665 | 0.524095 | 0.430935 | 0.46925 | 0.265145 |
NED-MAD (3 Bands) | ||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
Uncorrected (2001) | 74.39065 | 36.0114 | 49.06649 | 63.04542 | 124.0779 | 56.60791 |
Normalized (2001) | 75.96621 | 39.70047 | 56.54078 | 74.37767 | 137.4494 | 64.60791 |
Reference (2011) | 76.50336 | 40.29939 | 57.02833 | 74.90395 | 137.8846 | 64.93313 |
Difference | 0.53715 | 0.59892 | 0.487555 | 0.526275 | 0.43518 | 0.32522 |
NED-MAD (All Bands) | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 39.29503 | 33.80525 | 126.7082 | 171.6435 | 651.4781 | 210.9658 |
Normalized (2001) | 44.91777 | 43.05102 | 153.9639 | 169.1287 | 651.4781 | 225.548 | |
Reference (2011) | 50.49108 | 45.95556 | 162.0483 | 179.015 | 704.9602 | 243.7734 | |
Range | Uncorrected (2001) | 60 | 58 | 95 | 133 | 238 | 139 |
Normalized (2001) | 64 | 66 | 105 | 131 | 238 | 144 | |
Reference (2011) | 64 | 59 | 101 | 131 | 237 | 148 | |
Coefficient of Variation | Uncorrected (2001) | 0.085247 | 0.166214 | 0.238339 | 0.219685 | 0.211591 | 0.26609 |
Normalized (2001) | 0.089588 | 0.170338 | 0.227696 | 0.181612 | 0.191006 | 0.243295 | |
Reference (2011) | 0.09437 | 0.173915 | 0.231363 | 0.185488 | 0.198141 | 0.25123 | |
NED-MAD (5 bands) | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 44.14236 | 37.52932 | 137.2826 | 167.8967 | 671.9878 | 223.6594 |
Normalized (2001) | 50.42474 | 46.9415 | 158.6868 | 156.1622 | 650.1234 | 223.6594 | |
Reference (2011) | 54.12543 | 48.28298 | 166.2875 | 169.9436 | 706.807 | 252.7447 | |
Range | Uncorrected (2001) | 63 | 58 | 100 | 124 | 238 | 131 |
Normalized (2001) | 66 | 64 | 108 | 120 | 235 | 131 | |
Reference (2011) | 68 | 59 | 104 | 126 | 238 | 132 | |
Coefficient of Variation | Uncorrected (2001) | 0.089127 | 0.170191 | 0.238136 | 0.211567 | 0.207213 | 0.261769 |
Normalized (2001) | 0.093481 | 0.17246 | 0.221222 | 0.169894 | 0.18394 | 0.229616 | |
Reference (2011) | 0.0961 | 0.17249 | 0.224392 | 0.1762 | 0.191144 | 0.243101 | |
NED-MAD (3 Bands) | |||||||
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | ||
Variances | Uncorrected (2001) | 47.69037 | 39.2796 | 150.0455 | 222.4742 | 760.6277 | 249.8103 |
Normalized (2001) | 53.1722 | 46.57776 | 169.1822 | 175.7566 | 735.9215 | 249.8103 | |
Reference (2011) | 54.9329 | 48.23015 | 183.8415 | 210.5953 | 773.4186 | 276.5494 | |
Range | Uncorrected (2001) | 68 | 60 | 126 | 143 | 244 | 133 |
Normalized (2001) | 71 | 65 | 134 | 127 | 240 | 133 | |
Reference (2011) | 72 | 59 | 110 | 139 | 251 | 135 | |
Coefficient of Variation | Uncorrected (2001) | 0.092832 | 0.174038 | 0.249647 | 0.236585 | 0.222276 | 0.279208 |
Normalized (2001) | 0.095989 | 0.171907 | 0.230047 | 0.178243 | 0.197366 | 0.244636 | |
Reference (2011) | 0.09688 | 0.17233 | 0.237756 | 0.19374 | 0.201693 | 0.256106 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Carvalho, O.A., Júnior; Guimarães, R.F.; Silva, N.C.; Gillespie, A.R.; Gomes, R.A.T.; Silva, C.R.; De Carvalho, A.P.F. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sens. 2013, 5, 2763-2794. https://doi.org/10.3390/rs5062763
De Carvalho OA Júnior, Guimarães RF, Silva NC, Gillespie AR, Gomes RAT, Silva CR, De Carvalho APF. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing. 2013; 5(6):2763-2794. https://doi.org/10.3390/rs5062763
Chicago/Turabian StyleDe Carvalho, Osmar Abílio, Júnior, Renato Fontes Guimarães, Nilton Correia Silva, Alan R. Gillespie, Roberto Arnaldo Trancoso Gomes, Cristiano Rosa Silva, and Ana Paula Ferreira De Carvalho. 2013. "Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression" Remote Sensing 5, no. 6: 2763-2794. https://doi.org/10.3390/rs5062763
APA StyleDe Carvalho, O. A., Júnior, Guimarães, R. F., Silva, N. C., Gillespie, A. R., Gomes, R. A. T., Silva, C. R., & De Carvalho, A. P. F. (2013). Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing, 5(6), 2763-2794. https://doi.org/10.3390/rs5062763