Charge Transport in LDPE Nanocomposites Part I—Experimental Approach
"> Figure 1
<p>Schematic illustration of the test setup for conductivity measurements. DAQ, denotes data acquisition card and pA, picoammeter.</p> "> Figure 2
<p>Schematic illustration of the setup for corona charging (<b>a</b>); and surface potential decay measurements (<b>b</b>).</p> "> Figure 3
<p>Multilayered sample structures used in SPD measurements: (<b>a</b>) NC/NC; (<b>b</b>) Ref/NC(G); and (<b>c</b>) NC/Ref(G). Ref and NC denote respectively the reference LDPE and LDPE/Al<sub>2</sub>O<sub>3</sub> 3 wt % nanocomposite whereas index (G) indicates the layer in contact with the grounded copper plate during the test.</p> "> Figure 4
<p>Densities of charging currents as functions of time measured at 60 °C for reference LDPE and both nanocomposites (Al<sub>2</sub>O<sub>3</sub> (<b>a</b>) and MgO (<b>b</b>)).</p> "> Figure 5
<p>Dependence of dc conductivity (at 60 °C) of the studied nanocomposites on filler content.</p> "> Figure 6
<p>Densities of charging currents as functions of time measured at room temperature (RT) ~20–22 °C, 40 °C, and 60 °C for the reference LDPE (Ref) and 3 wt % LDPE/Al<sub>2</sub>O<sub>3</sub> nanocomposite (NC).</p> "> Figure 7
<p>Temperature dependences of current densities at 4 × 10<sup>4</sup> s of LDPE and its nanocomposites. The calculated activation energies are indicated.</p> "> Figure 8
<p>Distribution of surface potential during potential decay measurement on LDPE/Al<sub>2</sub>O<sub>3</sub> 3 wt % nanocomposite at 60 °C.</p> "> Figure 9
<p>Measured surface potentials (<b>a</b>); and calculated decay rates (<b>b</b>) for reference LDPE (Ref) and LDPE/Al<sub>2</sub>O<sub>3</sub> 3 wt % nanocomposite (NC) at different temperatures.</p> "> Figure 10
<p>Surface potential decay on multilayered samples. Decay curves (a)–(c) are respectively obtained on samples (a)–(c) illustrated in <a href="#polymers-08-00087-f003" class="html-fig">Figure 3</a>. Curve (1) is a difference in surface potential measured on samples (a) and (b), whereas curve (2)—is the difference for samples (a) and (c).</p> "> Figure 11
<p>Return voltages measured after short-circuiting multilayered samples for 10 s at the end of SPD measurement. The inset shows the measured potential before and after removal of the top layer of sample Ref/NC(G).</p> "> Figure 12
<p>Schematic illustration of charge distribution and electric field (<b>a</b>) prior to; and (<b>b</b>) immediately after short-circuiting the Ref/NC(G) sample.</p> "> Figure 13
<p>Decay rate of surface potential on reference LDPE and Ref/NC(G).</p> "> Figure 14
<p>Temperature dependences of charge carrier (hole) mobility derived based on Sonnonstine and Perlman model.</p> "> Figure 15
<p>Plots −<span class="html-italic">t</span>d<span class="html-italic">V</span>/d<span class="html-italic">t</span> <span class="html-italic">vs</span>. log(<span class="html-italic">t</span>) (<b>a</b>); and −<span class="html-italic">t</span>d<span class="html-italic">V</span>/d<span class="html-italic">t</span> <span class="html-italic">vs.</span> <span class="html-italic">E<sub>t</sub></span> (<b>b</b>) obtained at different temperatures for reference LDPE.</p> "> Figure 16
<p>Trap energy distributions in reference LDPE and its nanocomposite.</p> "> Figure 17
<p>Log-log plot of <span class="html-italic">J</span> <span class="html-italic">vs.</span> <span class="html-italic">E</span> for reference LDPE (<b>a</b>); and LDPE/Al<sub>2</sub>O<sub>3</sub> 3wt % nanocomposite (<b>b</b>) at various temperatures. Regions 1 and 2 in figure (<b>b</b>) are featured by different slopes of the dependencies.</p> "> Figure 18
<p>Schottky plot for reference LDPE (<b>a</b>); and LDPE/Al<sub>2</sub>O<sub>3</sub> 3 wt % nanocomposite (<b>b</b>) at various temperatures. Regions 1 and 2 in figure (<b>b</b>) are featured by different slopes of the dependencies.</p> "> Figure 19
<p>Poole-Frenkel plot for reference LDPE (<b>a</b>); and LDPE/Al<sub>2</sub>O<sub>3</sub> 3 wt % nanocomposite (<b>b</b>) at various temperatures. Regions 1 and 2 in figure (<b>b</b>) are featured by different slopes of the dependencies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Conductivity Measurements
2.3. SPD Measurements
3. Results and Discussion
3.1. Material DC Conductivity
3.2. SPD on Single-layered Insulation
3.3. SPD on Multilayered Samples
3.4. Mobility of Charge Carriers Deduced from SPD Measurements
3.5. Plot of −tdV/dt vs. log(t)
3.6. Current Density Deduced from SPD Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Hanley, T.L.; Burford, R.P.; Fleming, R.J.; Barber, K.W. A general review of polymeric insulation for use in HVDC cables. IEEE Electr. Insul. Mag. 2003, 19, 13–24. [Google Scholar]
- Reddy, C.C.; Ramu, T.S. On the computation of electric field and temperature distribution in HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1236–1244. [Google Scholar] [CrossRef]
- Dissado, L.A.; Mazzanti, G.; Montanari, G.C. The role of trapped space charges in the electrical aging of insulating materials. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 496–506. [Google Scholar] [CrossRef]
- Tanaka, T.; Imai, T. Advances in nanodielectric materials over the past 50 years. IEEE Electr. Insul. Mag. 2013, 29, 10–23. [Google Scholar] [CrossRef]
- Lewis, T.J. Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 812–825. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S.; Reed, C.W.; Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [Google Scholar] [CrossRef]
- Fleming, R.J.; Ammala, A.; Lang, S.B.; Casey, P.S. Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 118–126. [Google Scholar] [CrossRef]
- Murakami, Y.; Nemoto, M.; Okuzumi, S.; Masuda, S.; Nagao, M.; Hozumi, N.; Sekiguchi, Y. DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 33–39. [Google Scholar] [CrossRef]
- Ishimoto, K.; Kanegae, E.; Ohki, Y.; Tanaka, T.; Sekiguchi, Y.; Murata, Y.; Reddy, C.C. Superiority of dielectric properties of LDPE/MgO nanocomposites over microcomposites. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1735–1742. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Mizutani, T.; Ieda, M. Carrier transport in high-density polyethylene. J. Phys. D: Appl. Phys. 1979, 12, 291–296. [Google Scholar] [CrossRef]
- Toomer, R.; Lewis, T.J. Charge trapping in corona-charge polyethylene films. J. Phys. D: Appl. Phys. 1980, 13, 1343–1356. [Google Scholar] [CrossRef]
- Von Berlepsch, H. Interpretation of surface potential kinetics in HDPE by a trapping model. J. Phys. D: Appl. Phys. 1985, 18, 1155–1170. [Google Scholar] [CrossRef]
- Fischer, P.; Röhl, P. Transient currents in oxidized low-density polyethylene. In Mehrphasige Polymersysteme; Fischer, E.W., Horst Müller, F., Kausch, H.H., Eds.; Steinkopff: Dresden, Germany, 1977; Volume 62, pp. 149–153. [Google Scholar]
- Liu, D.; Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S.; Gedde, U.W. Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nanocomposites. Eur. Polym. J. 2015, 66, 67–77. [Google Scholar] [CrossRef]
- Pallon, L.K.H.; Hoang, A.T.; Pourrahimi, A.M.; Hedenqvist, M.S.; Nilsson, F.; Gubanski, S.M.; Gedde, U.W.; Olsson, R.T. The impact of MgO nanoparticle interface in ultra insulating polyethylene nanocomposites for high voltage DC cables. J. Mater. Chem. A 2016. (under review). [Google Scholar]
- IEC Standard 60093. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials, 1980.
- Giacometti, J.A.; Oliveira, O.N. Corona charging of polymers. IEEE Trans. Electr. Insul. 1992, 27, 924–943. [Google Scholar] [CrossRef]
- Noras, M.A. Non-Contact Surface Charge/Voltage Measurements: Fieldmeter and Voltmeter Methods; Trek Inc.: Lockport, NY, USA, 2002. [Google Scholar]
- Adamec, V.; Calderwood, J.H. On the determination of electrical conductivity in polyethylene. J. Phys. D: Appl. Phys. 1981, 14, 1487–1494. [Google Scholar] [CrossRef]
- Le Roy, S.; Teyssedre, G.; Laurent, C.; Montanari, G.C.; Palmieri, F. Description of charge transport in polyethylene using a fluid model with a constant mobility: Fitting model and experiments. J. Phys. D: Appl. Phys. 2006, 39, 1427–1436. [Google Scholar] [CrossRef]
- Kumara, S.; Serdyuk, Y.V.; Gubanski, S.M. Surface charge decay on polymeric materials under different neutralization modes in air. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1779–1788. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Chen, G. Decay of electric charge on corona charged polyethylene. J. Phys. D: Appl. Phys. 2007, 40, 7085–7089. [Google Scholar] [CrossRef]
- Watson, P.K. The energy distribution of localized states in polystyrene, based on isothermal discharge measurements. J. Phys. D: Appl. Phys. 1990, 23, 1479–1484. [Google Scholar] [CrossRef]
- Baum, E.A.; Lewis, T.J.; Toomer, R. Decay of electrical charge on polyethylene films. J. Phys. D: Appl. Phys. 1977, 10, 487–497. [Google Scholar] [CrossRef]
- Sonnonstine, T.J.; Perlman, M.M. Surface-potential decay in insulators with field-dependent mobility and injection efficiency. J. Appl. Phys. 1975, 46, 3975–3981. [Google Scholar] [CrossRef]
- Llovera, P.; Molinié, P. New methodology for surface potential decay measurements: Application to study charge injection dynamics on polypropylene films. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 1049–1056. [Google Scholar] [CrossRef]
- Molinié, P. Measuring and modeling transient insulator response to charging: The contribution of surface potential studies. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 939–950. [Google Scholar] [CrossRef]
- Coelho, R.; Jestin, P.; Levy, L.; Sarrail, D. On the return-voltage buildup in insulating materials. IEEE Trans. Electr. Insul. 1987, 22, 683–690. [Google Scholar] [CrossRef]
- Kanegae, E.; Ohki, Y.; Tanaka, T.; Sekiguchi, Y.; Murata, Y.; Reddy, C.C. Space charge behavior in multi-layered dielectrics with LDPE and LDPE/MgO nanocomposites. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4.
- Chen, G.; Tay, T.Y.G.; Davies, A.E.; Tanaka, Y.; Takada, T. Electrodes and charge injection in low-density polyethylene using the pulsed electroacoustic technique. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 867–873. [Google Scholar] [CrossRef]
- Ieda, M.; Sawa, G.; Shinohara, U. A decay process of surface electric charges across polyethylene film. Jpn. J. Appl. Phys. 1967, 6, 793–794. [Google Scholar] [CrossRef]
- Perlman, M.M.; Sonnonstine, T.J.; St.Pierre, J.A. Drift mobility determinations using surface potential decay in insulators. J. Appl. Phys. 1976, 47, 5016–5021. [Google Scholar] [CrossRef]
- Wintle, H.J. Decay of static electrification by conduction processes in polyethylene. J. Appl. Phys. 1970, 41, 4004–4007. [Google Scholar] [CrossRef]
- Pelissou, S.; St-Onge, H.; Wertheimer, M.R. Electrical conduction of polyethylene below and above its melting point. IEEE Trans. Electr. Insul. 1988, 23, 325–333. [Google Scholar] [CrossRef]
- Lewis, T.J. Charge transport in polyethylene nano dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 497–502. [Google Scholar] [CrossRef]
- Lewis, T.J.; Llewellyn, J.P. Electrical conduction in polyethylene: The role of positive charge and the formation of positive packets. J. Appl. Phys. 2013, 113, 223705. [Google Scholar] [CrossRef]
- Raju, G.G. Chapter 7—Field Enhanced Conduction. Dielectrics in Electric Fields; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Mizutani, T.; Suzuoki, Y.; Ieda, M. Thermally stimulated currents in polyethylene and ethylene-vinyl-acetate copolymers. J. Appl. Phys. 1977, 48, 2408–2413. [Google Scholar] [CrossRef]
- Ishimoto, K.; Tanaka, T.; Ohki, Y.; Sekiguchi, Y.; Murata, Y. Thermally stimulated current in low-density polyethylene/MgO nanocomposite. On the mechanism of its superior dielectric properties. Electr. Eng. Jpn. 2011, 176, 1–7. [Google Scholar] [CrossRef]
- Mark, P.; Helfrich, W. Space-charge-limited currents in organic crystals. J. Appl. Phys. 1962, 33, 205–215. [Google Scholar] [CrossRef]
- Mott, N.F.; Gurney, R.W. Electronic Processes in Ionic Crystals; Clarendon Press: Oxford, England, 1948. [Google Scholar]
- Boudou, L.; Guastavino, J. Influence of temperature on low-density polyethylene films through conduction measurement. J. Phys. D: Appl. Phys. 2002, 35, 1555–1561. [Google Scholar] [CrossRef]
Materials | Derived from Current Density | Derived from Charge Mobility |
---|---|---|
LDPE | 0.85 | 0.56 |
LDPE/Al2O3 3 wt % | 0.43 | 0.42 |
LDPE/MgO 3 wt % | 0.35 | 0.17 |
Characteristics | Calculated Parameters | LDPE | LDPE/Al2O3 NC | LDPE/MgO NC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RT | 40 °C | 60 °C | RT | 40 °C | 60 °C | RT | 40 °C | 60 °C | ||
J ∝ Em | m | 4.3 | 3.9 | 2.4 | 9.8 | 9.9 | 8.9 | 11.5 | 9.6 | 5.6 |
Schottky | εr | 0.48 | 0.35 | 0.64 | 0.15 | 0.13 | 0.14 | 0.12 | 0.14 | 0.30 |
Poole-Frenkel | εr | 3.2 | 2.4 | 6.8 | 0.74 | 0.64 | 0.72 | 0.56 | 0.67 | 1.76 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, A.T.; Pallon, L.; Liu, D.; Serdyuk, Y.V.; Gubanski, S.M.; Gedde, U.W. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach. Polymers 2016, 8, 87. https://doi.org/10.3390/polym8030087
Hoang AT, Pallon L, Liu D, Serdyuk YV, Gubanski SM, Gedde UW. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach. Polymers. 2016; 8(3):87. https://doi.org/10.3390/polym8030087
Chicago/Turabian StyleHoang, Anh T., Love Pallon, Dongming Liu, Yuriy V. Serdyuk, Stanislaw M. Gubanski, and Ulf W. Gedde. 2016. "Charge Transport in LDPE Nanocomposites Part I—Experimental Approach" Polymers 8, no. 3: 87. https://doi.org/10.3390/polym8030087
APA StyleHoang, A. T., Pallon, L., Liu, D., Serdyuk, Y. V., Gubanski, S. M., & Gedde, U. W. (2016). Charge Transport in LDPE Nanocomposites Part I—Experimental Approach. Polymers, 8(3), 87. https://doi.org/10.3390/polym8030087