[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Distinguishing groupwise density numbers

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract.

We show that \({\frak g}<{\frak g}_f\) is consistent, where \({\frak g}\) is the groupwise density number and \({\frak g}_f\) is the groupwise density number for ideals. This answers a question of Heike Mildenberger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T Bartoszyński H Judah (1995) Set Theory, On the Structure of the Real Line A K Peters Wellesley

    Google Scholar 

  • J Baumgartner P Dordal (1985) ArticleTitleAdjoining dominating functions J Symbolic Logic 50 94–101 Occurrence Handle0566.03031 Occurrence Handle10.2307/2273792 Occurrence Handle780528

    Article  MATH  MathSciNet  Google Scholar 

  • A Blass (1990) ArticleTitleGroupwise density and related cardinals Arch Math Logic 30 1–11 Occurrence Handle0706.03036 Occurrence Handle10.1007/BF01793782 Occurrence Handle1074445

    Article  MATH  MathSciNet  Google Scholar 

  • Blass A (2007) Combinatorial cardinal characteristics of the continuum. In: Kanamori A et al (eds) Handbook of Set Theory, to appear

  • A Blass H Mildenberger (1999) ArticleTitleOn the cofinality of ultrapowers J Symbolic Logic 64 727–736 Occurrence Handle0930.03060 Occurrence Handle10.2307/2586495 Occurrence Handle1777781

    Article  MATH  MathSciNet  Google Scholar 

  • J Brendle (2006) ArticleTitleVan Douwen’s diagram for dense sets of rationals, Proceedings of the 2004 St. Petersburg Conference on Logic, Algebra and Geometry Ann Pure Appl Logic 143 54–69 Occurrence Handle1102.03047 Occurrence Handle10.1016/j.apal.2005.07.003 Occurrence Handle2258621

    Article  MATH  MathSciNet  Google Scholar 

  • J Brendle (2007) Independence for distributivity numbers B Löwe (Eds) Algebra, Logic, Set Theory. Festschrift für Ulrich Felgner zum 65. Geburtstag SeriesTitleStudies in Logic NumberInSeries4 College Publications London 63–84

    Google Scholar 

  • C Laflamme (1992) ArticleTitleEquivalence of families of functions on the natural numbers Trans Amer Math Soc 330 307–319 Occurrence Handle0759.03025 Occurrence Handle10.2307/2154166 Occurrence Handle1028761

    Article  MATH  MathSciNet  Google Scholar 

  • H Mildenberger (2001) ArticleTitleGroupwise dense families Arch Math Logic 40 93–112 Occurrence Handle0981.03051 Occurrence Handle10.1007/s001530000049 Occurrence Handle1816480

    Article  MATH  MathSciNet  Google Scholar 

  • H Mildenberger (2005) ArticleTitleOn the groupwise density number for filters Acta Univ Carolin Math Phys 46 55–63 Occurrence Handle2194046

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Grant-in-Aid for Scientific Research (C) 17540116, Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendle, J. Distinguishing groupwise density numbers. Mh Math 152, 207–215 (2007). https://doi.org/10.1007/s00605-007-0465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-007-0465-5

Navigation