Distribution and Variation of Forests in China from 2001 to 2011: A Study Based on Remotely Sensed Data
<p>Normalized Difference Vegetation Index (NDVI) mode value calculation.</p> "> Figure 2
<p>Forestland NDVI histogram curve and mode value.</p> "> Figure 3
<p>Time series NDVI mode curves of single crops and deciduous forest.</p> "> Figure 4
<p>Forest distribution of China in 2001. Green (Unchanged) indicates that both data sets classify this land as forest. Blue (Increased) indicates that the area is classified as forest in the histogram results but not in MODIS. Red (Decreased) indicates that the area is classified as forest in the MODIS landcover data but not in the histogram results.</p> "> Figure 5
<p>Forest coverage changes in China over the past 11 years.</p> "> Figure 6
<p>Proportion changes of three categories of forestland over the past 11 years.</p> "> Figure 7
<p>Forestland variation tendency over the past 11 years.</p> ">
Abstract
:1. Introduction
- (i)
- The DISCover global land cover product at 1-km × 1-km resolution, produced by the U.S. Geological Survey for the International Geosphere-Biosphere Programme (IGBP) and derived from Advanced Very High Resolution Radiometer (AVHRR) data [8];
- (ii)
- UMD global land cover classification data produced by the University of Maryland Department of Geography in 1998. Imagery from the AVHRR satellites acquired between 1981 and 1994 were analyzed to distinguish fourteen land cover classes. This product is available at three spatial scales: 1° × 1°, 8-km × 8-km, and 1-km × 1-km pixel resolutions [9,10];
- (iii)
- The Global Land Cover 2000 database (GLC2000), at 1-km × 1-km resolution, based on the daily data from the VEGETATION sensor onboard SPOT 4. The Joint Research Center (JRC) of the European Commission (EC) implemented the GLC2000 project in partnership with over 30 partner institutions around the world [11];
- (iv)
- (v)
2. Materials and Methodologies
2.1. MODIS Land Cover Type Product
Value | Label | Value | Label |
---|---|---|---|
0 | Water Bodies | 9 | Savannas |
1 | Evergreen Needleleaf Forests | 10 | Grasslands |
2 | Evergreen Broadleaf Forests | 11 | Permanent Wetlands |
3 | Deciduous Needleleaf Forests | 12 | Croplands |
4 | Deciduous Broadleaf Forests | 13 | Urban and Built-Up Lands |
5 | Mixed Forests | 14 | Cropland/Natural Vegetation Mosaics |
6 | Closed Shrublands | 15 | Snow and Ice |
7 | Open Shrubland | 16 | Barren |
8 | Woody Savannas |
2.2. MODIS NDVI Data
2.3. Forestland Information Estimation
- (i)
- Reclassify MODIS land cover classification data: Evergreen needleleaf forest and evergreen broadleaf forest are merged into evergreen forest, deciduous needleleaf forest and deciduous broadleaf forest are merged into deciduous forest, mixed forest remains the same, and the remaining types are merged into non-forestland. Thus, we obtain the MODIS forestland data.
- (ii)
- Combine the MODIS forestland data and NDVI data to obtain NDVI time characteristic curves of these three forestland categories. Combine one type of forestland with NDVI data of a certain phase and calculate the largest-frequency NDVI value as the NDVI characteristic value of the given type of forestland at a given time point (Figure 1), get the NDVI mode value of the 23 annual time phases, and draw NDVI mode curves of the forestland.
- (iii)
- Calculate the NDVI distribution interval of each type of forestland in each phase (Figure 2). After the combination of forestland and NDVI data, the next step is to calculate the standard deviation of the forestland NDVI data and then use the NDVI characteristic value as the center value and a standard deviation above and below this value as the wave range to calculate the forestland NDVI distribution interval in a certain time phase.
2.3.1. Forestland NDVI Characteristic Curve Calculation
2.3.2. Evergreen Forest Estimation
2.3.3. Deciduous Forest Estimation
2.3.4. Mixed Forest Estimation
2.4. Validation Approach
This paper | MODIS LC-1 | Validated with GlobCover |
---|---|---|
deciduous forests | Deciduous Needleleaf Forests | closed (tree cover >40%) broadleaf deciduous forest (tree height >5 m) |
Deciduous Broadleaf Forests | ||
evergreen forests | Evergreen Needleleaf Forests | closed (tree cover >40%) needleleaf evergreen forest (tree height >5 m) |
Evergreen Broadleaf Forests | ||
mixed forests | mixed forests | closed to open (tree cover >15%) mixed broadleaf and needleleaf forest (tree height >5 m) |
3. Results and Discussion
3.1. Comparison and Validation
Types | Producer’s accuracy | User’s accuracy | Overall accuracy | |
---|---|---|---|---|
This paper | Deciduous | 0.895 | 0.994 | 0.804 |
Evergreen | 0.940 | 0.793 | ||
Mixed | 0.600 | 0.936 | ||
MODIS | Deciduous | 0.651 | 0.722 | 0.676 |
Evergreen | 0.673 | 0.987 | ||
Mixed | 0.701 | 0.625 |
3.2. China Forestland Analysis, 2001–2011
3.3. Uncertainty Analysis
- (i)
- (ii)
- Disease and pests, forest fires, weather, and other factors may also affect the remote-sensing observation of NDVI and thereby the forest NDVI values as well as the final estimation results. This paper has discussed the effect of weather on NDVI value. However, it will be difficult to use disease and pests as well as fire disasters as variables to constrain the estimation of forest information. Further studies are required on the effect of disease, pests, and fire disasters on NDVI value and their constraints on forestland information estimation.
- (iii)
- Relative to the existing land use data and forest investigation data, the forestland pixel area obtained in this paper is larger due to the consideration of mixed pixels. In the classification of medium- and low-resolution remotely sensed images, if the forestland area comprises a certain percentage of a pixel, the pixel will be classified as forestland. This approach is different from that used in the land use survey data and the forest investigation data. Hence, this paper estimated only the location information of the forestland, and further studies on the specific coverage area are needed. In addition, the overall regional distribution of forestland in China will not be affected.
4. Conclusions
- (i)
- The histogram mode feature of forestland and a decision tree classification method can be used to estimate the forest cover information and can improve its classification accuracy. The forestland data for China over the past 11 years are acquired using the NDVI time series histogram mode characteristics. The spatial distribution of the forest over China is more consistent with reality than that in MCD12Q1. The obtained data can more accurately reflect the actual conditions of the forestland in China and may effectively improve the overall accuracy for forestland compared with the existing MODIS surface classification data.
- (ii)
- Based on the results of estimated forestland, the forestland pixels in China over the past 11 years account for an average of 33.72% of the total pixels of inland areas. Differentiation and variation are observed in the spatial distributions of forestland. Forestland is mainly found in southern China, northeastern China, southern Tibet, and the Tianshan (Xinjiang) area. The evergreen forestland is concentrated in southern Tibet, Yunnan, and southeastern China; and the deciduous forestland is distributed in northern China, mostly in the northeast. The forestland coverage of northwestern China is relatively small, such as in Qinghai and Gansu.
- (iii)
- In the past 11 years, the changes of each province’s forestland coverage range differ somewhat but increased overall, with central China and three northern areas of China having the largest increases. Over the past 11 years, evergreen forestland pixels have accounted for an average of 31.28% of the total forestland pixels. Deciduous and mixed forestlands are scattered across the country but are fairly concentrated in the temperate zone located in central China, accounting for an average of 27.81% and 40.91% of total forestland, respectively.
- (iv)
- Of the forestland data estimated in this paper, all the forestland pixels are mixed pixels, and certain differences do exist between the forestland distribution range and the actual area of the forestland. Besides this, the equations used to calculate forest cover would vary from region to region, and would require different thresholds or time intervals based on the variables of latitude/longitude. Further studies need to analyze the differences among different locations to develop different thresholds. In addition, the research method applied in this paper will also be applied in the estimation for other surface features, such as crop and grassland estimation.
Acknowledgments
Conflict of Interest
References
- Food and Agriculture Organization (FAO), State of the World’s Forests 2012. Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forest. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Curran, L.M.; Trigg, S.N.; McDonald, A.K.; Astiani, D.; Hardiono, Y.M.; Siregar, P.; Caniago, I.; Kasischke, E. Lowland forest loss in protected areas of indonesian borneo. Science 2004, 303, 1000–1003. [Google Scholar] [CrossRef]
- Gorsevski, V.; Kasischke, E.; Dempewolf, J.; Loboda, T.; Grossmann, F. Analysis of the impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan-Uganda border using multitemporal Landsat imagery. Remote Sens. Environ. 2012, 118, 10–20. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of deforestation rates of the World’s humid tropical forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef]
- Verbesselt, J.; Robinson, A.; Stone, C.; Culvenor, D. Forecasting tree mortality using change metrics derived from MODIS satellite data. For. Ecol. Manag. 2009, 258, 1166–1173. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Hansen, M.C.; Reed, B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int. J. Remote Sens. 2000, 21, 1365–1373. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Bourg, L.; Leroy, M.; Bicheron, P.; Latham, J.; di Gregorio, A.; Brockman, C.; Witt, R.; et al. GlobCover: ESA Service for Global Land Cover from MERIS. In Proceedings of IEEE International Geoscience and Remote Sensing SymposiumIGARSS 2007, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415.
- Defourny, P.; Vancutsem, C.; Bicheron, P.; Brockmann, C.; Nino, F.; Schouten, L.; Leroy, M. GLOBCOVER: A 300 m Global Land Cover Product for 2005 Using Envisat MERIS Time Series. In Proceedings of the ISPRS Commission VII Mid-Term SymposiumRemote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006; pp. 8–11.
- Yaqian, H.; Yanchen, B. A Consistency Analysis of MODIS MCD12Q1 and MERIS Globcover Land Cover Datasets over China. In Proceedings of 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6.
- Stehman, S.V.; Olofsson, P.; Woodcock, C.E.; Herold, M.; Friedl, M.A. A global land-cover validation data set, II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote Sens. 2012, 33, 6975–6993. [Google Scholar] [CrossRef]
- Kaptué Tchuenté, A.T.; Roujean, J.-L.; de Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scal. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, S.; Liu, S.; Yuan, W.; Xiao, Z.; Liu, Q.; Cheng, J.; Zhang, X.; Tang, H.; Zhang, X.; et al. The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens. 2013, 5, 2436–2450. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Yuan, W.; Liu, S.; Cheng, X. A long-term Global Land Surface Satellite (GLASS) dataset for environmental studies. Int. J. Digit. Earth 2013, in press. [Google Scholar]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, E.R. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 2012, 122, 146–165. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D.; Kennedy, R.E.; Nelson, P.; Loboda, T.V.; Kuemmerle, T.; Dyukarev, E.; et al. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sens. Environ. 2011, 115, 3539–3553. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Xin, Q.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Schapire, R.E.; Freund, Y.; Bartlett, P.L.; Lee, W.S. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 26, 1651–1686. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Lotsch, A.; Tian, Y.; Friedl, M.A.; Myneni, R.B. Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errors. Int. J. Remote Sens. 2003, 24, 1997–2016. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R., Jr. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ. 1995, 51, 39–48. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 2002, 16, 1–23. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Omuto, C.T. A new approach for using time-series remote-sensing images to detect changes in vegetation cover and composition in drylands: A case study of eastern Kenya. Int. J. Remote Sens. 2011, 32, 6025–6045. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Academic Press: Burlington, MA, USA, 2007; pp. 144–145. [Google Scholar]
- ENVI Reference Guide Version 4.7 August, 2009 Edition. ITT Visual Information Solutions. Available online: http://www.exelisvis.com/portals/0/pdfs/envi/Reference_Guide.pdf (accessed on 26 May 2013).
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar]
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report; Technical Report for ESA GlobCover project: UCLouvain & ESA Team; 2011; p. 53. Available online: http://due.esrin.esa.int/globcover/LandCover2009/GLOBCOVER2009_Validation_Report_2.2.pdf. (accessed on 26 July 2013).
- Pierre, D.; Leon, S.; Sergey, B.; Sophie, B.; Peter, C.; Allard, D.W.; Carlos, D.B.; Bruno, G.; Chandra, G.; Valerie, G.; et al. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, 4–9 May 2009.
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y. Forest Cover in China from 1949 to 2006. In Reforesting Landscapes; Nagendra, H., Southworth, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2010; Volume 10, pp. 341–356. [Google Scholar]
- Xu, J.C. China’s new forests aren’t as green as they seem. Nature 2011, 477, 371. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, X.; Xu, P.; Zhou, T.; Li, Q.; Wu, D. Distribution and Variation of Forests in China from 2001 to 2011: A Study Based on Remotely Sensed Data. Forests 2013, 4, 632-649. https://doi.org/10.3390/f4030632
Zhao X, Xu P, Zhou T, Li Q, Wu D. Distribution and Variation of Forests in China from 2001 to 2011: A Study Based on Remotely Sensed Data. Forests. 2013; 4(3):632-649. https://doi.org/10.3390/f4030632
Chicago/Turabian StyleZhao, Xiang, Peipei Xu, Tao Zhou, Qing Li, and Donghai Wu. 2013. "Distribution and Variation of Forests in China from 2001 to 2011: A Study Based on Remotely Sensed Data" Forests 4, no. 3: 632-649. https://doi.org/10.3390/f4030632
APA StyleZhao, X., Xu, P., Zhou, T., Li, Q., & Wu, D. (2013). Distribution and Variation of Forests in China from 2001 to 2011: A Study Based on Remotely Sensed Data. Forests, 4(3), 632-649. https://doi.org/10.3390/f4030632