Permutation Entropy for Random Binary Sequences
<p>Permutation entropy (PE) of completely random binary sequences with different <span class="html-italic">n</span>.</p> "> Figure 2
<p>The relationship between <span class="html-italic">H</span>(<span class="html-italic">n</span>) and <span class="html-italic">p</span><sub>0</sub> for different order <span class="html-italic">n</span> of random binary sequences.</p> "> Figure 3
<p>The relationship between PE and Shannon’s entropy.</p> "> Figure 4
<p>The relationship between PE and Lempel–Ziv complexity.</p> "> Figure 5
<p>PE (<b>a</b>) and Lyapunov exponent (<b>b</b>) of Logistic chaotic binary sequences with different parameters.</p> "> Figure 6
<p>PE of Tent chaotic binary sequences with different parameters.</p> "> Figure 7
<p>PE of Baker chaotic binary sequences with different parameters.</p> ">
Abstract
:1. Introduction
2. PE and Its Theoretical Limitation for Random Binary Sequences
3. Relation to Shannon’s Entropy and Lempel–Ziv Complexity for Random Binary Sequences
3.1. Connections to Shannon’s Entropy
3.2. Connections to Lempel–Ziv Complexity
4. PE as One of the Randomness Measures
4.1. Logistic Map
4.2. Tent Map
4.3. Baker Map
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kalouptsidis, N. Signal Processing Systems: Theory and Design; Telecommunications and Signal Processing Series; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Golomb, S.W. Shift Register Sequences; Holden-Day: San Francisco, CA, USA, 1967. [Google Scholar]
- Wang, X.M.; Zhang, W.F.; Guo, W.; Zhang, J.S. Secure chaotic system with application to chaotic ciphers. Inf. Sci. 2013, 221, 555–570. [Google Scholar] [CrossRef]
- Rukin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; NIST (National Institute of Standards and Technology): Gaithersburg, MD, USA, 2001. [Google Scholar]
- Ecuyer, P.L.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 2007, 33, 1–22. [Google Scholar] [CrossRef]
- Security Requirements for Cryptographic Modules. Federal Information Processing Standards Publication (FIPS140–1); NIST (National Institute of Standards and Technology): Gaithersburg, MD, USA, 1994.
- Gustafson, H.; Dawson, E.; Nielsen, L.; Caelli, W. A computer package for measuring the strength of encryption algorithms. J. Comput. Secur. 1994, 13, 687–697. [Google Scholar] [CrossRef]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. A 1922, 222, 309–368. [Google Scholar] [CrossRef]
- Boekee, D.E. An extension of the Fisher Information Measure. Annu. Rev. Top. Inf. Theory 1977, 16, 493–519. [Google Scholar]
- Shannon, C.E.; Weaver, E. The Mathematical Theory of Communication; Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Renyi, A. On Measures of Entropy and Information. In Proceedings of the 4th Berkeley Symposium on Mathematics Statistics and Probability; University of California Press: Berkeley, CA, USA, 1960; pp. 547–561. [Google Scholar]
- Stratonovich, R.L. Theory of Information; Sov. Radio: Moscow, Russia, 1975. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Wiley and Sons: New York, NY, USA, 1959. [Google Scholar]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Liu, L.F.; Miao, S.X.; Hu, H.P.; Deng, Y.S. On the eigenvalue and Shannon’s entropy of finite length random sequences. Complexity 2014. [Google Scholar] [CrossRef]
- Liu, L.F.; Miao, S.X.; Liu, B.C. On nonlinear complexity and Shannon’s entropy of finite length random sequences. Entropy 2015, 17, 1936–1945. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Toomey, J.; Kane, D. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 2014, 22, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Shang, P.J. Generalized permutation entropy analysis based on the two-index entropic form Sq,δ. Chaos 2015, 25, 053114. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.L.; Jin, N.D.; Chen, X.T.; Gao, Z.K. Multi-scale permutation entropy: A complexity measure for discriminating two-phase flow dynamics. Chin. Phys. Lett. 2013, 30, 090501. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P.J. Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 2014, 78, 2921–2939. [Google Scholar] [CrossRef]
- Unakafova, V.A.; Unakafov, A.M.; Keller, K. An approach to comparing Kolmogorov-Sinai and permutation entropy. Eur. Phys. J. Spec. Top. 2013, 222, 353–361. [Google Scholar] [CrossRef]
- Li, Q.L.; Fu, Z.T. Permutation entropy and statistical complexity quantifier of nonstationarity effect in the vertical velocity records. Phys. Rev. E 2014, 89, 012905. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Ouyang, G.X.; Richards, D.A. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007, 77, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Zunino, L.; Soriano, M.C.; Fischer, I.; Rosso, O.A.; Mirasso, C.R. Permutation-information-theory approach to unveil delay dynamics form time-series analysis. Phys. Rev. E 2010, 82, 046212. [Google Scholar] [CrossRef] [PubMed]
- Mateos, D.; Diaz, J.M.; Lamberti, P.W. Permutation Entropy Applied to the Characterization of the Clinical Evolution of Epileptic Patients under Pharmacological Treatment. Entropy 2014, 16, 5668–5676. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Miao, S.; Cheng, M.; Gao, X. Permutation Entropy for Random Binary Sequences. Entropy 2015, 17, 8207-8216. https://doi.org/10.3390/e17127872
Liu L, Miao S, Cheng M, Gao X. Permutation Entropy for Random Binary Sequences. Entropy. 2015; 17(12):8207-8216. https://doi.org/10.3390/e17127872
Chicago/Turabian StyleLiu, Lingfeng, Suoxia Miao, Mengfan Cheng, and Xiaojing Gao. 2015. "Permutation Entropy for Random Binary Sequences" Entropy 17, no. 12: 8207-8216. https://doi.org/10.3390/e17127872
APA StyleLiu, L., Miao, S., Cheng, M., & Gao, X. (2015). Permutation Entropy for Random Binary Sequences. Entropy, 17(12), 8207-8216. https://doi.org/10.3390/e17127872