[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

The computation of optical flow

Published: 01 September 1995 Publication History

Abstract

Two-dimensional image motion is the projection of the three-dimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of time-orderedimages allow the estimation of projected two-dimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to two-dimensional image motion, it may then be used to recover the three-dimensional motion of the visual sensor (to within a scale factor) and the three-dimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the three-dimensional environment, and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, time-to-collision and focus of expansion calculations, motion compensated encoding, and stereo disparity measurement. We investigate the computation of optical flow in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use. The survey concludes with a discussion of current research issues.

References

[1]
ADELSON, E H. AND BERGEN, J R. 1986. The early detection of motion boundaries. In iEEE Proceedings o/' Workshop on Vtsual Motzon (Charleston, S.C., May). 151 156.
[2]
ADELSON, E H. mNo BERGEN, J. R. 1985 Spatiotemporal energy models for the perception of motion d. Opt Soc Am A2, 2,284 299
[3]
ADR5 G. 1985. Determining three-d~mensmnal motion and structure from optical flow generated by several movmg objects. IEEE PAMI 7, 4, 384 401.
[4]
AGGARWAL, J. K AND NANDHAKUMAR, N 1988 On the computation of motion from sequences of images a review. Prom IEEE 76, S, 917 935
[5]
AISBETT, J. 1989. Optical flow w~th intensityweighted smoothing. IEEE PA34I 11, 5 (1984), 512 522.
[6]
ALOIMONOS, J. AND BROWN, C M 1984 Direct processing of curvilinear sensor motion from a sequence of perspective images. In IEEE Proceedzng~ of Workshop on Computer Vlston: Representatmn and Control (Annapolis, Md, April-May), IEEE, 72 77
[7]
ALOiMONOS, J. AND RISTIGOUS, I. 1986 Determining the 3d motion of a m~d planar patch without correspondence, under perspective projection. In IEEE Proceedings of Workshop on Motion, Representatzon and Analyszs (Annapohs, Md., April May), IEEE. 167 174
[8]
ANAND~X5 P. 1989. A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. -Vzszon 2,283-310.
[9]
ANCONA, N. 1992. A fast obstacle detection method based on optical flow In Proceedings of ECCV (Santa Margherita, Llgure, Italy, May), Springer Verlag, 267-271.
[10]
BARMAN, H. 1991. Hmrarchmal curvature estimation m computer vision, Univ. of Linkopmg, Dept. of Electrical Engineering, Ph.D. Thesis.
[11]
BARMAN, H., HAGLUND, L, KNUTSSON, H., AND GRANLUND, G.H. 1991. Estimatmn of velocity, acceleratmn, and disparity m t~me sequences. In IEEE Proceedings of Workshop on Vzsual Motmn (Irvine, Calif., March), 44 51
[12]
BARNARD, S. T. mwD THOMPSON, W. B 1980 Disparity analysis of images IEEE PAMI 2, 4, 333-340.
[13]
BARREN, J. L. AND EAGLESON, R. 1995. Recurs~ve eshmatmn of time-varying motmn and structural parameters. Pattern Recogn. (m press).
[14]
BARREN, J. L, FLEET, D. J., AND BEAUCHEMIN, S. S. 1994 Performance of optical flow techmques. Int. d. Comput Vis'mn 12, 1, 43 77.
[15]
BARREN, J. L, JEPSON, A D., AND TSeTSeS, J K. 1990 The feaslMhty of motmn and structure from nomy brae-varying image velomty refermatron. Int. J. Comput. Vision 5, 3, 239 269
[16]
BARREN, J. L. AND LIPTAY, A 1994. Optic flow to measure mmute increments in plant growth. Bmlrnagmg 2, 57-61
[17]
BATrlTi, R, AMALDL E., AND KOCH, C. 1991. Computing optical flow across multiple scales: An adaptive coarse-to-fine strategy. Int. J. Cornput. Vzsmn 6, 2, 133 145.
[18]
BEAUCHEMIN, S S AND BARRON, J. L 1995 The structure of occlusion in Foumer space In Vls/on Interface (Quebec City, Canada, May) 112-119
[19]
BERGEN, J. R., ANANDAN, P., HANNA, K. J., AND E{INGORANi, R. 1992 Hierarchical modelbased motmn estimatmn. In Procee&ngs of ECCV (Santa Marghemta, Italy). Springer Vetlag, 237-252.
[20]
BERGEN, J. R. BURT, P J, HINGORANI, R., AND PELF~G, S. 1992 Three-frame algorithm for estimating two-component image motmn. IEEE PAMI 14, 9, 886-896
[21]
BLACK, M. J. 1992. Robust incremental optical flow. Yale Umverslty, New Haven, CT, Ph.D. Thesis.
[22]
BLACK, M J. 1991. A robust gradient-method for determining optical flow Tech. Rep. YALEU/DCS/RR-891, Yale University, New Haven, CT.
[23]
BLACK, M. J. AND ANANDAN, P. 1993 A framework for robust estimation of optical flow. In Proceedings oflCCV (Berlin, May), 231 236
[24]
BLACK, M J. ANn ANANDAN, P. 1991 Robust dynamic motion estimation over t~me In Proceedrags IEEE CVPR (Los Alamitos, CAI, 296-302.
[25]
BLACK, M J. AND ANANDAN, P. 1990. A model for the detectmn of motmn over t~me. In Proceedrags of ICCV (Osaka, Dec ), 33 37.
[26]
BLACK, M. J. AND JEPSON, A. 1994 Estimating optical flow in segmented nnages using variable-order parametric models with local deforraations. Tech. Rep SPL-94-053, Xerox Systems and Practices Laboratory, Palo Alto, CA
[27]
BOBER, M. AND 14ATTLER, J 1994 Robust morton analyms In IEEE Proceedings of CVPR (Seattle, WA, June), 947-952
[28]
BOUTHEMY, P.~ND FRANCOIS, E. 1993. Motion segmentation and qualitative dynamic scene analyas from an image sequence. Int. J. Cornput Vlston 10, 2, 159-182
[29]
BURLINA, P. AND CHELLAPPA, R. 1994. Time-to-x: Analysis of motion through temporal parameters. In Proceedings IEEE CVPR (Seattle, WA, June), 461-468
[30]
BURT, P. J. AND ADELSON, E.H. 1983. The Laplaclan pyramid as a compact image code. iEEE Trans. Cornmun. 31,532 540.
[31]
BURT, P. J., HINGORANI, R., AND KOLCZYNSKI, R. J. 1991. Mechanisms for Isolating component patterns in the sequential analysis of multiple motion. In IEEE Proceedings of Workshop on V~sual Morton (Princeton, NJ, Oct.), 187 194.
[32]
BUXTON, B. F. AND BUXTON, H. 1984. Computation of optic flow from the motion of edge features in image sequences. Image Vision Cornpitt 2, 2, 59 75
[33]
CAMPANI, M. AND VERm, A 1990. Computing optical flow from an overconstrained system of linear equations. In Proceedings of ICCV (Osaka, Dec.), 22 26.
[34]
CARPENTIERi, B. AND STORER, J.A. 1992. A splitmerge parallel block-matching algorithm for video displacement estimation. In Data Comprcssion Conference (Snowbird, UT, March), 239-248.
[35]
CmN, T. M., KARL, W., AND WiLLSKY, A. 1994. Probabihstic and sequential computation of optical flow using temporal coherence. IEEE Trans. Image Process. 773 788.
[36]
CHU, C. H. AND DELP, E. J. 1989. Estimating displacement vectors from an image sequence. J. Opt. Soc. Am. A 6, 6, 871-878
[37]
CORNELWS, N. AND KANADE, T. 1983. Adapting optical flow to measure object motion in reflectance and x-ray image sequences. In Procee&ngs of ACM S~ggroph/Szgart Inter&scplinary Workshop on Motion (Toronto, April), ACM, New York, 50-58.
[38]
CORNILLEAU-PERES, Y. AND DROULEZ, J. 1990. Stereo correspondence from optical flow. In Proceedings of ECCV (Antibes, France, April), 326 330.
[39]
DARRELL, T. AND PENTLAND, A. 1991. Robust estimation of a multi-layered motion representation. In IEEE Proceedings of Workshop on Vzsual Motion (Princeton, NJ, Oct.), 173-178.
[40]
DUBOIS, E. 1985. The sampling and reconstruction of time-varying imagery with application in video systems. Proc. IEEE 73, 4. 502 522.
[41]
DUNCAN, J. H. AND CHOU, T. 1992. On the detectmn of motion and the computation of optical flow. IEEE PAMI 14, 3, 346 352.
[42]
DUTTA, R., MANMATHA, R., WILLIAMS, L., AND RISEMAN, E.M. 1989. A data set for quantitative motion analysis. In IEEE Proceedings of CVPR (San Diego, CA, June), 159 164.
[43]
ENKELMANN, W. 1990. Obstacle detection by evaluation of optical flow fields fi'om image sequences. In Proceedings of ECCV (Antibes, France, April). 134-138.
[44]
ENKELMANN, W. 1986. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. In IEEE Proceedmgs of Workshop on Motmn: Representation and Analysis (Charleston, SC, May), 81 87.
[45]
FERMIN, I. ANn IMIYA, A. 1994. Two-dimensional motion computation by randomized method. Tech. Rep. TR ICS-4-6-1994, Dept of Information and Computer Sciences, Chiba University, Japan.
[46]
FLEET, D.J. 1992. Measurement of Image Veloc- Ity. Kluwer Academic Publishers, Norwell, MA.
[47]
FLEET, D. J. AND JEPSON, A.D. 1990. Computation of component image velocity from local phase information. Int. J. Comput. Vision 5, 1, 77-104.
[48]
FLEET, D. J. AND LANGLEY, K. 1995a. Computational analysis of non-Fourier motion Vision Res. 34, 22, 3057 3079.
[49]
FLEET, D. J. AND LANGLEY, K. 1995b. Recursive filters for optical flow. IEEE PAMI 17, 1.
[50]
GEMAN, S. AND GEMAN, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE PAMI 6, 6 (Nov.), 721 741.
[51]
GIACttETTI, A., CAMPANI, M., AND TORRE, V. 1994. The use of optical flow for autonomous navigation. In Proceedings of ECCV (Stockholm, May), 146-151.
[52]
GLAZER, F.C. 1987a. Computation of optical flow by multilevel relaxation. Tech. Rep. COINS- TR-87-64, University of Massachusetts.
[53]
GLAZER, F. C. 1987b. Hierarchical gradientbased motion detection. In DARPA Proceedings of Image Understanding Workshop (Los Angeles, CA, Feb.). 733 748.
[54]
GONG, S. AND BRADY, M. 1990. Parallel computation of optic flow. In Proceedings ofECCV (Antibes, France, April), 124-133.
[55]
GRZYWACZ, N M. AND YmLLE, A.L. 1990 A model for the estimate of local velocity by cells in the visual cortex. Proc. Royal Soczety London, B 239, 129 161.
[56]
GUPTA, N., RAC~HAVAN, S., AND KANAL, L. 1993. Robust recovery of image motion. In Proceedrags of Asza Conference on Computer Vzs~on (Osaka, Japan, Nov.).
[57]
HADDADI, N. AND KUO, C.-C. J. 1992. Computation of dense optical flow with a parametric smoothness model. Tech. Rep. USC-SIPI Report 223, Dept. of Electrical Engineering Systems, University of Southern Californm, 1992.
[58]
HAGLUND, L. 1992. Adaptive multidimensional filtering. University of Linkoping, Dept. of Electrical Engineering, Ph.D. Thesis
[59]
HANIISCEIACK, P. AND KLETTE, R. 1995. Evaluation of differential methods for image velocity measurement. Comput. Art~f Intell (to appear).
[60]
HANNA, K.J. 1991. Direct multi-resolution estimation of ego-motion and structure from motion In IEEE Workshop on ~%ual Motion (Princeton, NJ), 156 162.
[61]
H,~NA, K. J ~m'D OKAMOTO, N.E. 1993 Combining stereo and motion for direct estimation of scene structure In Proceedings of ICCV (Berlin, May), 357 365.
[62]
H4RALICK, R. M AND LEE, J. S 1982 The facet approach to optic flow In DARPA Proceedings o/Image Understanding Workshop, (Pale Alto, CA, Sept.). 84-93.
[63]
HAY, J.C. 1966 Optical motions and space perception: An extension of Gibson's analysis Psychological Rev 7,3, 6, 550-565.
[64]
HEEGER, D J. 1988. Optmal flow using spatiotemporal filters. Int. d Comput. Vzamn 1, 279 302.
[65]
HEEGER, D J. AND JEPSON, A. D 1992. Subspace methods for recovering rigad matron 2: Algorithm and implementation lnt. J Comput. V~- szon 7, 2, 95 117.
[66]
HEEL, J. 1990 Direct estimation of structure and motion f~:om multiple frames. Tech Rep. 1190, MIT AI Meno, MIT, Cambridge, MA
[67]
HILDRETH, E C 1984 The computatmn of the velomty field. Prec. Royal SoczeO' of London, B 221, 189 220.
[68]
HORN, B. K P 1987 Motion fields are hardly ever ambiguous Int. J. Comput V~smn J, 259-274.
[69]
HORN, B K. P. AND SCt~UNCK, B. G 1981. Determining optmal flow Artzf. Intell. 17, 185-204
[70]
HORN, B. K. P. ANn WELDON, E.J. 1987. Computat(anally efficient methods for recovering translational motion. In Proceedings of ICCV (London,June), 2 11
[71]
IRANL M, Rousso, B, AND PELEG, S. 1994. Computing occluding and transparent matrons Int J Comput Vzszon 12, 1, 5-16
[72]
IRANI, M., Rousso, B, AND PELEG, S. 1994. Recovery of egomotion using image stabilization. In CVPR (Seattle, WA, June), 454 460.
[73]
JAHNE, B. 1990. Motion determinatmn in spacetime images. In Proceedings ofECCV (Antibes, France, June), 161 173
[74]
JAIN, R. C 1984 Segmentatmn of frame sequences obtained by a moving observer IEEE PAMI 6, 5, 624 629.
[75]
JAIN, R.C. 1983. Direct computation of the focus of expansion IEEE PAMI 5, 1, 58-63.
[76]
JENKIN, M. R M, JEPSON, A. D, AND TSeTSeS, J K. 1991. Techniques for disparity measurement CVGIP 53, 1, 14-30.
[77]
JEPSON, A. D. AND BLACK, M. 1993. Mixture models for optical flow computation. In IEEE Proceedmgs of CVPR (New York, June), 760 761.
[78]
KALIVAS, D S AND SAWCHUK, A.A. 1991 A reguon matching motion estimation algorithm. CVGIP, 54, 2, 275 288
[79]
KEARNEY, J. K., THOMPSON, W. B., .~ND BOLEY, D L. 1987 Optmal flow estmmtmn: An error analysn~ of gradient-based methods with local optimization. IEEE PAMI 9, 2, 229 244
[80]
KIRC~NER, H AN~ NmMANN, H. 1992 Finite element method fbr determination of optical flow. Pattern Recogn. 13, 2, 131 141
[81]
Kocm C., WANG, H. T., BATTm, R, MATmT~, B., AND ZIOMKOWSKI, C. 1991. An adaptive multiscale approach for estimating optical flow Computatmnal theory and physiological implementation. In IEEE Proceedings of Workshop ov Vzsua{ Motion (Princeton, NJ, Oct.), 111 122
[82]
Koch, C, WANG. H. T., MATHER, B., HsU, A., AND SVAREZ, H. 1989. Computmg optical flow in resistive networks and m the primate wsual system. In IEEE Proceedings of Workshop on Vzsual Motion (Irwne, CA, Marcht, 62-72.
[83]
KcRIES, R. AND ZIMMERMAN, G 1986 A versatfie method for the estimation of displacement vector fields from image sequences In IEEE Proceedzngs of Workshop on Motzon Representation and Analysis (Charleston, SC, May), 101 1(16
[84]
LANGLEY, K., ATHERTON, T. J., ~VILSON, R. G., AND LACOIVmE, M. H.E. 1991. Vertical and homzontal disparities from phase. Image Vzswn Comput 9, 4, 296-302.
[85]
LIN, T. AND BARriON, J. L. 1994 Image reconstruction error for optma} flow. In Vision Inter- /ace (Banff National Park, Alberta, May), 713 80.
[86]
LIPTAY, A, BARREN, J. L, JEWETT, T., AND VAN WESENBEECK, l. 1995. Optic flow as an ultra-sensitive technique for measurmg seedling growth in long image sequences. J Am Sac. Hart. Scl. 120, 3, 379-385
[87]
LITTLE, J J. 1992. Accurate early detection of dmcontinmtms. In Vision Interface (Vancouver, B.C, Dec k 2-7
[88]
LITTLE, J J, BUTLHOFF, H H, AND PoC;GrO, T. 1988 Parallel optical flow using local voting In Proceedings of ICCV (Tampa, FL, Dec.), 454-459.
[89]
Lru, H., HERMAN, M, HANG, T.-H., AND CHELLAPPA, R. 1993. A reliable optmal flow algorithm using 3-d Hermite polynommls. Tech. Rep. NIST-IR-5333, National Institute of Standards and Technolog%
[90]
LONGUET-HIGGINS, H. C 1984 The visual ambigmty oi a mowng plane Proc Royal Soczet, y of London, B 223, 165 174.
[91]
LONGUET-HIG~;INS, H C 1981 A computer algorithm for reconstructing a scene from two projections Nature, 223, 133 135
[92]
LONC, UET-HIOGINS, H. C. AND PRAZDNY, K. 1980. The interpretation of a moving retinal nnage. Prec. Royal Socze(~ of London, B 208,385-397.
[93]
Lucns, B. D 1984 Generalized ~mage matching by the method of differences. Carnegie-Mellon Umv, Ph.D. Thesis.
[94]
LUCAS, B. D. AND KANADE, T. 1981. An iterative image-regSstration technique with an application to stereo vision. In Proceedings of IJCAI (Vancouver, B.C., Aug ), 674-679
[95]
LUETTGEN, M. R., KARL, W. C., AND WILLSKY, A. S. 1994. Efficient multiscale reg~llarization with applications to the computation of optical flow. IEEE Trans. Image Process. 3, 1 (Jan.), 41-64.
[96]
MARKANDEY, V AND FLINCHBAUGH, B. E. 1990. Multispectral constraints for optical flow computation. In Procee&ngs of ICCV (Osaka, Japan, Dec.), 38-41.
[97]
MARR, D. AND HILDRETH, E. C. 1980. Theory of edge detection. Proc. Royal Society Londolz, B 290, 187 212.
[98]
DE MICHELI, E., TORRE, V., AND URAS, S. 1993. The accuracy of the computation of optical flow and of the recovery of motion parameters. IEEE PAMI 15, 5, 434-447.
[99]
MITICHE, A., WAN, Y. F., AND AGGARWAL, J. K. 1987. Experiments in computing optical flow with the gradient-based, multiconstraint method. Pattern Recogn. 20, 2, 173 179.
[100]
MOUNTS, F. W. 1969. A video encoding system using conditional picture-element replenishment. Bell Syst. Tech. J. 48, 2545-2554.
[101]
MUKAWA, N. 1990. Estimation of shape, reflection coefficients and illuminant direction from image sequences. In Proceedzngs of ICCV (Osaka, Japan, Dec.), 507-512.
[102]
MURRAY, D. W. AND BUXTON, B. F. 1987. Scene segmentation from visual motion using global optimization. IEEE PAMI 9, 2, 220-228.
[103]
MURRAY, U. W. AND BUXTON, B.F. 1984. Reconstructing the optic flow from edge motion: An examinatloh of two different approaches. First IEEE Conference on AI Apphcations (Denver, CO, 1984), 382 388.
[104]
MUSMANN, H. G., PIRSCH, P., AND GRALLERT, H. J. 1985 Advances in picture coding. Proc. IEEE, 73, 4, 523-548.
[105]
NAGEL, H.-H. 1990. Extending the 'oriented smoothness constraint' into the temporal domain and the estimation of derivatives of optic flow. In Proceedings ofECCV (Antibes, France, April), 139-148.
[106]
NAGEL, H.-H. 1989. On a constraint equation for the estimation of displacement rates in image sequences. IEEE PAMI 11, 1, 13-30.
[107]
NAGEL, H.-H. 1987. On the estimation of optical flow: Relations between different approaches and some new results. Artif. Intell. 33, 299-324.
[108]
NAGEL, H.-H. 1983a. Constraints for the estimation of vector fields from image sequences. In Proceedzngs IJCAI, (Karlsruhe, Germany, Aug.). 945-951.
[109]
NAaEL, H.-H. 1983b. Displacement vectors derived from second-order intensity variations in image sequences. CVGIP, 21, 85-117.
[110]
NAGEL, H.-H. AND ENKELMANN, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE PAMI 8, 5, 565-593.
[111]
NEGAHDARIPOUR, S. AND HORN, B. K.P. 1987. Direct passive navigation. IEEE PAMI 9, l, 168-176.
[112]
NEGAHDARIPOUR, S. AND LEE, S. 1992. Motion recovery from image sequences using only first order optical flow information. Int. J. Comput. Vision 9, 3, 163-184.
[113]
NEGAHDARIPOUR, S. AND YU, C.H. 1993. A generalized brightness change model for computing optical flow. In Proceedings ICCV (Berlin, May), 2-11.
[114]
NETRAVALI, A. N AND ROBBINS, J.D. 1979. Motion compensated television coding: Part 1. Bell Syst. Tech. J 58, 631 670.
[115]
OGATA, M. AND SATO, T. 1992. Motmn-detection model with two stages: Spatiotemporal filtering and feature matching. J. Opt. Soc. Am. A 9, 3, 377 387.
[116]
OKUTOMI, M. AND KANADE, T 1990. A locally adaptive window for signal matching'. In ProeeedD~gs of ICCV (Osaka, Japan, Dec.), 190 199
[117]
OVERiNGTON, I 1987 Gradient-based flow segmentation and location of the focus of expansion. In Alvey V~sion Conference (Cambridge Univ., Sept.), 860-870.
[118]
PERRONE, J.A. 1990. Simple techmque for optical flow estimation. J. Opt. Soe. Am. A 7 2, 264 277.
[119]
POGGIO, T., GAMBLE, E., AND LITTLE, J. 1988. Parallel integration of vision modules. Science 242, 436-440.
[120]
PRAZDN~, K. 1985. Detection of binocular disparities. Biol. Cyber,. 52, 93 99
[121]
PP~ZDNY, K. 1979. Motion and structure from optical flow. In Proceedings of IJCAI (Tokyo, Aug.), 702-704.
[122]
PRINCE, J. L. AND MCVEIGH, E.R. 1992. Motion estimation from tagged mr image sequences. IEEE Trans. Medical Images 11, 2,238 249
[123]
REGAN, D. AND BEVERLEY, K.I. 1982. How do we avoid confounding the direction we are looking and the direction we are moving. Science 215, 194 196.
[124]
REICHARDT, W., SCHLOGL, R. W., AND EGELHOAF, M. 1988. Movement detectors of the correlation type provide sufficient information for local computation of 2d velocity fields. Naturwissenschaften 75, 313-315.
[125]
RO~NONE, A., CAMPANI, M., AND VERm, A. 1992. Identifying multiple motions from optical flow. In Proceedings of ECCV (Santa Margherita Ligure, Italy, May), 258 266.
[126]
SCHNORR, C. 1992. Computatmn of discontinuous optical flow by domain decomposition. IEEE PAMI 8, 2, 153-165.
[127]
SCHNORR, C. 1991 Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class Int. d Conzput. Vision 6, 1, 25 38.
[128]
SCHUNCK, B. G 1989 Image flow segmentation and estimation by constraint line clustermg. IEEE PAMI 11, 10, 1010 1027
[129]
SCHUNOK, B.G. 1985. Image flow Fundamentals and future research. In IEEE Proceedings of CVPR, (San Francmco, June), 560 571
[130]
SCOTT, G. L. 1987. Four-line method of locally estimating optic flow Image Vzsmn Comput. 5, 2, 67-72
[131]
SHfZAWA, M. AND MASE, K 1991 Principle of superposltion: A common computational framework for analysis of multiple motion In IEEE Proceedmgs of Workshop on Visual Motion IPrinceton, NJ., Oct.), 164 172.
[132]
SiMONCELLI, E P., ADELSON, E. H., AND HEEGER, D. J 1991 Probability distributions of optical flow. In IEEE Proceedings of CVPR (Los Alamitos, CA, June), 310 315
[133]
SINGII, A. 1992. Optm flow computation. A urnfled perspectme IEEE Computer Society Press, Los Alamitos, CA.
[134]
SIN~;H, A. 1991 Incremental estimation of image flow using a Kalman filter In IEEE Proceedrags of Workshop on Visual Motion iPrinceton, NJ, Oct.), 36 43.
[135]
SINGH, A. 1990. An estimation-theoretic fkamework Ibr image flow computation. In Proceedrags oflCCV (Osaka, Dec.), 168-177.
[136]
SOBEY, P AND SmNIVASAN, M.V. 1991. Measurement of optical flow by a generalized gradient scheme. J Opt. Soc. Am. A 8, 9, 1488-1498
[137]
SPACEK, L.A. 1986 Edge detection and motion detection, image Vlsmn Comput. 4, 1, 43-56.
[138]
SPETSAKIS, M. E. 1994. An optical flow estimation algorithm that uses Gabor filters and affine model for flow. Tech. Rep., Dept of Computer Science, York University.
[139]
SRINIVASAN, M. V. 1990. Generalized gra&ent schemes for the measurement of two-dimensional image motion. B~ol. Cybern. 6'3,421 431.
[140]
SUBBARAO~ M. 1990. Bounds on time-to-collision and rotational component from first-order derivatives of image flow CVGIP 50, 329-341
[141]
SUBBARAO, M. AND WAXMAN, A.M. 1985 On the umqueness of image flow solutions for planar surfaces in motion. In Third Workshop on Computer Vision: Representation and Control (Bellaire, MI, Oct ), 129-140.
[142]
SUNDaRESWARaN, V. 1992. A fast method to estimate sensor translation. In Proceedmgs of ECCV (Santa Margherita Ligura, Italy, May), 257 263.
[143]
SUTTON, M. A, WALTERS, W. J., PETERS, W H., RANSON, W F., AND McNEIL, S R. 1983. Determination of disp}acement using an improved digital correlatmn method. Image Vzsmn Cornput 1, 3, 133-139.
[144]
TaOMPSON, W B, MUTCH, K M., .~ND BERZINS, V. A. 1985 Dynaniic occlusion analysis in optical flow fields IEEE PAMI 7, 4, 374 383.
[145]
THOMPSON, W B AND PONG, T. 1990. Detecting moving objects Int d. Comput. Vision 4, 1, 39 57.
[146]
TISTARELLL M. AND SANDINI, G. 1990. Estimatmn of' depth i~om motmn using anthropomorphic visual sensor. Image Vzsmn Comput 8, 271 278.
[147]
TRETIAK, O. AND PASTOR, L 1984. Velocity estimatron from image sequences with second-order differential operators. In IEEE Proceedings of ICPR IMontreal, Quebec, July Oct.). 20-22.
[148]
Ts^i, R. Y. m'4a HUANG, T. S. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE PAMI 6, 1, 13 27.
[149]
TSAI, R. Y., HUANG, T. S., aND ZHU, W 1982. Eshmating three-dimensional motion parameters of a rigid planar patch 2. Singular value decomposition. IEEE Trans. Acoustics, Speech Signal Process 30, 4, 525-534.
[150]
ULLMAN, S. 1979. The Interpretatmn of Visual Motion MIT Press, Cambridge, MA.
[151]
URAS, S, Gmosh F, VERRh A., AND TORRE, V 1988 A computational approach to motion perception Biol Cybern 60, 79 87.
[152]
WANG, J. Y. A AND ADELSON, E H. 1994. Representing moving images with layers IEEE Trans. Image Process 3, 5, 625-638.
[153]
WATSON, A B ANn AHUMADA, A. J JR. 1985 Model of human visual motion sensing- J. Opt Soc. Am. A 2, 2, 322-341.
[154]
WAXMAN, A. M. AND WOHN, a. 1985 Contour evolution, nmghborhood deformation, and global image flow: planar surfaces in motion Int. J. Robotms Res. 4, 3, 95-108.
[155]
WAXMAN, A M., Wu, J, ANn BERGHOLM, F. 1988 Convected activation profiles and the measurement of visual motmn. In IEEE Proceedings of CVPR (Ann Arbor, MI, June), 717 723.
[156]
WEBER, J. AND MALIK, J. 1993. Robust computation of optical flow m a multi-scale differentml framework In Proceedmgs of ICCV (Berlin, May), 12-20.
[157]
WENG, J 1990 A theory of image matching. In Proceedings of ICCV (Osaka, Dec.), 200-209.
[158]
WmTTEN, G 1990. A framework for adaptive scale space tracking solutions to prob}ems in computer vision. In Proceedings of ICCV /Osaka, Dec.), 210-220
[159]
WILLICK, D. AND YANG, Y. 1989. Experimental evaluation of motion constraint equatmns. Tech. Rep. 89-4, Dept. of Computational Science, Univ. of Saskatchewan.
[160]
WoomtmxL R.J. 1990. Multiple light source optical flow. In Proceedings oflCCV (Osaka, Dec.), 42 46.
[161]
X~ON% Y. AND SHAFER, S.A. 1994. Moment and hypergeometric filters for high precision computation of focus, stereo and optical flow. Tech. Rep CMU-RI-TR-94-28. Dept. of Computer Science, Carnegie-Mellon Univ.
[162]
ZHANG, Z. AND FAUGERAS~ O.D. 1992. Three-dimensional motion computation and object segmentation in a long sequence in stereo frames. Int. d. Comput. Vzslon 7, 3.
[163]
ZHENC~, H. AND BLOSTEIN, S.D. 1993. An errorweighted regularization algorithm for image motion-field estimation. IEEE Trans. Image Process. 2, 2, 246 252.
[164]
ZHENG, Q. AND CHELLAPPA, R. 1993. Automatm feature point extraction and tracking in image sequences for unknown image motion. In Proceedmgs oflCCV (Berlin, May), 335-339.
[165]
ZINNER, H. 1986. Determining the kinematic parameters of a moving imaging sensor by processing spatial and temporal intensity changes. J. Opt. Soc. Am. A 3, 9, 1512-1517.
[166]
ZOLTOWSKt, M.D. 1987 Signal processing applications of the method of total least squares. In IEEE 21st Annual Aszlomar Conference on Signals, Systems, and Computers (Pacific Grove, CA, Nov.), 290 296.

Cited By

View all
  • (2025)iKalibr-RGBD: Partially-Specialized Target-Free Visual-Inertial Spatiotemporal Calibration for RGBDs via Continuous-Time Velocity EstimationIEEE Robotics and Automation Letters10.1109/LRA.2024.350431810:1(80-87)Online publication date: Jan-2025
  • (2025) EdgeFlowNet: 100FPS@1W Dense Optical Flow for Tiny Mobile Robots IEEE Robotics and Automation Letters10.1109/LRA.2024.349633610:1(128-135)Online publication date: Jan-2025
  • (2025)Vision-based displacement measurement method of large-scale bridges using tilt shift camera and fast spatio-temporal context learningMechanical Systems and Signal Processing10.1016/j.ymssp.2024.112165224(112165)Online publication date: Feb-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 27, Issue 3
Sept. 1995
166 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/212094
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 1995
Published in CSUR Volume 27, Issue 3

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,649
  • Downloads (Last 6 weeks)210
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)iKalibr-RGBD: Partially-Specialized Target-Free Visual-Inertial Spatiotemporal Calibration for RGBDs via Continuous-Time Velocity EstimationIEEE Robotics and Automation Letters10.1109/LRA.2024.350431810:1(80-87)Online publication date: Jan-2025
  • (2025) EdgeFlowNet: 100FPS@1W Dense Optical Flow for Tiny Mobile Robots IEEE Robotics and Automation Letters10.1109/LRA.2024.349633610:1(128-135)Online publication date: Jan-2025
  • (2025)Vision-based displacement measurement method of large-scale bridges using tilt shift camera and fast spatio-temporal context learningMechanical Systems and Signal Processing10.1016/j.ymssp.2024.112165224(112165)Online publication date: Feb-2025
  • (2025)Deep learning technology for face forgery detection: A surveyNeurocomputing10.1016/j.neucom.2024.129055618(129055)Online publication date: Feb-2025
  • (2025)Interpretable A-posteriori error indication for graph neural network surrogate modelsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117509433(117509)Online publication date: Jan-2025
  • (2024)Video-LaVITProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692962(22185-22209)Online publication date: 21-Jul-2024
  • (2024)Advances in Deep-Learning-based Precipitation Nowcasting TechniquesJournal of Tropical Meteorology10.3724/j.1006-8775.2024.02830:3(337-350)Online publication date: 9-Sep-2024
  • (2024)A Novel Frame-Selection Metric for Video Inpainting to Enhance Urban Feature ExtractionSensors10.3390/s2410303524:10(3035)Online publication date: 10-May-2024
  • (2024)Optical Flow-Based Obstacle Detection for Mid-Air Collision AvoidanceSensors10.3390/s2410301624:10(3016)Online publication date: 9-May-2024
  • (2024)Moving Object Detection in Freely Moving Camera via Global Motion Compensation and Local Spatial Information FusionSensors10.3390/s2409285924:9(2859)Online publication date: 30-Apr-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media