Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease
<p>Methionine metabolism. S-adenosylmethionine (SAM) is the principal methyl donor for DNA and histone methylation reactions, whereas <span class="html-italic">S</span>-adenosylhomocysteine (SAH) inhibits all SAM-dependent methylation reactions. <span class="html-italic">S</span>-adenosylhomocysteinase (AHCY) is the bi-directional enzyme that hydrolyzes SAH to generate homocysteine. Methionine synthase (MTR or MS) remethylates homocysteine to form methionine that is in turn converted to SAM via the enzyme methionine adenosyltransferase (isoenzymes MATI/II/III). Homocysteine can also be remethylated to methionine via the betaine homocysteine methyltransferase (BHMT) catalyzed reaction that utilizes betaine. Dimethylglycine (DMG) is a byproduct of the BHMT catalyzed reaction and is also a potent inhibitor of BHMT. Tetrahydrofolate (THF); DNA methyltransferase (DNMT); histone methyltransferase (HMT); glycine <span class="html-italic">N</span>-methyltransferase (GNMT); phosphatidylethanolamine <span class="html-italic">N</span>-methyltransferase (PEMT); DNMTs, GNMT, and PEMT are major consumers of SAM in the liver [<a href="#b14-ijms-15-08004" class="html-bibr">14</a>].</p> ">
<p>(<b>A</b>) Correlation between hepatic Cu concentration and SAH levels; (<b>B</b>) Correlation between hepatic Cu concentration and SAM:SAH levels (using data from all time points).</p> ">
<p>Histology images of tx-j and control livers from three to 28 weeks of age. All hematoxylin and eosin stained, 436×. Whereas liver histology was normal in tx-j mice at both three and 12 weeks of age (<b>1B</b> and <b>2B</b>), there was an increase in inflammatory infiltrates at 20 and 28 weeks (<b>3B</b> and <b>4B</b>, thin arrows), in association with giant nuclei and markedly increased cell size of the hepatocytes (<b>3B</b> and <b>4B</b>, thick arrows). Note that in tx-j mice hepatocyte cell diameters are 2.5 times and nuclear diameters are about two times larger than control mice [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>]. Control mice had normal liver histology at all time points (<b>1A</b>, <b>2A</b>, <b>3A</b> and <b>4A</b>).</p> ">
<p>Transcript levels of genes related to lipid and methionine metabolism. <span class="html-italic">x</span>-axis: time points; <span class="html-italic">y</span>-axis: mean ± SD of relative expression of target genes normalized to <span class="html-italic">Gapdh</span>. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between groups within each time point. Values with ♦ are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between fetal and three weeks. Values with ● are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between 20 and 28 weeks. Genes include <span class="html-italic">Srebf1</span> (sterol regulatory element-binding protein) for lipogenesis, <span class="html-italic">Hspa5</span> (heat shock protein 5) for ER stress, <span class="html-italic">Cpt1A</span> (carnitine palmitoyl transferase 1A) and <span class="html-italic">Ppar</span>α (peroxisome proliferator-activated receptor α) for fatty acid oxidation, <span class="html-italic">Dnmt1</span> (DNA methyltransferase 1), <span class="html-italic">Dnmt3a</span> (DNA methyltransferase 3a), <span class="html-italic">Dnmt3b</span> (DNA methyltransferase 3b), <span class="html-italic">Ahcy</span> (<span class="html-italic">S</span>-adenosylhomocysteinase), <span class="html-italic">Mat1a</span> (methionine adenosyltransferase 1a), <span class="html-italic">Mat2a</span> (methionine adenosyltransferase 2a), and <span class="html-italic">Mtr</span> (methionine transferase reductase or methionine synthase) for methionine metabolism and DNA methylation. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>Transcript levels of genes related to lipid and methionine metabolism. <span class="html-italic">x</span>-axis: time points; <span class="html-italic">y</span>-axis: mean ± SD of relative expression of target genes normalized to <span class="html-italic">Gapdh</span>. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between groups within each time point. Values with ♦ are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between fetal and three weeks. Values with ● are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between 20 and 28 weeks. Genes include <span class="html-italic">Srebf1</span> (sterol regulatory element-binding protein) for lipogenesis, <span class="html-italic">Hspa5</span> (heat shock protein 5) for ER stress, <span class="html-italic">Cpt1A</span> (carnitine palmitoyl transferase 1A) and <span class="html-italic">Ppar</span>α (peroxisome proliferator-activated receptor α) for fatty acid oxidation, <span class="html-italic">Dnmt1</span> (DNA methyltransferase 1), <span class="html-italic">Dnmt3a</span> (DNA methyltransferase 3a), <span class="html-italic">Dnmt3b</span> (DNA methyltransferase 3b), <span class="html-italic">Ahcy</span> (<span class="html-italic">S</span>-adenosylhomocysteinase), <span class="html-italic">Mat1a</span> (methionine adenosyltransferase 1a), <span class="html-italic">Mat2a</span> (methionine adenosyltransferase 2a), and <span class="html-italic">Mtr</span> (methionine transferase reductase or methionine synthase) for methionine metabolism and DNA methylation. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>Transcript levels of genes related to lipid and methionine metabolism. <span class="html-italic">x</span>-axis: time points; <span class="html-italic">y</span>-axis: mean ± SD of relative expression of target genes normalized to <span class="html-italic">Gapdh</span>. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between groups within each time point. Values with ♦ are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between fetal and three weeks. Values with ● are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between 20 and 28 weeks. Genes include <span class="html-italic">Srebf1</span> (sterol regulatory element-binding protein) for lipogenesis, <span class="html-italic">Hspa5</span> (heat shock protein 5) for ER stress, <span class="html-italic">Cpt1A</span> (carnitine palmitoyl transferase 1A) and <span class="html-italic">Ppar</span>α (peroxisome proliferator-activated receptor α) for fatty acid oxidation, <span class="html-italic">Dnmt1</span> (DNA methyltransferase 1), <span class="html-italic">Dnmt3a</span> (DNA methyltransferase 3a), <span class="html-italic">Dnmt3b</span> (DNA methyltransferase 3b), <span class="html-italic">Ahcy</span> (<span class="html-italic">S</span>-adenosylhomocysteinase), <span class="html-italic">Mat1a</span> (methionine adenosyltransferase 1a), <span class="html-italic">Mat2a</span> (methionine adenosyltransferase 2a), and <span class="html-italic">Mtr</span> (methionine transferase reductase or methionine synthase) for methionine metabolism and DNA methylation. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>Transcript levels of genes related to lipid and methionine metabolism. <span class="html-italic">x</span>-axis: time points; <span class="html-italic">y</span>-axis: mean ± SD of relative expression of target genes normalized to <span class="html-italic">Gapdh</span>. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between groups within each time point. Values with ♦ are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between fetal and three weeks. Values with ● are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between 20 and 28 weeks. Genes include <span class="html-italic">Srebf1</span> (sterol regulatory element-binding protein) for lipogenesis, <span class="html-italic">Hspa5</span> (heat shock protein 5) for ER stress, <span class="html-italic">Cpt1A</span> (carnitine palmitoyl transferase 1A) and <span class="html-italic">Ppar</span>α (peroxisome proliferator-activated receptor α) for fatty acid oxidation, <span class="html-italic">Dnmt1</span> (DNA methyltransferase 1), <span class="html-italic">Dnmt3a</span> (DNA methyltransferase 3a), <span class="html-italic">Dnmt3b</span> (DNA methyltransferase 3b), <span class="html-italic">Ahcy</span> (<span class="html-italic">S</span>-adenosylhomocysteinase), <span class="html-italic">Mat1a</span> (methionine adenosyltransferase 1a), <span class="html-italic">Mat2a</span> (methionine adenosyltransferase 2a), and <span class="html-italic">Mtr</span> (methionine transferase reductase or methionine synthase) for methionine metabolism and DNA methylation. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>Transcript levels of genes related to lipid and methionine metabolism. <span class="html-italic">x</span>-axis: time points; <span class="html-italic">y</span>-axis: mean ± SD of relative expression of target genes normalized to <span class="html-italic">Gapdh</span>. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between groups within each time point. Values with ♦ are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between fetal and three weeks. Values with ● are significantly different (<span class="html-italic">p</span> < 0.05) within the same genotype between 20 and 28 weeks. Genes include <span class="html-italic">Srebf1</span> (sterol regulatory element-binding protein) for lipogenesis, <span class="html-italic">Hspa5</span> (heat shock protein 5) for ER stress, <span class="html-italic">Cpt1A</span> (carnitine palmitoyl transferase 1A) and <span class="html-italic">Ppar</span>α (peroxisome proliferator-activated receptor α) for fatty acid oxidation, <span class="html-italic">Dnmt1</span> (DNA methyltransferase 1), <span class="html-italic">Dnmt3a</span> (DNA methyltransferase 3a), <span class="html-italic">Dnmt3b</span> (DNA methyltransferase 3b), <span class="html-italic">Ahcy</span> (<span class="html-italic">S</span>-adenosylhomocysteinase), <span class="html-italic">Mat1a</span> (methionine adenosyltransferase 1a), <span class="html-italic">Mat2a</span> (methionine adenosyltransferase 2a), and <span class="html-italic">Mtr</span> (methionine transferase reductase or methionine synthase) for methionine metabolism and DNA methylation. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>Hepatic global DNA methylation. Values with * are significantly different (<span class="html-italic">p</span> < 0.05) between tx-j <span class="html-italic">vs</span>. control within each time point. Values are expressed as fold change ± SD. Fetal and three weeks data were previously published [<a href="#b19-ijms-15-08004" class="html-bibr">19</a>].</p> ">
<p>(<b>A</b>) Correlation between hepatic Cu concentration and global DNA methylation; (<b>B</b>) Correlation between SAM:SAH ratio and global DNA methylation (using data from 20 and 28 week old mice).</p> ">
Abstract
:Background
Methods
Results
Conclusion
1. Introduction
2. Results and Discussion
2.1. Body and Liver Weights, Copper and Iron Status, SAM and SAH Levels, and Liver Histology
2.2. Transcript Levels of Selected Genes Related to Methionine and Lipid Metabolism
2.3. Hepatic Global DNA Methylation
3. Experimental Section
3.1. Animals and Care
3.2. Hepatic SAM and SAH
3.3. Hepatic Copper and Iron
3.4. Liver Histology
3.5. Transcript Levels of Selected Genes by qPCR
3.6. Global DNA Methylation via Dot Blot Analyses
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsAnh Le: conducted part of the experiments and assays, analyzed and interpreted the data, performed the literature search and drafted the manuscript.Noreene M. Shibata: conducted the animal and laboratory experiments, analyzed the data, contributed to the preparation of the manuscript, and approved the final version of the manuscript.Samuel W. French: performed histological analysis, contributed to the preparation of the manuscript, and approved the final version of the manuscript.Kyoungmi Kim: performed the statistical analysis, contributed to the data analysis and manuscript preparation, and approved the final version of the manuscript.Kusum K. Kharbanda: performed part of the assays, contributed to the manuscript preparation, and approved the final version of the manuscript.Mohammad S. Islam: performed part of the assays, contributed to the manuscript preparation, and approved the final version of the manuscript.Janine M. LaSalle: contributed to the data interpretation, manuscript preparation, and approved the final version of the manuscript.Charles H. Halsted: contributed to the data interpretation, contributed to the manuscript preparation, and approved the final version of the manuscript.Carl L. Keen: contributed to the experiments and laboratory assays, contributed to the manuscript preparation, and approved the final version of the manuscript.Valentina Medici: developed the original idea of the study, interpreted the data, performed part of the literature search, drafted the manuscript, and approved the final version of the manuscript.
References
- Geng, J.; Wang, J.; Yao, R.E.; Liu, X.Q.; Fu, Q.H. Identification of one novel and nine recurrent mutations of the ATP7B gene in 11 children with Wilson disease. World J. Pediatr 2013, 9, 158–162. [Google Scholar]
- Faa, G.; Nurchi, V.; Demelia, L.; Ambu, R.; Parodo, G.; Congiu, T.; Sciot, R.; van Eyken, P.; Silvagni, R.; Crisponi, G. Uneven hepatic copper distribution in Wilson’s disease. J. Hepatol 1995, 22, 303–308. [Google Scholar]
- Faa, G.; Lisci, M.; Caria, M.P.; Ambu, R.; Sciot, R.; Nurchi, V.M.; Silvagni, R.; Diaz, A.; Crisponi, G. Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson’s disease. J. Trace Elem. Med. Biol 2001, 15, 155–160. [Google Scholar]
- Roberts, E.A.; Lau, C.H.; da Silveira, T.R.; Yang, S. Developmental expression of Commd1 in the liver of the Jackson toxic milk mouse. Biochem. Biophys. Res. Commun 2007, 363, 921–925. [Google Scholar]
- Roberts, E.A.; Robinson, B.H.; Yang, S. Mitochondrial structure and function in the untreated Jackson toxic milk (tx-j) mouse, a model for Wilson disease. Mol. Genet. Metab 2008, 93, 54–65. [Google Scholar]
- Coronado, V.; Nanji, M.; Cox, D.W. The Jackson toxic milk mouse as a model for copper loading. Mamm. Genome 2001, 12, 793–795. [Google Scholar]
- Howell, J.M.; Mercer, J.F. The pathology and trace element status of the toxic milk mutant mouse. J. Comp. Pathol 1994, 110, 37–47. [Google Scholar]
- Biempica, L.; Rauch, H.; Quintana, N.; Sternlieb, I. Morphologic and chemical studies on a murine mutation (toxic milk mice) resulting in hepatic copper toxicosis. Lab. Investig 1988, 59, 500–508. [Google Scholar]
- Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.; Torok, N.J.; Jiang, J.X.; et al. Wilson’s disease: Changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology 2013, 57, 555–565. [Google Scholar]
- Huster, D.; Purnat, T.D.; Burkhead, J.L.; Ralle, M.; Fiehn, O.; Stuckert, F.; Olson, N.E.; Teupser, D.; Lutsenko, S. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J. Biol. Chem 2007, 282, 8343–8355. [Google Scholar]
- Deng, D.X.; Ono, S.; Koropatnick, J.; Cherian, M.G. Metallothionein and apoptosis in the toxic milk mutant mouse. Lab. Investig 1998, 78, 175–183. [Google Scholar]
- Czachor, J.D.; Cherian, M.G.; Koropatnick, J. Reduction of copper and metallothionein in toxic milk mice by tetrathiomolybdate, but not deferiprone. J. Inorg. Biochem 2002, 88, 213–222. [Google Scholar]
- Delgado, M.; Perez-Miguelsanz, J.; Garrido, F.; Rodriguez-Tarduchy, G.; Perez-Sala, D.; Pajares, M.A. Early effects of copper accumulation on methionine metabolism. Cell. Mol. Life Sci 2008, 65, 2080–2090. [Google Scholar]
- Chen, N.C.; Yang, F.; Capecci, L.M.; Gu, Z.; Schafer, A.I.; Durante, W.; Yang, X.F.; Wang, H. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J 2010, 24, 2804–2817. [Google Scholar]
- Lu, S.C.; Mato, J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev 2012, 92, 1515–1542. [Google Scholar]
- Clarke, S.; Banfield, K. S-adenosylmethionine-dependent methyltransferases. In Homocysteine in Health and Disease; Carmel, R., Jacobsen, D.W., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 63–78. [Google Scholar]
- Bethin, K.E.; Cimato, T.R.; Ettinger, M.J. Copper binding to mouse liver S-adenosylhomocysteine hydrolase and the effects of copper on its levels. J. Biol. Chem 1995, 270, 20703–20711. [Google Scholar]
- Li, M.; Li, Y.; Chen, J.; Wei, W.; Pan, X.; Liu, J.; Liu, Q.; Leu, W.; Zhang, L.; Yang, X.; et al. Copper ions inhibit S-adenosylhomocysteine hydrolase by causing dissociation of NAD+ cofactor. Biochemistry 2007, 46, 11451–11458. [Google Scholar]
- Medici, V.; Shibata, N.M.; Kharbanda, K.K.; Islam, M.S.; Keen, C.L.; Kim, K.; Tillman, B.; French, S.W.; Halsted, C.H.; Lasalle, J.M. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics 2013, 9, 286–296. [Google Scholar]
- Zeisel, S.H. Nutrition in pregnancy: The argument for including a source of choline. Int. J. Women’s Health 2013, 5, 193–199. [Google Scholar]
- Buiakova, O.I.; Xu, J.; Lutsenko, S.; Zeitlin, S.; Das, K.; Das, S.; Ross, B.M.; Mekios, C.; Scheinberg, I.H.; Gilliam, T.C. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum. Mol. Genet 1999, 8, 1665–1671. [Google Scholar]
- Kato, J.; Kobune, M.; Kohgo, Y.; Sugawara, N.; Hisai, H.; Nakamura, T.; Sakamaki, S.; Sawada, N.; Niitsu, Y. Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J. Clin. Investig 1996, 98, 923–929. [Google Scholar]
- Pfeiffenberger, J.; Gotthardt, D.N.; Herrmann, T.; Seeßle, J.; Merle, U.; Schirmacher, P.; Stremmel, W.; Weiss, K.H. Iron metabolism and the role of HFE gene polymorphisms in Wilson disease. Liver Int 2012, 32, 165–170. [Google Scholar]
- Tsang, V.; Fry, R.C.; Niculescu, M.D.; Rager, J.E.; Saunders, J.; Paul, D.S.; Zeisel, S.H.; Waalkes, M.P.; Styblo, M.; Drobna, Z. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol. Appl. Pharmacol 2012, 264, 439–450. [Google Scholar]
- Medici, V.; Schroeder, D.; Woods, R.; LaSalle, J.M.; Geng, Y.; Shibata, N.M.; Peerson, J.; Hodzic, E.; Dayal, S.; Tsukamoto, H.; et al. Methylation and Gene Expression Responses to Ethanol Feeding and Betaine Supplementation in the Cystathionine Beta Synthase-Deficient Mouse. Alcohol. Clin. Exp. Res 2014. [Google Scholar] [CrossRef]
- Bethin, K.E.; Petrovic, N.; Ettinger, M.J. Identification of a major hepatic copper binding protein as S-adenosylhomocysteine hydrolase. J. Biol. Chem 1995, 270, 20698–20702. [Google Scholar]
- Buist, N.R.; Glenn, B.; Vugrek, O.; Wagner, C.; Stabler, S.; Allen, R.H.; Pogribny, I.; Schulze, A.; Zeisel, S.H.; Baric, I.; et al. S-adenosylhomocysteine hydrolase deficiency in a 26-year-old man. J. Inherit. Metab. Dis 2006, 29, 538–545. [Google Scholar]
- Matthews, R.P.; Lorent, K.; Manoral-Mobias, R.; Huang, Y.; Gong, W.; Murray, I.V.; Blair, I.A.; Pack, M. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development 2009, 136, 865–875. [Google Scholar]
- Komatsu, Y.; Waku, T.; Iwasaki, N.; Ono, W.; Yamaguchi, C.; Yanagisawa, J. Global analysis of DNA methylation in early-stage liver fibrosis. BMC Med. Genomics 2012, 5, 12. [Google Scholar]
- Oh, B.; Kim, H.; Park, H.; Shim, Y.; Choi, J.; Park, C.; Park, Y.N. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int. J. Mol. Med 2007, 20, 65–73. [Google Scholar]
- Wolstenholme, J.T.; Taylor, J.A.; Shetty, S.R.; Edwards, M.; Connelly, J.J.; Rissman, E.F. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 2011, 6, e25448. [Google Scholar]
- Woods, R.; Vallero, R.O.; Golub, M.S.; Suarez, J.K.; Ta, T.A.; Yasui, D.H.; Chi, L.H.; Kostyniak, P.J.; Pessah, I.N.; Berman, R.F.; et al. Long-lived epigenetic interactions between perinatal PBDE exposure and Mecp2308 mutation. Hum. Mol. Genet 2012, 21, 2399–2411. [Google Scholar]
- Gonda, T.A.; Kim, Y.I.; Salas, M.C.; Gamble, M.V.; Shibata, W.; Muthupalani, S.; Sohn, K.J.; Abrams, J.A.; Fox, J.G.; Wang, T.C.; et al. Folic acid increases global DNA methylation and reduces inflammation to prevent Helicobacter-associated gastric cancer in mice. Gastroenterology 2012, 142, 824–833.e7. [Google Scholar]
- Kharbanda, K.K.; Rogers, D.D., 2nd; Mailliard, M.E.; Siford, G.L.; Barak, A.J.; Beckenhauer, H.C.; Sorrell, M.F.; Tuma, D.J. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis: Protection by betaine. Biochem. Pharmacol 2005, 70, 1883–1890. [Google Scholar]
- Bottiglieri, T. Isocratic high performance liquid chromatographic analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues: The effect of exposure to nitrous oxide. Biomed. Chromatogr 1990, 4, 239–241. [Google Scholar]
- Clegg, M.S.; Keen, C.L.; Lonnerdal, B.; Hurley, L.S. Influence of ashing techniques on the concentration of trace elements in animal tissues. I: Wet ashing. Biol. Trace Elem. Res 1981, 3, 107–115. [Google Scholar]
Analysis | Fetal | 3 weeks | 12 weeks | 20 weeks | 28 weeks | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control (n = 8) | Tx-j (n = 5) | Control (n = 11) | Tx-j (n = 10) | Control (n = 8) | Tx-j (n = 7) | Control (n = 9) | Tx-j (n = 6) | Control (n = 7) | Tx-j (n = 7) | |
Body weight (g) | ND | ND | 9.29 ± 1.03 | 7.91 ± 0.84 * | 32.3 ± 2.42 | 27.1 ± 1.45 * | 34.8 ± 2.14 | 28.3 ± 1.10 * | 38.7 ± 4.31 | 32.2 ± 2.58 * |
Liver weight (g) | ND | ND | 0.40 ± 0.060 | 0.35 ± 0.045 * | 1.65 ± 0.12 | 1.40 ± 0.068 * | 1.74 ± 0.14 | 1.72 ± 0.089 | 1.84 ± 0.27 | 1.68 ± 0.27 |
Liver/body ratio | ND | ND | 0.043 ± 0.0035 | 0.044 ± 0.0024 | 0.051 ± 0.0017 | 0.052 ± 0.0024 | 0.050 ± 0.0026 | 0.061 ± 0.0030 * | 0.047 ± 0.0021 | 0.052 ± 0.0045 * |
Copper (μg/g) ** | 7.83 ± 0.72 | 1.49 ± 0.48 * | 12.17 ± 1.72 | 30.65 ± 7.73 * | 5.17 ± 0.99 | 223.16 ± 52.8 * | 7.44 ± 1.84 | 351 ± 40.5 * | 3.86 ± 0.19 | 190 ± 23.4 *,• |
Iron (μg/g) ** | 53.34 ± 7.73 | 48.94 ± 6.08 | 23.54 ± 3.39 | 26.16 ± 5.68 | 68.76 ± 11.54 | 79.52 ± 35.84 | 84.60 ± 13.27 | 91.66 ± 3.42 | 97.58 ± 14.92 | 124.07 ± 7.89 *,• |
SAM (nmol/g) | 105.19 ± 24.83 | 82.13 ± 14.52 | 86.97 ± 17.82 | 122.55 ± 50.37 * | 84.9 ± 11.9 | 76.6 ± 26.3 | 82.7 ± 17.2 | 99.9 ± 10.6 | 74.4 ± 13.2 | 77.2 ± 7.91 |
SAH (nmol/g) | 4.04 ± 1.21 | 4.67 ± 2.88 | 25.94 ± 8.86 | 36.55 ± 13.35 * | 42.5 ± 10.4 | 57.2 ± 15.7 * | 56.6 ± 26.3 | 67.7 ± 13.4 | 28.2 ± 16.8 | 34.5 ± 11.4 |
SAM/SAH ratio | 27.59 ± 10.16 | 23.17 ± 12.77 | 3.89 ± 1.84 | 3.39 ± 0.89 | 2.14 ± 0.69 | 1.41 ± 0.59 * | 1.82 ± 1.13 | 1.51 ± 0.26 | 3.76 ± 1.33 | 2.12 ± 0.52 |
Gene | Sequence 5′ to 3′ | Accession | Position (bp) | Exon-exon overlap | % Primer efficiency |
---|---|---|---|---|---|
Srebf1-F | CTGGCTTGGTGATGCTATGTTG | NM_011480.3 | 3901–3922 | No | 104.9 |
Srebf1-R | GACCATCAAGGCCCCTCAA | 3978–3960 | No | ||
Hspa5-F | GTGGAGATCATAGCCAACG | NM 022310.3 | 383–401 | No | 102.9 |
Hspa5-R | CACATACGACGGCGTGATGC | 433–414 | No | ||
Cpt1a-F | GGAGGAGACAGACACCATCCA | NM 013495.2 | 1044–1064 | Yes | 104.1 |
Cpt1a-R | CGTCATGGTAGAGCCAGACCTT | 1138–1117 | No | ||
Pparα-F | CGATGCTGTCCTCCTTGATGA | NM_011144.6 | 1401–1421 | No | 98.5 |
Pparα-R | GAAGTCAAACTTGGGTTCCATGAT | 1528–1505 | No | ||
Dnmt1-F | CCAGCTGCCAAACGGAGA | NM_001199431.1 | 1060–1077 | Yes | 102 |
Dnmt1-R | CCTCGGGAGTCTCTGGAGCTA | 1123–1103 | No | ||
Dnmt3a-F | CACTGGAGTAGGCGCTGAGAC | NM_007872.4 | 7635–7655 | No | 101.6 |
Dnmt3a-R | CAGCAAAGGGCCTTCCATAG | 7699–7680 | No | ||
Dnmt3b-F | CCGTTCGACTTGGTGATTGG | NM_001003961.4 | 2352–2371 | No | 101.3 |
Dnmt3b-R | GGGCAGGATTGACGTTAGAGAG | 2412–2391 | No | ||
Ahcy-F | ATCCTTGGCCGGCACTTT | NM_016661.3 | 949–966 | Yes | 97.1 |
Ahcy-R | TTCTTTAGCCAGTAGCGGTCCA | 1100–1079 | No | ||
Mat1a-F | TCTGTCCCATACTCACCTCTTCAG | NM_133653 | 1683–1706 | No | 98.4 |
Mat1a-R | TGCCCTGAGGGTAGAAGGC | 1771–1753 | No | ||
Mat2a-F | CAGGAGACCAGGGTTTGATGTT | NM_145569 | 517–538 | Yes | 95.8 |
Mat2a-R | GCGTAACCAAGGCAATGTACC | 653–633 | No | ||
Mtr-F | CTGCAGATGTGGCCAGAAAAG | NM_001081128 | 580–600 | Yes | 98.9 |
Mtr-R | CAGCCACAAACCTCTTGACTCC | 648–627 | No |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Le, A.; Shibata, N.M.; French, S.W.; Kim, K.; Kharbanda, K.K.; Islam, M.S.; LaSalle, J.M.; Halsted, C.H.; Keen, C.L.; Medici, V. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease. Int. J. Mol. Sci. 2014, 15, 8004-8023. https://doi.org/10.3390/ijms15058004
Le A, Shibata NM, French SW, Kim K, Kharbanda KK, Islam MS, LaSalle JM, Halsted CH, Keen CL, Medici V. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease. International Journal of Molecular Sciences. 2014; 15(5):8004-8023. https://doi.org/10.3390/ijms15058004
Chicago/Turabian StyleLe, Anh, Noreene M. Shibata, Samuel W. French, Kyoungmi Kim, Kusum K. Kharbanda, Mohammad S. Islam, Janine M. LaSalle, Charles H. Halsted, Carl L. Keen, and Valentina Medici. 2014. "Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease" International Journal of Molecular Sciences 15, no. 5: 8004-8023. https://doi.org/10.3390/ijms15058004
APA StyleLe, A., Shibata, N. M., French, S. W., Kim, K., Kharbanda, K. K., Islam, M. S., LaSalle, J. M., Halsted, C. H., Keen, C. L., & Medici, V. (2014). Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease. International Journal of Molecular Sciences, 15(5), 8004-8023. https://doi.org/10.3390/ijms15058004