Microstructure and Mechanism of Grain Raising in Wood
<p>Relationship between density of woods and grain raising defined as the increase in surface roughness after sanding and wetting and air drying. Wood species can be identified using the abbreviations in <a href="#coatings-07-00135-t001" class="html-table">Table 1</a>. Values for roughness increases of some wood species were similar and their abbreviations overlapped. In these cases the precise numerical values for roughness increases are indicated by a period (.). In four cases an oblique line is drawn from the period to the abbreviated species name.</p> "> Figure 2
<p>Grain raising of sanded and planed wood surfaces. Differences in roughness that exceed the length of the error bar (LSD) are statistically significant (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Confocal profilometry images of sanded surfaces before (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and after grain raising (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>): (<b>a</b>,<b>b</b>) balsa; (<b>c</b>,<b>d</b>) western red cedar; (<b>e</b>,<b>f</b>) black cherry; (<b>g</b>,<b>h</b>) sugar maple.</p> "> Figure 3 Cont.
<p>Confocal profilometry images of sanded surfaces before (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and after grain raising (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>): (<b>a</b>,<b>b</b>) balsa; (<b>c</b>,<b>d</b>) western red cedar; (<b>e</b>,<b>f</b>) black cherry; (<b>g</b>,<b>h</b>) sugar maple.</p> "> Figure 4
<p>Balsa wood surfaces: (<b>a</b>) surface after sanding with 120 and 180 grit aluminium oxide abrasive papers; (<b>b</b>) sanded surface after wetting and redrying; (<b>c</b>) planed surface after wetting/redrying; and (<b>d</b>) loose surface material removed from (<b>b</b>) using transparent tape. Scale bars = 200 μm.</p> "> Figure 5
<p>Western red cedar wood surfaces after: (<b>a</b>) sanding; (<b>b</b>) sanding and wetting/redrying; (<b>c</b>) planing/wetting/redrying; and (<b>d</b>) material removed from (b) using transparent tape. Scale bars = 100 μm.</p> "> Figure 5 Cont.
<p>Western red cedar wood surfaces after: (<b>a</b>) sanding; (<b>b</b>) sanding and wetting/redrying; (<b>c</b>) planing/wetting/redrying; and (<b>d</b>) material removed from (b) using transparent tape. Scale bars = 100 μm.</p> "> Figure 6
<p>Sugar maple wood surfaces after: (<b>a</b>) sanding; (<b>b</b>) sanding/wetting/redrying; (<b>c</b>) planing/wetting/ redrying; and (<b>d</b>) material removed from (<b>b</b>) using transparent tape. Scale bars (a,b) = 50 μm; (c,d) = 100 μm.</p> "> Figure 7
<p>Lignum vitae wood surfaces after: (<b>a</b>) sanding; (<b>b</b>) sanding/wetting/redrying; (<b>c</b>) planing/wetting/ redrying; and (<b>d</b>) material removed from (<b>b</b>) using transparent tape. Scale bars (a,b) = 50 μm; (c,d) = 100 μm.</p> "> Figure 8
<p>Tubular plastic wood model after a serrated tool was drawn across its surface.</p> "> Figure 9
<p>Effect of grit size of abrasive belts on the grain raising of maple veneer-faced panels sequentially sanded using an industrial wide belt sander.</p> "> Figure 10
<p>Appearance of maple veneer surfaces after composite veneer-faced panels were sanded with an industrial wide belt sander: (<b>a</b>) surface sanded with 120 grit aluminum oxide belt; (<b>b</b>) surface sanded with 120 grit aluminum oxide belt and then subjected to grain raising procedure; (<b>c</b>) surface sanded with 120/150/180 grit aluminum oxide belts; and (<b>d</b>) surface sanded with 120/150/180 grit aluminum oxide belts and then subjected to the grain raising procedure. Scale bars = 250 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effects of Sanding on the Grain Raising of Different Wood Species
2.2. Grain Raising of Sanded versus Planed Wood
2.3. Physical Modelling of Grain Raising
2.4. Effects of Abrasive Size on Grain Raising of Maple Panels
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vandivort, T.F.; Osborn, L.E.; Hassler, C.C. Waterborne Wood Finishing Technology as an Alternative to Solventborne Products to Achieve Compliance with Volatile Organic Compound (VOC) Emissions Regulation; Appalachian Hardwood Center Fact Sheet; Appalachian Hardwood Center: Morgantown, WV, USA, 1993. [Google Scholar]
- Bush, E.R. Wood Stain. U.S. Patent 2,000,121, 7 May 1935. [Google Scholar]
- Challener, C. Trends in Interior Wood Coatings: Tracking the Shift from Solvent to Waterborne and UV. Available online: http://www.paint.org/article/trends-in-interior-wood-coatings-tracking-the-shift-from-solvent-to-waterborne-and-uv/ (accessed on 25 August 2017).
- Folsom, J.K. Raising the grain. Rocky Mt. Rev. 1981, 35, 270. [Google Scholar] [CrossRef]
- Rippey, H.F.; Dike, T.W. Process for Treatment of Porous Materials and Product Thereof. U.S. Patent 2,150,188, 14 March 1939. [Google Scholar]
- Eastland, J. Wood Finishing Composition Consisting of Methylmethacrylate Resin and Borax. U.S. Patent 2,829,067, 1 April 1958. [Google Scholar]
- Burwell, J.S. Method of Staining Wood and Composition Therefor. U.S. Patent 3,311,484, 28 March 1967. [Google Scholar]
- Beane, B.E.; Safta, E. Wood Pretreatment for Water-Based Finishing Schedules. U.S. Patent 5,512,323, 30 April 1996. [Google Scholar]
- Koehler, A. Some observations on raised grain. Trans. Am. Soc. Mech. Eng. 1932, 54, 27–30. [Google Scholar]
- Marra, G.G. An analysis of the factors responsible for raised grain on the wood of oak following sanding and staining. Trans. Am. Soc. Mech. Eng. 1943, 65, 177–185. [Google Scholar]
- Nakamura, G.-I.; Takachio, H. An experiment on the roughness and stability of sanded surface. Mokuzai Gakkaishi 1961, 7, 41–45. [Google Scholar]
- Landry, V.; Blanchet, P.; Cormier, L.M. Water-based and solvent-based stains: Impact on the grain raising in yellow birch. Bioresources 2013, 8, 1997–2009. [Google Scholar] [CrossRef]
- Evans, P.D.; Cullis, I. Reducing Grain Raising during the Finishing of Wood with Water-Borne Coatings; Unpublished Value to Wood (Natural Resources Canada, Ottawa, Canada) Report, No. UBC13; Natural Resources Canada: Ottawa, ON, Canada, 2009; p. 54.
- Panshin, A.J.; Zeeuw, C.D. Textbook of Wood Technology; McGraw-Hill Book Co.: New York, NY, USA, 1980. [Google Scholar]
- Anon. Data Characterization Workstation, Altisurf® 50. Available online: http://www.hoskinscientifique.com/uploadpdf/Instrumentation/Altimet/hoskin_DT%20A50%20TV_US_corrige_471cdf31c57e4.pdf (accessed on 26 August 2017).
- Williams, L.J.; Hervé, A. Fisher’s least significant difference (LSD) test. In Encyclopedia of Research Design; Salkind, N., Ed.; SAGE: Thousand Oaks, CA, USA, 2010; p. 6. [Google Scholar]
- Evans, P.D.; Haase, J.G.; Seman, A.S.B.; Kiguchi, M. The search for durable exterior clear coatings for wood. Coatings 2015, 5, 830–864. [Google Scholar] [CrossRef]
- Larsen-Badse, J. Influence of grit size on the groove formation during sliding abrasion. Wear 1968, 11, 213–222. [Google Scholar] [CrossRef]
- Lachenbruch, B. Physical models as an aid for teaching wood anatomy. Int. Assoc. Wood Anat. J. 2011, 32, 301–312. [Google Scholar] [CrossRef]
- Evans, P.D.; Vollmer, S.; Kim, J.D.W.; Chan, G.; Kraushaar Gibson, S. Improving the performance of clear coatings on wood through the aggregation of marginal gains. Coatings 2016, 6, 66. [Google Scholar] [CrossRef]
- Flexner, B. Understanding Wood Finishing: How to Select and Apply the Right Finish; Fox Chapel Publishing: East Petersburg, PA, USA, 2010; p. 308. [Google Scholar]
- De Roever, E.D.W.F.; Cosper, D.R. Fibre rising and surface roughening in lightweight coated paper—An environmental scanning electron microscopy study. Scanning 1996, 18, 500–507. [Google Scholar] [CrossRef]
Name | Code | Density (kg/m3) * | Growth Rings and Texture [14] |
---|---|---|---|
Quipo (Cavanillesia platanifolia, Humb. & Bonpl.) Kunth | Q | 118 | Diffuse porous |
Balsa (Ochroma pyramidale, Cav. ex Lam.) Urb. | B | 133 | Diffuse porous |
Obeche (Triplochiton scleroxylon, K. Schum.) | A | 226 | Diffuse porous |
Western red cedar (Thuja plicata, Donn ex D. Don) | WR | 263 | Medium/coarse |
Agarwood (Aquilaria spp.) | AG | 265 | Diffuse porous |
Redwood (Sequoia sempervirens, D. Don) Endl. | R | 329 | Coarse |
Grand fir (Abies grandis, Dougl. ex D. Don) Lindley | F | 348 | Medium/coarse |
Western hemlock (Tsuga heterophylla, Raf.) Sarg. | WH | 350 | Medium/fine |
Ponderosa pine (Pinus ponderosa, Dougl.) ex Lawson | PP | 351 | Medium/coarse |
White spruce (Picea glauca, Moench) Voss) ex Lawson | WS | 372 | Medium/fine |
Black spruce (Picea mariana, Mill.) Britt., Sterns & Poggenburg | BS | 376 | Medium/fine |
Red alder (Alnus rubra) Bong. | RA | 381 | Diffuse porous |
Black cottonwood (Populus trichocarpa, Torr & Gray ex Hook. F.) | BC | 386 | Diffuse porous |
Huon pine (Lagarostrobos franklinii, Hook) Quinn | HP | 400 | Fine |
Mahogany (Swietenia macrophylla) King | M | 412 | Diffuse porous |
Douglas fir (Pseudotsuga menziesii, Mirb.) Franco | DF | 449 | Medium/coarse |
Black cherry (Prunus serotina) Ehrh. | CB | 461 | Diffuse porous |
Mountain ash (Eucalyptus regnans) F. Muell. | MA | 484 | Diffuse porous |
Black walnut (Juglans nigra) L. | WB | 488 | Semi-ring porous |
Lodgepole pine (Pinus contorta) Dougl. | LP | 511 | Medium/fine |
Teak (Tectona grandis) L.f. | TE | 526 | Semi-ring porous |
Tamarack (Larix laricina, Du Roi) K. Koch | TA | 553 | Medium/fine |
American beech (Fagus grandifolia) Ehrh. | BE | 564 | Diffuse porous |
Yellow birch (Betula alleghaniensis) Britt. | YB | 583 | Diffuse porous |
Hickory (Carya spp.) | H | 585 | Semi-ring porous |
Red stinkwood (Prunus africana, Hook. f.) Kalkman | RS | 590 | Diffuse porous |
Red oak (Quercus rubra) L. | RO | 605 | Ring porous |
Sugar maple (Acer saccharum) Marsh. | SM | 659 | Diffuse porous |
Ironwood (Xylia xylocarpa Roxb.) Taub. | IW | 694 | Semi-ring porous |
Rasberry jam (Acacia acuminata) Benth. | RJ | 814 | Diffuse porous |
Red ironbark (Eucalyptus sideroxylon,A. Cunn. ex Woolls) | RI | 834 | Diffuse porous |
Banga wanga (Amblygonocarpus obtusangulus, Welw. ex Oliv.) Exell & Torre | BW | 896 | Diffuse porous |
Ebony (Diospyros spp.) | E | 1011 | Diffuse porous |
Lignum vitae (Guaiacum officinale) L. | LV | 1170 | Diffuse porous |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, P.D.; Cullis, I.; Kim, J.D.W.; Leung, L.H.; Hazneza, S.; Heady, R.D. Microstructure and Mechanism of Grain Raising in Wood. Coatings 2017, 7, 135. https://doi.org/10.3390/coatings7090135
Evans PD, Cullis I, Kim JDW, Leung LH, Hazneza S, Heady RD. Microstructure and Mechanism of Grain Raising in Wood. Coatings. 2017; 7(9):135. https://doi.org/10.3390/coatings7090135
Chicago/Turabian StyleEvans, Philip D., Ian Cullis, Joseph Doh Wook Kim, Lukie H. Leung, Siti Hazneza, and Roger D. Heady. 2017. "Microstructure and Mechanism of Grain Raising in Wood" Coatings 7, no. 9: 135. https://doi.org/10.3390/coatings7090135
APA StyleEvans, P. D., Cullis, I., Kim, J. D. W., Leung, L. H., Hazneza, S., & Heady, R. D. (2017). Microstructure and Mechanism of Grain Raising in Wood. Coatings, 7(9), 135. https://doi.org/10.3390/coatings7090135