Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing
<p>Electron micrographs of the cross-section of 30 vol % BaTiO<sub>3</sub>/acrylonitrile butadiene styrene (ABS) filaments (left and middle columns) and 3D-printed coupons (right column). (<b>a</b>–<b>c</b>) BaTiO<sub>3</sub>/ABS with 0 wt % surfactant; (<b>d</b>–<b>f</b>) 0.5 wt % surfactant; (<b>g</b>–<b>i</b>) 1.0 wt % surfactant; (<b>j</b>–<b>l</b>) 1.5 wt % surfactant.</p> "> Figure 2
<p>Electron micrographs of the cross-section of filaments. (<b>a</b>,<b>b</b>) Filament 5; (<b>c</b>,<b>d</b>) Filament 6.</p> "> Figure 3
<p>Optical images of the surface of composite filaments. (<b>a</b>) Filament 1 (roughness <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mn>4.26</mn> </mrow> </semantics> </math> μm); (<b>b</b>) Filament 2 (<math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mn>1.49</mn> </mrow> </semantics> </math> μm); (<b>c</b>) Filament 3 (<math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mn>0.72</mn> </mrow> </semantics> </math> μm); (<b>d</b>) Filament 4 (<math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mn>4.01</mn> </mrow> </semantics> </math> μm); (<b>e</b>) Filament 5 (<math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mn>0.57</mn> </mrow> </semantics> </math> μm).</p> "> Figure 4
<p>Typical bend test behavior of ABS and BaTiO<sub>3</sub>/ABS composite filaments. In each case, the left-hand side of the 26 cm filament length was stationary while the right-hand side gripping the filament along the <span class="html-italic">x</span>-axis slowly moved towards the left. The filament grips permitted only bending in the <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </semantics> </math>-plane. The curves describe the filament shape at the point of failure. The composite filament composed of 32 vol % BaTiO<sub>3</sub>/ABS with 1 wt % surfactant and 5 wt % plasticiser (filament 5) showed the same flexibility as pure ABS.</p> "> Figure 5
<p>Measured real part of the relative dielectric permittivity as a function of frequency for 3D-printed coupons from filaments 5 (solid red) and 3 (dashed black).</p> "> Figure 6
<p>X-ray tomography image of the 3D-printed <math display="inline"> <semantics> <mrow> <mn>15</mn> <mo>×</mo> <mn>15</mn> <mo>×</mo> <mn>15</mn> </mrow> </semantics> </math> mm<sup>3</sup> cube using optimized composite filament 5. (<b>a</b>) Full 3D reconstruction; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics> </math>-plane cut; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </semantics> </math>-plane cut. The images show the absence of voids or interlayer/interfilament porosity.</p> "> Figure 7
<p>Demonstration of several 3D-printed microwave devices for the generation of orbital angular momentum.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Surfactant
2.2. Effect of Plasticiser
2.3. Demonstration
3. Materials and Methods
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Quevedo-Teruel, O.; Tang, W.; Mitchell-Thomas, R.C.; Dyke, A.; Dyke, H.; Zhang, L.; Haq, S.; Hao, Y. Transformation optics for antennas: Why limit the bandwidth with metamaterials? Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Isakov, D.; Stevens, C.J.; Castles, F.; Grant, P.S. 3D-Printed High Dielectric Contrast Gradient Index Flat Lens for a Directive Antenna with Reduced Dimensions. Adv. Mater. Technol. 2017. [Google Scholar] [CrossRef]
- Isakov, D.V.; Lei, Q.; Castles, F.; Stevens, C.J.; Grovenor, C.R.M.; Grant, P.S. 3D printed anisotropic dielectric composite with meta-material features. Mater. Des. 2016, 93, 423–430. [Google Scholar] [CrossRef]
- Haring, A.P.; Khan, A.U.; Liu, G.; Johnson, B.N. 3D Printed Functionally Graded Plasmonic Constructs. Adv. Opt. Mater. 2017, 5. [Google Scholar] [CrossRef]
- Boyle, B.M.; French, T.A.; Pearson, R.M.; McCarthy, B.G.; Miyake, G.M. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers. ACS Nano 2017, 11, 3052–3058. [Google Scholar] [CrossRef] [PubMed]
- Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C.E.J.; Wang, Y.; Janurudin, J.M.; Speller, S.C.; Grovenor, C.R.M.; Grant, P.S. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J.M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C.R.M. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves. Philos. Trans. R. Soc. A 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Leigh, S.J.; Purssell, C.P.; Bowen, J.; Hutchins, D.A.; Covington, J.A.; Billson, D.R. A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin. Sens. Actuator A Phys. 2011, 168, 66–71. [Google Scholar] [CrossRef]
- Czyzewski, J.; Burzyński, P.; Gawel, K.; Meisner, J. Rapid prototyping of electrically conductive components using 3D printing technology. J. Mater. Proc. Technol. 2009, 209, 5281–5285. [Google Scholar] [CrossRef]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef] [PubMed]
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Lopes, A.J.; MacDonald, E.; Wicker, R.B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 2012, 18, 129–143. [Google Scholar] [CrossRef]
- Woodward, D.I.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A.; Leigh, S.J. Additively manufactured piezoelectric devices. Phys. Status Solidi A 2015, 212, 2107–2113. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Song, X.; Zhu, B.; Hsiai, T.; Wu, P.-I.; Xiong, R.; Shi, J.; Chen, Y.; Zhou, Q.; et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 2016, 22, 414–421. [Google Scholar] [CrossRef]
- Kurimoto, M.; Yamashita, Y.; Ozaki, H.; Kato, T.; Funabashi, T.; Suzuoki, Y. 3D printing of conical insulating spacer using alumina/UV-cured-resin composite. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015. [Google Scholar]
- Leigh, S.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Nikzad, M.; Masood, S.H.; Sbarski, I. Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater. Des. 2011, 32, 3448–3456. [Google Scholar] [CrossRef]
- Shemelya, C.M.; Rivera, A.; Perez, A.T.; Rocha, C.; Liang, M.; Yu, X.; Kief, C.; Alexander, D.; Stegeman, J.; Xin, H.; et al. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten—Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 2015, 44, 2598–2607. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Mariappan, B.; Jaisankar, S.N. Properties of polyurethane nanocomposite filaments for conductive textile applications. J. Thermoplast. Compos. Mater. 2017, 30, 1361–1372. [Google Scholar] [CrossRef]
- Gray, R.W., IV; Baird, D.G.; Bohn, J.H. Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym. Compos. 1998, 19, 383–394. [Google Scholar] [CrossRef]
- Kokkinis, D.; Schaffner, M.; Studart, A.R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 2015, 6, 8643. [Google Scholar] [CrossRef] [PubMed]
- Shemelya, C.; Rosa, A.; Torrado, A.R.; Yue, K.; Domanowskie, J.; Bonacusee, P.J.; Martin, R.E.; Juhasz, M.; Hurwitz, F.; Wicker, R.B.; et al. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit. Manuf. 2017, 16, 186–196. [Google Scholar] [CrossRef]
- Murphy, C.A.; Collins, M.N. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polym. Compos. 2016. [Google Scholar] [CrossRef]
- RepRap. Available online: http://reprap.org (accessed on 22 October 2017).
- Curecheriu, L.; Balmus, S.-B.; Buscaglia, M.T.; Buscaglia, V.; Ianculescu, A.; Mitoseriu, L. Grain Size-Dependent Properties of Dense Nanocrystalline Barium Titanate Ceramics. J. Am. Ceram. Soc. 2012, 95, 3912–3921. [Google Scholar] [CrossRef]
- Zhou, T.; Zha, J.-W.; Cui, R.-Y.; Fan, B.-H.; Yuan, J.-K.; Dang, Z.-M. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 2184–2188. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, S.; Bidstrup-Allen, S.A.; Kohl, P.A. Factors influencing the permittivity of polymer/ceramic composites for embedded capacitors. IEEE Trans. Adv. Packag. 2000, 23, 313–322. [Google Scholar] [CrossRef]
- Ramajo, L.; Castro, M.S.; Reboredo, M.M. Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1852–1859. [Google Scholar] [CrossRef]
- Kirkpatrick, A. Some Relations Between Molecular Structure and Plasticizing Effect. J. Appl. Phys. 1940, 11, 255. [Google Scholar] [CrossRef]
- Tylkowski, B.; Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer additives. Phys. Sci. Rev. 2017. [Google Scholar] [CrossRef]
- Wood, L.A. Glass transition temperatures of copolymers. J. Polym. Sci. 1958, 28, 319–330. [Google Scholar] [CrossRef]
- Nicholson, A.M.; Ross, G.F. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef]
Coupon | Surfactant wt % | Measured BaTiO3 vol % | Permittivity | Loss |
---|---|---|---|---|
1 | 0 | 33.2 | 10.68 ± 0.50 | 3.25 ± 0.4 |
2 | 0.5 | 32.6 | 10.88 ± 0.35 | 2.05 ± 0.1 |
3 | 1.0 | 32.4 | 11.04 ± 0.21 | 3.03 ± 0.6 |
4 | 1.5 | 32.7 | 10.08 ± 0.16 | 3.43 ± 0.1 |
Filament | Distance Travelled, cm | Curvature, cm |
---|---|---|
ABS | 21.0 | 4.5 |
1 | 5.8 ± 0.10 | 10.8 ± 0.2 |
2 | 7.0 ± 0.35 | 9.7 ± 0.9 |
3 | 11 ± 1.5 | 7.7 ± 2.3 |
4 | 9 ± 0.5 | 8.5 ± 1.4 |
5 | 21.0 | 4.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Isakov, D.; Grant, P.S. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing. Materials 2017, 10, 1218. https://doi.org/10.3390/ma10101218
Wu Y, Isakov D, Grant PS. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing. Materials. 2017; 10(10):1218. https://doi.org/10.3390/ma10101218
Chicago/Turabian StyleWu, Yingwei, Dmitry Isakov, and Patrick S. Grant. 2017. "Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing" Materials 10, no. 10: 1218. https://doi.org/10.3390/ma10101218
APA StyleWu, Y., Isakov, D., & Grant, P. S. (2017). Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing. Materials, 10(10), 1218. https://doi.org/10.3390/ma10101218