Detection of the Gene Encoding Resistance to Ampicillin from Staphylococcus aureus Causing Subclinical Mastitis in Dairy Cows at Bandung District

Pranyata T. Waskita (1), Roostita L. Balia (2), I Made Joni (3), Wendry Setyadi P. (4)
(1) Doctoral Program in Biotechnology, Postgraduate School, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(2) Department of Public Health Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(4) Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Waskita, Pranyata T., et al. “Detection of the Gene Encoding Resistance to Ampicillin from Staphylococcus Aureus Causing Subclinical Mastitis in Dairy Cows at Bandung District”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 6, Dec. 2024, pp. 2039-44, doi:10.18517/ijaseit.14.6.20646.
An examination of 48 samples of cow's milk was conducted, taken from three farms in the Districts of Warnasari, Babakan Kiara, and Citawa in Bandung District. This study aimed to determine subclinical mastitis's causes and detect genes encoding bacterial resistance to ampicillin in these farms. Based on isolation and identification, PCR examinations, and phylogenetic tree examinations, the bacteria causing subclinical mastitis were identified as Staphylococcus aureus that genetically belongs to Staphylococcus aureus strains MVF-7 and DMB17 with genetic similarities of 84% and 65%, respectively, and Staphylococcus aureus strains SPH062R, SPH038L, and SPH029L (genetic similarity with the mecA gene of Staphylococcus aureus at 99.6%). Resistance to Staphylococcus aureus can be transmitted from livestock to farmers and the environment. The increase in antimicrobial resistance depends on the sensitivity of the compartments in humans, animals, and the environment. The level of resistance in humans is the most sensitive level when related to the parameters of the human compartment to the environment. Small-scale farmers with small livestock and land area can be a predisposing factor in increasing the spread of bacterial contamination and resistance. To stop resistance and prevent its spread, it is recommended to replace beta-lactam antibiotics such as ampicillin with other antibiotic groups that are still sensitive, such as gentamicin, oxacillin, bacitracin, and cephalosporin. Additionally, it is advised for veterinary health technicians to accurately diagnose diseases, administer correct antibiotic dosages, and select appropriate antibiotic groups that align with the cause of the disease.

R. A. Gheorghe-Irimia, C. Sonea, D. Tapaloaga, M. R. Gurau, L.-I. Ilie, and P.-R. Tapaloaga, “Innovations in Dairy Cattle Management: Enhancing Productivity and Environmental Sustainability,” Annals of “Valahia” University of Târgovişte. Agriculture, vol. 15, no. 2, pp. 18–25, Oct. 2023, doi: 10.2478/agr-2023-0013.

D. S. Yanga and I. F. Jaja, “Culling and mortality of dairy cows: why it happens and how it can be mitigated,” F1000Research, vol. 10, p. 1014, Aug. 2022, doi: 10.12688/f1000research.55519.2.

D. M. N. Nuraini, M. Andityas, P. Sukon, and P. Phuektes, “Prevalence of mastitis in dairy animals in Indonesia: A systematic review and meta-analysis,” Veterinary World, pp. 1380–1389, Jul. 2023, doi: 10.14202/vetworld.2023.1380-1389.

I. A. Amri, D. Qosimah, N. Rickyawan, and A. A. Nurmaningdyah, "Komunikasi Informasi Edukasi Mastitis Pada Peternak Usaha Rakyat," Buletin Udayana Mengabdi, vol. 19 No 2, April. 2020.

N. Namira, A. I. Cahyadi, and S. Windria, “Kajian Pustaka: Komparasi Metode Deteksi Mastitis Subklinis,” Acta Veterinaria Indonesiana, vol. 10, no. 1, pp. 39–50, Mar. 2022, doi: 10.29244/avi.10.1.39-50.

R. Paramasivam et al., “Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis,” Infection and Drug Resistance, vol. Volume 16, pp. 155–178, Jan. 2023, doi:10.2147/idr.s384776.

P. T. Waskita, L. B. Roostita, I M. Joni, S. P. Wendry., “Clinical Symptom Analysis of Characteristic Bacteria Causing Subclinical Mastitis in Dairy Cow at Pengalengan, Bandung Regency”. Journal of Social Research, vol. 3, no. 5, Apr. 2024, doi: 10.55324/josr.v3i5.

W. N. Cheng and S. G. Han, “Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review,” Asian-Australasian Journal of Animal Sciences, vol. 33, no. 11, pp. 1699–1713, Nov. 2020, doi: 10.5713/ajas.20.0156.

S. Windria et al., “Mastitis di Jawa Barat, Indonesia: Etiologi dan Opsi Pencegahan,” Jurnal Sain Veteriner, vol. 40, no. 1, p. 52, Apr. 2022, doi: 10.22146/jsv.41946.

S. Siahaan, M. J. Herman, and N. Fitri, “Antimicrobial Resistance Situation in Indonesia: A Challenge of Multisector and Global Coordination,” Journal of Tropical Medicine, vol. 2022, pp. 1–10, Feb. 2022, doi: 10.1155/2022/2783300.

F. J. Wibisono, B. Sumiarto, T. Untari, M. H. Effendi, D. A. Permatasari, and A. M. Witaningrum, “Pemodelan Epidemiologi Kejadian Multidrug Resistance Bakteri Escherichia coli pada Peternakan Ayam Komersial di Kabupaten Blitar,” Jurnal Sain Veteriner, vol. 39, no. 3, p. 216, Dec. 2021, doi: 10.22146/jsv.52071.

I. Purnamasari, S. Suwarno, and W. Tyasningsih, “Identification of Staphylococcus sp. and Antibiotic Resistance in Tutur District, Pasuruan,” Jurnal Medik Veteriner, vol. 6, no. 1, pp. 93–104, Apr. 2023, doi: 10.20473/jmv.vol6.iss1.2023.93-104.

E. N. Qolbaini et al., “Identification and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus-associated subclinical mastitis isolated from dairy cows in Bogor, Indonesia,” Veterinary World, pp. 1180–1184, May 2021, doi: 10.14202/vetworld.2021.1180-1184.

F. Aziz, F. B. Lestari, I. Soedarmanto, F. Fauziah., “Identification and Characterization Antibiotic Resistance of presumptive Staphylococcus aureus in Subclinical Mastitis Milk from Dairy Cows in Sedyo Mulyo Farm Pakem, Sleman, Yogyakarta”. Jurnal Ilmu Peternakan dan Veteriner Tropis (Journal of Tropical Animal and Veterinary Science), vol. 12, no. 1, Mar. 2022, doi:10.46549/jipvet.v12i1.

E. M. Halawa et al., “Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance,” Frontiers in Pharmacology, vol. 14, Jan. 2024, doi: 10.3389/fphar.2023.1305294.

H. Lade and J.-S. Kim, “Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review,” Antibiotics, vol. 12, no. 9, p. 1362, Aug. 2023, doi: 10.3390/antibiotics12091362.

CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed., CLSI supplement M100. Clinical and Laboratory Standards Institute, 2023.

L. C. Reimer, J. Sardà Carbasse, J. Koblitz, C. Ebeling, A. Podstawka, and J. Overmann, “BacDive in 2022: the knowledge base for standardized bacterial and archaeal data,” Nucleic Acids Research, vol. 50, no. D1, pp. D741–D746, Oct. 2021, doi: 10.1093/nar/gkab961.

A. Shiroma et al., “First Complete Genome Sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 (DSM 20231 T ), Determined by PacBio Single-Molecule Real-Time Technology,” Genome Announcements, vol. 3, no. 4, Aug. 2015, doi:10.1128/genomea.00800-15.

C. L. Schoch et al., “NCBI Taxonomy: a comprehensive update on curation, resources and tools,” Database, vol. 2020, Jan. 2020, doi:10.1093/database/baaa062.

B. Bounless, Microbiology, LibreTexts™, Open Education Resource (OER), LibreTexts Project, Department of Education Open Textbook Pilot Project, UC Davis Office of the Provost, UC Davis Library, and California State University, 2024. [Online]. Available: https://LibreTexts.org.

S. S. Adeiza, J. Ademola Onaolapo, and B. Olalekan Olayinka, “Nasal Colonization as a Risk Factor for Staphylococcal Infection: A Systematic Review and Meta-Analysis,” SSRN Electronic Journal, 2018, doi: 10.2139/ssrn.3684167.

M. S. Gaddafi et al., “Nasal Colonization of Pigs and Farm attendants by Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) in Kebbi, Northwestern Nigeria,” The Thai Journal of Veterinary Medicine, vol. 51, no. 1, pp. 119–124, Mar. 2021, doi:10.56808/2985-1130.3100.

H. C. Lepper, M. E. J. Woolhouse, and B. A. D. van Bunnik, “The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study,” Antibiotics, vol. 11, no. 10, p. 1361, Oct. 2022, doi: 10.3390/antibiotics11101361.

A. Goryluk-Salmonowicz and M. Popowska, “Factors promoting and limiting antimicrobial resistance in the environment – Existing knowledge gaps,” Frontiers in Microbiology, vol. 13, Sep. 2022, doi:10.3389/fmicb.2022.992268.

D. Mandal, “Review on Various Antibiotic Contamination in Natural Sources: Effects on Environment Including Animals and Humans,” Oriental Journal of Chemistry, vol. 40, no. 2, pp. 342–354, Apr. 2024, doi: 10.13005/ojc/400204.

M. S. Markham, A. Firman, and H. Hermawan, “Karakteristik Kewirausahaan Peternak Sapi Perah dan Korelasinya dengan Keberlanjutan Usaha Saat Outbreak PMK (Suatu Kasus di KPBS Pangalengan Kabupaten Bandung),” Mimbar Agribisnis : Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, vol. 10, no. 1, p. 1326, Jan. 2024, doi: 10.25157/ma.v10i1.13104.

S. Bassetti, S. Tschudin-Sutter, A. Egli, and M. Osthoff, “Optimizing antibiotic therapies to reduce the risk of bacterial resistance,” European Journal of Internal Medicine, vol. 99, pp. 7–12, May 2022, doi: 10.1016/j.ejim.2022.01.029.

F. Jiao et al., “Unraveling the mechanism of ceftaroline-induced allosteric regulation in penicillin-binding protein 2a: insights for novel antibiotic development against methicillin-resistant Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 67, no. 12, Dec. 2023, doi: 10.1128/aac.00895-23.

S. Modi et al., “Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics,” Antibiotics, vol. 11, no. 6, p. 708, May 2022, doi: 10.3390/antibiotics11060708.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).