β-Cyclodextrin Modified Poly(Acrylonitrule-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption
<p>FTIR spectra of β-CD(AN-<span class="html-italic">co</span>-AA) (<b>a</b>) and β-CD(AN-<span class="html-italic">co</span>-AA)-Th<sup>4+</sup> (<b>b</b>).</p> "> Figure 2
<p>SEM of β-CD(AN-<span class="html-italic">co</span>-AA) hydrogel particles in different resolution size 10 μm (<b>a</b>) and 1 μm (<b>b</b>).</p> "> Figure 3
<p>XRD pattern of β-CD (<b>a</b>) and β-CD(AN-<span class="html-italic">co</span>-AA) (<b>b</b>).</p> "> Figure 4
<p>Effect of equilibrium time on Th(IV) adsorption onto β-CD(AN-<span class="html-italic">co</span>-AA). ([Th(VI)]<sub>0</sub> = 6.5334 × 10<sup>−4</sup> M, pH = 2.95 ± 0.05, T = 298.15 ± 1.00 K, I = 0.50 M NaNO<sub>3</sub>).</p> "> Figure 5
<p>Test of pseudo-second-order adsorption kinetics plot for Th(IV). ([Th(VI)]<sub>0</sub> = 6.5334 × 10<sup>−4</sup> M, pH = 2.95 ± 0.05, T = 298.15 ± 1.00 K, I = 0.50 M NaNO<sub>3</sub>).</p> "> Figure 6
<p>Effect of the pH value of the solution on the adsorption of Th(IV) onto β-CD(AN-<span class="html-italic">co</span>-AA). ([Th(VI)]<sub>0</sub> = 6.5334 × 10<sup>−4</sup> M, m/V = 0.18 g/L, T = 298.15 ± 1.00 K, I = 0.50 M NaNO<sub>3</sub>).</p> "> Figure 7
<p>Effect of the ionic strength of the solution on the adsorption of Th(IV) onto β-CD(AN-<span class="html-italic">co</span>-AA). ([Th(VI)]<sub>0</sub> = 6.5334 × 10<sup>−4</sup> M, m/V = 0.18 g/L, pH = 2.95 ± 0.05, T = 298.15 ± 1.00 K).</p> "> Figure 8
<p>Effect of solid content on the adsorption of Th(IV) onto β-CD(AN-<span class="html-italic">co</span>-AA), square point show the value of <span class="html-italic">q</span><sub>e</sub> (g/g) and dot show the value of “adsorption %” ([Th(VI)]<sub>0</sub> = 6.5334 × 10<sup>−4</sup> M, pH = 2.95 ± 0.05, T = 298.15 ± 1.00 K, I = 0.50 M NaNO<sub>3</sub>).</p> "> Figure 9
<p>Effect of the initial concentration of Th<sup>4+</sup> on the adsorption behavior onto β-CD(AN-<span class="html-italic">co</span>-AA). (pH = 2.95 ± 0.05, m/V = 0.18 g/L, T = 298.15 ± 1.00 K, I = 0.50 M NaNO<sub>3</sub>).</p> "> Figure 10
<p>Adsorption isotherms of Langmuir model (<b>a</b>) and Freundlich model (<b>b</b>).</p> "> Figure 11
<p>Effect of temperature on the adsorption of Th(IV) onto β-CD(AN-<span class="html-italic">co</span>-AA).</p> "> Figure 12
<p>The amount of Th<sup>4+</sup> adsorbed as a function of the adsorption-desorption cycle. Adsorption (adsb) and desorption (dsab) cycles: adsorption-sample volume = 5.0 mL, Th(IV) concentration = 6.5334 × 10<sup>−4</sup> mol/L, adsorption dose (β-CD(AN-<span class="html-italic">co</span>-AA)) = 0.30 g/L, initial pH = 2.95 ± 0.05, equilibration time = 4 h; desorption-sample volume = 5.0 mL of 0.09 M HNO<sub>3</sub>.</p> "> Figure 13
<p>T Effect of interfering ions on the adsorption of Th(IV) onto β-CD(AN-<span class="html-italic">co</span>-AA).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Poly(acrylonitrule-co-acrylic acid)-graft-β-cyclodextrin Hydrogel (β-CD(AN-co-AA))
2.3. Characterization of β-CD(AN-co-AA) Hydrogel
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Scanning Electron Microscopy Measurements
2.3.3. X-ray Diffraction Measurements
2.4. Adsorption Experiments
2.5. Desorption Experiment
3. Results and Discussion
3.1. Adsorption Performance Study
3.1.1. Adsorption Kinetics
3.1.2. Effect of pH on Th(IV) Adsorption onto β-CD(AN-co-AA)
3.1.3. Effect of Ionic Strength
3.1.4. Effect of Solid-Liquid Ratio
3.1.5. Effect of Initial Th(IV) Concentration
3.1.6. Adsorption Isotherm
3.1.7. Effect of Temperature
3.2. Adsorption Selectivity
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Qi, W.; Du, Y.-F.; Li, Z.; Wang, J.; Bi, J.-J.; Wu, W.-S. Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China Chem. 2014, 57, 1483–1490. [Google Scholar] [CrossRef]
- Talip, Z.; Eral, M.; Hiçsönmez, Ü. Adsorption of thorium from aqueous solutions by perlite. J. Environ. Radioact. 2009, 100, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.D.V.; Huang, H. Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord. Chem. Rev. 2006, 250, 765–775. [Google Scholar]
- Choppin, G.R. Utility of oxidation state analogs in the study of plutonium behavior. Radiochim. Acta 1999, 5, 89–96. [Google Scholar]
- Xu, D.; Wang, X.-K.; Chen, C.-L.; Zhou, X.; Tan, X.-L. Influence of soil humic acid and fulvic acid on sorption of thorium(IV) on MX-80 bentonite. Radiochim. Acta 2006, 94, 429–434. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto c-Al2O3. Appl. Geochem. 2007, 22, 436–445. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X.; Fang, M.; Chen, C. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf. A 2007, 296, 109–116. [Google Scholar] [CrossRef]
- Hu, B.-W.; Cheng, W.; Zhang, H.; Sheng, G.-D. Sorption of radionickel to goethite: Effect of water quality parameters and temperature. J. Radioanal. Nucl. Chem. 2010, 285, 389–398. [Google Scholar] [CrossRef]
- Rojo, I.; Seco, F.; Rovira, M.; Giménez, J.; Cervantes, G.; Martí, V.; Pablo, J. Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J. Nucl. Mater. 2009, 285, 474–478. [Google Scholar] [CrossRef]
- Tan, X.-L.; Fan, Q.-H.; Wang, X.-K.; Grambow, B. Eu(III) Sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS Studies. Environ. Sci. Technol. 2009, 43, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.-Z.; Liu, T.-H.; Zhou, G.; Duan, X.-J.; Wu, W.-S. Adsorption of Th4+ from aqueous solution onto Poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels. J. Radioanal. Nucl. Chem. 2014, 301, 65–73. [Google Scholar]
- Bursali, E.A.; Merdivan, M.; Yurdakoc, M. Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J. Radioanal. Nucl. Chem. 2010, 283, 471–476. [Google Scholar] [CrossRef]
- Qian, L.-J.; Zhao, J.-N.; Hu, P.-Z.; Geng, Y.-X.; Wu, W.-S. Effect of pH, fulvic acid and temperature on sorption of Th(IV) on zirconium oxophosphate. J. Radioanal. Nucl. Chem. 2010, 283, 653–660. [Google Scholar]
- Uekama, K. Recent Aspects of Pharmaceutical Application of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 3–7. [Google Scholar] [CrossRef]
- Zhang, Q.-F.; Nie, H.-C.; Shangguang, X.-C.; Yin, Z.-P.; Zheng, G.-D.; Chen, J.-G. Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J. Agric. Food Chem. 2013, 61, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Koontz, J.-L.; Marcy, J.-E. Formation of natamycin: Cyclodextrin inclusion complexes and their characterization. J. Agric. Food Chem. 2003, 51, 7106–7110. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-G.; Zhao, J.; Liu, Y.-H.; Zhu, X.-A.; Zeng, J. Physiochemical properties of the inclusion complex of puerarin and glucosyl-β-cyclodextrin. J. Agric. Food Chem. 2012, 60, 12501–12507. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Abellán, C.; Fortea, I.; López-Nicolás, J.-M.; Núnez-Delicado, E. Cyclodextrins as resveratrol carrier system. Food Chem. 2007, 104, 39–44. [Google Scholar] [CrossRef]
- Sharma, A.-K.; Mishra, A.-K. Microwave induced β-cyclodextrin modification of chitosan for lead sorption. Int. J. Biol. Macromol. 2010, 47, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Păduraru, O.-M.; Bosînceanu, A.; Ţântaru, G.; Vasile, C. Effect of Hydroxypropyl-β-Cyclodextrin on the Solubility of an Antiarrhythmic Agent. Ind. Eng. Chem. Res. 2013, 52, 2174–2181. [Google Scholar] [CrossRef]
- Qi, X.-H.; Jia, X.-Q.; Yang, Y.; Niu, L.-E. Formation and recovery of Co2+, Ni2+, Cu2+ macromolecular complexes with, polystyrene and acrylic acid. Hydrometallurgy 2009, 96, 269–274. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, X.-L.; Wang, S.; Zhai, Y.-L.; Guan, J.-B.; Fu, Q.; Hao, X.-L.; Qi, W.-P.; Wang, Y.-L.; Lian, H.; et al. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus. Mol. Pharm. 2015, 12, 2337–2351. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, S.; Ajitha Priya, J.; Srinivasa Rao, P.; Krishnaiah, A. Removal of Copper and Nickel from Aqueous Solutions Using Chitosan Coated on Perlite as Biosorbent. Sep. Sci. Technol. 2005, 40, 1483–1495. [Google Scholar] [CrossRef]
- Zeng, J.; Ren, Y.; Zhou, C.; Yu, S.; Chen, W. Preparation and physicochemical characteristics of the complex of edaravone with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2011, 83, 1101–1105. [Google Scholar] [CrossRef]
- Zheng, X.-L.; Wong, J.-B.; Hu, B.-H. Cyclodextrin inclusion of urushiol and self-assembly. J. Chin. Lacq. 2010, 29, 6–9. [Google Scholar]
- Yang, S.-T.; Li, J.-X.; Shao, D.-D.; Hu, J.; Wang, X.-K. Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 2009, 166, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, S.; Yang, S.; Li, J. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. J. Radioanal. Nucl. Chem. 2010, 283, 253–259. [Google Scholar] [CrossRef]
- Anirudhan, T.-S.; Rijith, S.; Tharun, A.-R. Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids Surf. A Physicochem. Eng. Asp. 2010, 368, 13–22. [Google Scholar] [CrossRef]
- Sheng, G.; Hu, J.; Wang, X. Sorption properties of Th(IV) on the raw diatomite-Effects of contact time, pH, ionic strength and temperature. Appl. Radiat. Isot. 2008, 66, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, P.; Li, Z.; Qi, W.; Lu, Y.; Wu, W.-S. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene. Materials 2013, 6, 4168–4185. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X.; Chen, C.; Sun, A. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl. Radiat. Isot. 2007, 65, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Choppin, G. Actinide speciation in the environment. J. Radioanal. Nucl. Chem. 2007, 273, 695–703. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Hu, W.; Ding, A.; Xu, D.; Zhou, X. Sorption of 243Am(III) to Multiwall Carbon Nanotubes. Environ. Sci. Technol. 2005, 39, 2856–2860. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.-H.; Shao, D.-D.; Hu, J.; Chen, C.; Wu, W.; Wang, X. Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect. Radiochim. Acta 2009, 97, 141–148. [Google Scholar] [CrossRef]
- Sheng, G.-D.; Hu, B.-W. Role of solution chemistry on the trapping of radionuclide Th(IV) using titanate nanotubes as an efficient adsorbent. J. Radioanal. Nucl. Chem. 2013, 298, 455–464. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Jain, A.-K. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 2005, 281, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kutahyal, C.; Eral, M. Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep. Purif. Technol. 2004, 40, 109–114. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhou, X. The Unit Problem in the Thermodynamic Calculation of Adsorption Using the Langmuir Equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Wang, A. Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chem. Eng. J. 2011, 171, 1201–1208. [Google Scholar]
No. | Initial Th4+ | RL Value |
---|---|---|
Concentration (mmol/L) | ||
1 | 0.000327 | 0.0455 |
2 | 0.000392 | 0.0382 |
3 | 0.000457 | 0.0329 |
4 | 0.000523 | 0.0289 |
5 | 0.000588 | 0.0258 |
6 | 0.000653 | 0.0233 |
7 | 0.000719 | 0.0212 |
8 | 0.000784 | 0.0195 |
9 | 0.000849 | 0.018 |
10 | 0.000915 | 0.0167 |
11 | 0.00098 | 0.0156 |
12 | 0.00105 | 0.0147 |
Temperature (K) | ∆H0 (J/mol) | ∆S0 (J/mol K) | ∆G0 (kJ/mol) |
---|---|---|---|
298.15 | −44.85 | 33.25 | −9.96 |
318.15 | −44.85 | 33.25 | −10.62 |
338.15 | −44.85 | 33.25 | −11.29 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, G.; Zhong, Q.; Bi, L.; Yang, L.; Liu, T.; Shi, X.; Wu, W. β-Cyclodextrin Modified Poly(Acrylonitrule-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption. Polymers 2017, 9, 201. https://doi.org/10.3390/polym9060201
Duan G, Zhong Q, Bi L, Yang L, Liu T, Shi X, Wu W. β-Cyclodextrin Modified Poly(Acrylonitrule-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption. Polymers. 2017; 9(6):201. https://doi.org/10.3390/polym9060201
Chicago/Turabian StyleDuan, Guojian, Qiangqiang Zhong, Lei Bi, Liu Yang, Tonghuan Liu, Xiaoning Shi, and Wangsuo Wu. 2017. "β-Cyclodextrin Modified Poly(Acrylonitrule-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption" Polymers 9, no. 6: 201. https://doi.org/10.3390/polym9060201
APA StyleDuan, G., Zhong, Q., Bi, L., Yang, L., Liu, T., Shi, X., & Wu, W. (2017). β-Cyclodextrin Modified Poly(Acrylonitrule-co-Acrylic Acid) Hydrogel for Thorium(IV) Adsorption. Polymers, 9(6), 201. https://doi.org/10.3390/polym9060201