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Abstract—In this paper, we study the cooperative Wi-Fi de-
ployment problem, where the mobile network operator (MNO)
cooperates with some venue owners (VOs) to deploy public Wi-Fi
networks. The MNO negotiates with the VOs to determine where
to deploy Wi-Fi and how much to pay. The MNO’s objective
is to maximize its payoff, which depends on the payments to
VOs, the benefits due to data offloading and mobile advertising,
and the costs due to deploying and operating Wi-Fi. We analyze
the interactions among the MNO and VOs under the one-to-
many bargaining framework, where the MNO bargains with VOs
sequentially, taking into account the externalities among different
steps of bargaining. We apply the Nash bargaining theory to
analyze the cases with exogenous and endogenous bargaining
sequences. For the former case, the bargaining sequence is
predetermined, and we apply backward induction to compute the
optimal bargaining solution related to the cooperation decisions
and payments. For the latter case, the MNO can decide the
bargaining sequence to maximize its payoff. We explore the
structural property of the one-to-many bargaining, and design
an Optimal VO Bargaining Sequencing (OVBS) algorithm that
computes the optimal bargaining sequence. More precisely, we
categorize VOs into three types based on the impact of the Wi-
Fi deployment at their venues, and show that it is optimal for
the MNO to bargain with these three types of VOs sequentially.
Numerical results show that the optimal bargaining sequence im-
proves the MNO’s payoff over the random and worst bargaining
sequences by up to 14.7% and 45.8%, respectively.

I. INTRODUCTION

A. Motivation

The global cellular network has witnessed an explosive

growth of mobile data traffic, hence mobile network operators
(MNOs) are seeking innovative approaches to reduce network

congestion and improve users’ experience. With the recent

technology developments and standardization efforts (e.g.,
Hotspot 2.0 and ANDSF), Wi-Fi data offloading has emerged

as an important approach to alleviate cellular congestion. A

recent study [1] showed that Wi-Fi has offloaded 65% of total

mobile traffic in the major cities in Korea. The annual global

Wi-Fi deployment rate is expected to increase to 10.5 million

in 2018 [2].

Instead of building their own Wi-Fi hotspots, many MNOs

have been collaborating with venue owners (VOs), which are

the owners of public places such as shopping malls and stadi-

ums, on hotspot installment [2]. Since a large volume of cellu-

lar data traffic is generated from these crowded public places,
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MNOs are especially interested in deploying hotspots at these

venues to relieve the traffic congestion. With the location

information provided by Wi-Fi hotspots, MNOs can also earn

profits by delivering context-aware mobile advertisements to

mobile users1. Meanwhile, VOs also welcome the MNOs’ help

in building the carrier-grade Wi-Fi, which usually provides a

higher capacity and better integration with the cellular network

than a regular Wi-Fi [3], hence significantly enhances the

mobile users’ experience and attracts more visitors to those

Wi-Fi available venues. Moreover, the carrier-grade Wi-Fi can

help both MNOs and VOs collect visitor analytics, provide

location-based service, and promote products or activities [2],

[3]. Therefore, both MNOs and VOs benefit from the Wi-

Fi deployment and have incentives to provide Wi-Fi service

cooperatively. An existing example is the cooperative deploy-

ment by AT&T (as the MNO) and Starbucks (as the VO)

in the U.S. [4]. Although such cooperation is increasingly

popular, the detailed economic interactions among MNOs and

VOs still have not been sufficiently explored and understood

by the existing literatures. This motivates us to extensively

analyze both MNOs and VOs’ strategies in the cooperative

Wi-Fi deployment in this paper.

B. Our Work

We consider a case where both MNOs and VOs have consid-

erable market power, in which case we study the cooperative

Wi-Fi deployment problem under the one-to-many bargaining

framework2. Specifically, a monopoly MNO bargains with

multiple VOs in sequence3, i.e., at each step the MNO bargains

with only one VO for deploying Wi-Fi at the corresponding

venue. We analyze the bargaining solution of each step,

including the cooperation decision and payment, by using the

1Although the MNO can also deliver advertisements through the cellular
network, users are much more receptive to advertising through Wi-Fi due to
their voluntary use of Wi-Fi [3]. Furthermore, Wi-Fi usually provides more
accurate user localization, and is more suitable for supporting multimedia
advertisement due to the high data rate.

2The case where different sides have unbalanced market power can be
studied in the same framework as in this paper, using the asymmetric Nash
bargaining formulation [5].

3More precisely, the one-to-many bargaining contains several types. The
most common type is the one-to-many bargaining with a sequential bargaining
protocol. Another type is the one-to-many bargaining with a concurrent bar-
gaining protocol, where the buyer bargains with multiple sellers concurrently
[6]. In practice, conducting the concurrent bargaining is much more difficult
than the sequential bargaining, as it requires the evaluation of simultaneous
responses of all bargainers. In this paper, we focus on the sequential bargaining
protocol in the one-to-many bargaining.
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Nash bargaining theory [7]. Since the MNO’s willingness to

deploy new hotspots decreases as the number of deployed

hotspots increases, the cooperation between the MNO and a

particular VO imposes negative externality to the bargaining

among the MNO and other VOs. Such an externality signifi-

cantly complicates the analysis. There are very few literatures

studying the one-to-many bargaining, especially under the

Nash bargaining theory. Our work provides a systematic study

on this problem.
In the first part of this paper, we study the scenario where

the MNO bargains with VOs sequentially according to a

predetermined bargaining sequence (i.e., exogenous bargaining

sequence). We take into account the data offloading benefit,
Wi-Fi operation cost, advertising profit, and business revenue
of the MNO and VOs, and answer the following questions: (1)

Which VOs should the MNO cooperate with? (2) How much
should the MNO pay these VOs? We apply backward induction

to compute the optimal bargaining solution.
In the second part of this paper, we study the scenario

where the MNO first determines the bargaining sequence (i.e.,
endogenous bargaining sequence) and then bargains with VOs

accordingly. We want to answer the following key question:

Under what bargaining sequence can the MNO maximize its
payoff? Based on the analysis in the first part, we can compute

the MNO’s payoff once given a particular bargaining sequence.

However, due to the complex structure of the one-to-many

bargaining, we often cannot obtain the closed-form solution

of such a payoff. Therefore, it is very complicated to directly

compare the MNO’s payoffs under all possible bargaining

sequences and pick the optimal one.
To tackle the high complexity of the optimal sequencing

problem, we first prove an important structural property of the

one-to-many bargaining. More precisely, we categorize VOs

into three types based on the impact of the Wi-Fi deployment

at their venues. We can show that there exists a group of

optimal bargaining sequences, under which the MNO bargains

with these three types of VOs sequentially. As a result,

we design an Optimal VO Bargaining Sequencing (OVBS)

algorithm that searches for the optimal bargaining sequence

from a significantly reduced set. In fact, the structural property

we prove in this paper is general, and is valid for many other

one-to-many bargaining problems. We further characterize two

special system settings, where we can explicitly determine the

optimal sequence without running OVBS.
The main contributions of this paper are as follows:

• Systematic study of the one-to-many bargaining: To the

best of our knowledge, this is the first paper studying the

one-to-many bargaining with both exogenous and endoge-
nous bargaining sequences under the Nash bargaining

theory. Most results in this paper are general enough to

be applied in other one-to-many bargaining problems.

• Algorithm design of the optimal bargaining sequence
search: We first highlight the fact that the bargaining

sequence may significantly affect the solution to the one-

to-many bargaining. Then we prove an important struc-

tural property for the one-to-many bargaining, and design

a low-complexity Optimal VO Bargaining Sequencing
(OVBS) algorithm to compute the optimal sequence.

• Modeling and analysis of the cooperative Wi-Fi deploy-
ment: To the best of our knowledge, this is the first paper

studying the economic interactions among MNOs and

VOs in terms of the cooperative Wi-Fi deployment. We

consider the negative externalities among different steps

of negotiation, and investigate the optimal sequencing

strategy for the MNO. Numerical results show that the

optimal bargaining sequence improves the MNO’s payoff

over the random and worst bargaining sequences by up

to 14.7% and 45.8%, respectively.

C. Literature Review

There are a few literatures studying the public Wi-Fi deploy-

ment problem. Zheng et al. in [8] proposed Wi-Fi deployment

algorithms which provide the worst-case guarantee to the

interconnection gap for vehicular Internet access. Wang et al.
in [9] exploited users’ mobility patterns to deploy Wi-Fi access

points, aiming at maximizing the continuous Wi-Fi coverage

for mobile users. However, none of these works studied the

economic issues in the Wi-Fi deployment.

In terms of the one-to-many bargaining, the most relevant

works are [6], [10]. Both papers studied the one-to-many

bargaining under the Nash bargaining theory. However, since

they did not consider the cooperation cost, their conclusion

was that the bargaining sequence does not affect the buyer’s

payoff, and their analysis was limited to the one-to-many

bargaining with exogenous sequence. In our work, we take

into account the cooperation cost (e.g., Wi-Fi installment and

operation cost), which complicates the one-to-many bargaining

with exogenous sequence. Such consideration also motivates

us to study the one-to-many bargaining with endogenous
sequence. References [11]–[13] studied the one-to-many bar-

gaining under the strategic game theory. In their problems,

the buyer bargains with multiple sellers on a joint project that

requires the cooperation of all participants. It is different from

our problem, as here the MNO may only cooperate with a

subset of the VOs on the Wi-Fi deployment.

II. SYSTEM MODEL

A. Basic Settings

We consider one mobile network operator (MNO), who

operates multiple macrocells and bargains with venue owners

(VOs) to deploy Wi-Fi access points. We assume each venue

(such as a cafe) is covered by at most one cellular macrocell.

Since deploying Wi-Fi at a particular venue only offloads traf-

fic for the corresponding macrocell and does not benefit other

macrocells, the MNO can consider the Wi-Fi deployments for

different macrocells separately. Without loss of generality, we

study the MNO’s strategy within one macrocell.

We consider a set N � {1, 2, . . . , N} of VOs, whose venues

are non-overlapping but covered by the same macrocell. Each

VO n ∈ N is described by a tuple (Xn, Rn, Cn, An). Specif-

ically, (1) Xn ≥ 0 denotes the expected amount of offloaded
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macrocell traffic when Wi-Fi is deployed at venue n4; (2)

Rn ≥ 0 denotes the extra revenue that Wi-Fi creates for VO

n’s business (e.g., via attracting more customers and collecting

customer analytics); (3) Cn ≥ 0 denotes the total cost for

the MNO to deploy and operate Wi-Fi at venue n, including

the installment fee, management cost, and backhaul cost5; (4)

An ≥ 0 denotes the advertising profit to the MNO6 when Wi-

Fi is deployed at venue n. We assume that both the MNO and

VO n have the complete information of (Xn, Rn, Cn, An)
7.

B. MNO’s Payoff, VO’s Payoff and Social Welfare
We use bn ∈ {0, 1} to denote the bargaining outcome

between the MNO and VO n: bn = 1 if they agree on the

Wi-Fi deployment, and bn = 0 otherwise. We use pn ∈ R

to denote the MNO’s payment8 to VO n. Later we will see,

under the Nash bargaining solution, pn = 0 whenever bn = 0,

i.e., there is no transfer if no agreement is reached.
To simplify the notations, we define bn � (b1, b2, . . . , bn)

and pn � (p1, p2, . . . , pn) as the bargaining outcomes and

payments between the MNO and the first n ∈ N VOs.
The MNO’s payoff depends on the offloading benefit, ad-

vertising profit, Wi-Fi deployment and operation cost, and its

payment to VOs. Based on bN and pN , the MNO’s payoff is

U(bN ,pN )=f

(
N∑

n=1

bnXn

)
+

N∑
n=1

bn(An−Cn)−
N∑

n=1

pn. (1)

Here f (·) is a non-negative, increasing, and strictly concave

function, which characterizes the offloading benefit of the

MNO [6]. Naturally, we have f (0) = 0.
VO n’s payoff depends on the revenue directly brought by

Wi-Fi and the MNO’s payment as follows,

Vn (bn, pn) = bnRn + pn. (2)

The social welfare is the aggregate payoff of the MNO and

all VOs:

Ψ(bN ) = U (bN ,pN ) +

N∑
n=1

Vn (bn, pn)

= f

(
N∑

n=1

bnXn

)
+

N∑
n=1

bnQn, (3)

where for each VO n ∈ N we define

Qn � Rn +An − Cn. (4)

Here Qn captures the increase in social welfare by deploying

Wi-Fi at venue n, excluding the data offloading effect. Since

the payment terms are cancelled out in (3), the social welfare

only depends on the bargaining outcomes between the MNO

and N VOs, i.e., bN = (b1, b2, . . . , bN ).

4To simplify the description, we use venue n to refer to VO n’s venue.
5In practice, some VOs undertake the backhaul cost for the MNO. This can

be easily incorporated into our analysis by properly redefining Rn and Cn.
6Sometimes VOs promote their products via Wi-Fi, and we include the

corresponding advertising profit in Rn.
7In our future work, we will analyze the situation where the MNO has

limited information on these parameters.
8Notice that pn may be negative, in which case VO n pays the MNO as

deploying Wi-Fi is more beneficial to it than the MNO.

III. ONE-TO-ONE BARGAINING

We first study a special case where there is only one VO,

i.e., |N | = 1. We analyze the one-to-one bargaining under the

Nash bargaining theory, which helps us to better understand

the more general results in the later sections.

According to [7], the Nash bargaining solution (NBS) of

the one-to-one bargaining solves the following problem:

max (U (b1, p1)− U (0, 0)) · (V1 (b1, p1)− V1 (0, 0))

s.t. U(b1, p1)−U (0, 0)≥ 0, V1(b1, p1)−V1 (0, 0)≥ 0,

var. b1 ∈ {0, 1} , p1 ∈ R,

(5)

where U (0, 0) and V1 (0, 0) are the disagreement points of

the MNO and VO 1, i.e., their payoffs when no agreement

is reached. The NBS essentially maximizes the product of the

MNO and VO 1’s payoff gains over their disagreement points.

Intuitively, with a higher disagreement point, the MNO (or the

VO) can obtain a larger payoff under the NBS.

According to (1) and (2), U(0, 0)=V1(0, 0) = 0. We further

define π1 � V1 (b1, p1) as the payoff of VO 1. This enables

us to rewrite problem (5) with respect to π1 and Ψ(b1):

max (Ψ (b1)− π1) · π1

s.t. Ψ(b1)− π1 ≥ 0, π1 ≥ 0,

var. b1 ∈ {0, 1} , π1 ∈ R.

(6)

Problems (5) and (6) are equivalent. That is to say, bargaining

on (b1, p1) is equivalent to bargaining on (b1, π1). Given any

bargaining solution in terms of (b1, π1), we can compute

the equivalent bargaining solution in terms of (b1, p1) as

(b1, p1) = (b1, π1 − b1R1).
The closed-form solution to (6) is (see our technical report

[14] for the detailed proof)

(b∗1, π
∗
1) =

{ (
1, 1

2Ψ(1)
)
, if Ψ (1) ≥ 0,

(0, 0) , otherwise,
(7)

where the social welfare Ψ(1) = f (X1) + Q1 is defined in

(3). Result (7) indicates that if reaching agreement increases

the social welfare, i.e., Ψ(1) ≥ Ψ(0) = 0, the MNO will

deploy Wi-Fi at venue 1 and equally share the generated social

welfare with VO 1; otherwise no Wi-Fi will be deployed and

both the MNO and VO 1 will obtain zero payoff.

IV. ONE-TO-MANY BARGAINING WITH

EXOGENOUS SEQUENCE

In this section, we study the case where the MNO bargains

with N VOs sequentially under a fixed sequence. We illustrate

the bargaining protocol in Figure 1. At each step, the MNO

bargains with one VO n ∈ N on (bn, pn).
We define πn as VO n ∈ N ’s payoff. As shown in Section

III, bargaining on (bn, pn) and bargaining on (bn, πn) are

equivalent. Therefore, in Sections IV and V, we present the

NBS in the form of (bn, πn) to simplify the notations. Like bn
and pn, we use πn � (π1, π2, . . . , πn) to denote the payoffs

of the first n VOs.

Without loss of generality, we assume that the bargaining

sequence follows 1, 2, . . . , N , i.e., at step n, the MNO bargains

with VO n. We analyze the problem by backward induction.
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bn   deploy Wi-Fi? 

pn   how much to pay? 

MNO VO n 

Xn   offloading amount
Rn   extra revenue 
Cn   operation cost 
An   advertising profit 

• • • 

• • • 

VO n-1 

VO 1 

VO n+1 

VO N 

on-going bargaining completed bargaining future bargaining 

Fig. 1: Bargaining Protocol.

Step N : Suppose that the MNO has already bargained with

VO 1, . . . , N − 1, and has reached bN−1 and πN−1. It now

bargains with VO N .

The MNO and VO N ’s disagreement points are

U0
N = Ψ((bN−1, 0))−

N−1∑
n=1

πn,

V 0
N = 0.

Here Ψ((bN−1, 0)) is the social welfare when the bargaining

outcomes of all N steps are given as (bN−1, 0), i.e., assuming

that no agreement is reached in step N . We obtain U0
N by

subtracting VOs’ payoffs from the social welfare. VO N has

a zero disagreement point if not reaching agreement with the

MNO.

If they reach (bN , πN ) in step N , their payoffs are

U1
N = Ψ((bN−1, bN ))−

N−1∑
n=1

πn − πN ,

V 1
N = πN .

Here Ψ((bN−1, bN )) is the social welfare when the bargaining

outcomes are given as (bN−1, bN ).
Hence, the Nash bargaining problem at step N is:

max
(
U1
N − U0

N

) · (V 1
N − V 0

N

)
s.t. U1

N − U0
N ≥ 0, V 1

N − V 0
N ≥ 0,

var. bN ∈ {0, 1} , πN ∈ R.

(8)

We solve (8) and obtain the NBS for step N :

(b∗N , π∗
N )=

{ (
1, 1

2ΔN (bN−1)
)
, if ΔN (bN−1) ≥ 0,

(0, 0) , otherwise,
(9)

where we define

ΔN (bN−1) � Ψ((bN−1, 1))−Ψ((bN−1, 0)) . (10)

Here ΔN (bN−1) can be understood as follows: if we treat

the MNO and VO N as a coalition, ΔN (bN−1) describes the

increase in the coalition’s payoff by deploying Wi-Fi at venue

N . If and only if such a value is non-negative, the MNO and

VO N will reach agreement and equally share the generated

revenue; otherwise no agreement is reached. This is similar as

the one-to-one bargaining in Section III.

We can also understand ΔN (bN−1) as the increase in social

welfare by deploying Wi-Fi at venue N . This is because VO

N is the last one that the MNO bargains with. For a general

bargaining step n ∈ N , we will later show that Δn (bn−1)
is generally not equal to the increase in social welfare by

deploying Wi-Fi at venue n.

Based on (9), (b∗N , π∗
N ) depends on vector bN−1 but is

independent of vector πN−1. This means that the NBS for

step N only depends on the first N − 1 steps’ bargaining

outcomes, and not on the payments between the MNO and

VOs. In what follows, we use b∗N (bN−1) and π∗
N (bN−1) to

indicate such dependence.

Step N−1: Suppose that the MNO has already bargained

with VO 1, . . . , N − 2, and has reached bN−2 and πN−2. It

now bargains with VO N − 1.

The MNO and VO N − 1’s disagreement points are

U0
N−1=Ψ((bN−2, 0, b∗N ((bN−2,0))))−

N−2∑
n=1

πn−π∗
N ((bN−2,0)),

V 0
N−1 = 0.

We obtain U0
N−1 by subtracting VOs’ payoffs from the social

welfare. Here b∗N ((bN−2, 0)) and π∗
N ((bN−2, 0)) together cor-

respond to the NBS for step N when the bargaining outcomes

of the first N − 1 steps are (bN−2, 0), as computed by (9).

If they reach (bN−1, πN−1) in step N −1, their payoffs are

U1
N−1 =Ψ((bN−2, bN−1, b

∗
N ((bN−2, bN−1))))

−
N−2∑
n=1

πn − πN−1 − π∗
N ((bN−2, bN−1)) ,

V 1
N−1 = πN−1.

Here b∗N ((bN−2, bN−1)) and π∗
N ((bN−2, bN−1)) are also

determined by (9).

Hence, the Nash bargaining problem at step N − 1 is:

max
(
U1
N−1 − U0

N−1

) · (V 1
N−1 − V 0

N−1

)
s.t. U1

N−1 − U0
N−1 ≥ 0, V 1

N−1 − V 0
N−1 ≥ 0,

var. bN−1 ∈ {0, 1} , πN−1 ∈ R.

(11)

We solve (11) and obtain the NBS for step N − 1:(
b∗N−1, π

∗
N−1

)
={ (

1, 1
2ΔN−1 (bN−2)

)
, if ΔN−1 (bN−2) ≥ 0,

(0, 0) , otherwise,
(12)

where we define

ΔN−1(bN−2)�Ψ((bN−2,1,b
∗
N ((bN−2, 1))))−π∗

N ((bN−2, 1))

−Ψ((bN−2, 0, b
∗
N ((bN−2, 0)))) + π∗

N ((bN−2, 0)) . (13)

If we treat the MNO and VO N − 1 as a coalition, then

ΔN−1 (bN−2) describes the increase in the coalition’s payoff

by deploying Wi-Fi at venue N − 1, taking into account VO

N ’s response. Result (12) shows that
(
b∗N−1, π

∗
N−1

)
is the

function of vector bN−2.

Step k, k ∈ {1, 2, . . . , N − 2}: Suppose that the MNO has

bargained with VO 1, . . . , k − 1, and has reached bk−1 and

πk−1. It now bargains with VO k. In order to save space, we
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leave the detailed analysis for step k in [14]. Like step N and

N−1, we can express U0
k , V 0

k , U1
k , and V 1

k by utilizing the NBS(
b∗k+1, π

∗
k+1

)
, . . . , (b∗N , π∗

N ) obtained in step k + 1, . . . , N .

Then we solve the Nash bargaining problem for step k and

obtain the following NBS:

(b∗k, π
∗
k)=

{(
1, 1

2Δk (bk−1)
)
, if Δk (bk−1)≥0,

(0, 0) , otherwise,
(14)

where we define

Δk (bk−1) �
Ψ
((
bk−1, 1, b

∗
k+1 ((bk−1, 1)) , . . . , b

∗
N ((bk−1, 1, . . .))

))
−π∗

k+1 ((bk−1, 1))− . . .− π∗
N ((bk−1, 1, . . .))

−Ψ
((
bk−1, 0, b

∗
k+1 ((bk−1, 0)) , . . . , b

∗
N ((bk−1, 0, . . .))

))
+π∗

k+1 ((bk−1, 0)) + . . .+ π∗
N ((bk−1, 0, . . .)) . (15)

After applying backward induction9 to the analysis from

step N to 1, we can eventually obtain the bargaining outcomes

in all steps and all VOs’ payoffs. We denote them10 by b̂N =(
b̂1, . . . , b̂N

)
and π̂N = (π̂1, . . . , π̂N ). Based on b̂N and π̂N ,

we can easily compute the MNO’s eventual payoff as

U0 = Ψ
(
b̂N

)
−

N∑
n=1

π̂n

= f

(
N∑

n=1

b̂nXn

)
+

N∑
n=1

b̂nQn −
N∑

n=1

π̂n. (16)

V. ONE-TO-MANY BARGAINING WITH

ENDOGENOUS SEQUENCE

In this section, we study the one-to-many bargaining with

endogenous sequence, i.e., the bargaining sequence is selected

by the MNO to maximize its payoff.

The examples in Figure 2 illustrate that the bargaining

sequence can significantly affect the bargaining solution and

the MNO’s payoff. By exchanging the bargaining positions of

the two VOs (red and white), the MNO improves its payoff

from 0.875 to 1 (the detailed analysis is given in [14]).

A. Optimal Sequencing Problem

We use l = (l1, l2, . . . , lN ) to denote the bargaining se-

quence, i.e., the MNO bargains with VO ln ∈ N at step n. We

further define L as the set of all possible bargaining sequences:

L � {l : li, lj ∈N and li �= lj , ∀i �= j, i, j ∈ N} .
We use U l

0 to denote the MNO’s payoff under bargaining

sequence l ∈ L. The MNO’s optimal sequencing problem is

max
l∈L

U l
0, (17)

i.e., choosing the optimal sequence l∗ to maximize its payoff.

To solve (17), the straightforward method is to compute the

MNO’s payoff for each l ∈ L and determine l∗ accordingly.

9We summarize this backward induction by a recursive algorithm in [14].
10Recall that, bargaining on (bN ,πN ) and (bN ,pN ) are equivalent, so

we can easily obtain p̂N = (p̂1, . . . , p̂N ) by p̂n = π̂n − b̂nRn.

^ 

NBS: bwhite=1, πwhite=0.5, bred=0, πred=0 

Xred=16, Qred=-3  
f(x)=x0.5   

Xwhite=9, Qwhite=-1.5   

Xred=16, Qred=-3  
Example 1 

NBS: bred=1, πred=0.125, bwhite=0, πwhite=0 

Xwhite=9, Qwhite=-1.5   
f(x)=x0.5   

Example 2 

MNO payoff: U0=0.875 

MNO payoff: U0=1 

^ ^ ^ 

^ ^ ^ ^ 

Fig. 2: The impact of the bargaining sequence on the MNO’s payoff.

Since |L| = N !, the computational complexity of this method

is high. In Section V-B, we prove an important structural

property for the one-to-many bargaining, which allows us

to design an Optimal VO Bargaining Sequencing (OVBS)

algorithm with a significantly lower complexity. In Sections

V-C and V-D, we study two special cases where we can

explicitly determine l∗ without running OVBS.

B. Structural Property and OVBS Algorithm

Recall the definition of Qn in (4), based on which we can

categorize VOs into three types:

Definition 1. VO n ∈ N belongs to
(1) type 1, if Qn ≥ 0;
(2) type 2, if Qn < 0 and f (Xn) +Qn ≥ 0;
(3) type 3, if Qn < 0 and f (Xn) +Qn < 0.

Based on the definition of the social welfare (3), such

categorization can be understood as follows:

• For type 1 VO n, its cooperation with the M-

NO does not decrease the social welfare, i.e.,
Ψ((b1, . . . , bn−1, 1, bn+1, . . . , bN ))≥ Ψ((b1, . . . , bn−1, 0,
bn+1, . . . , bN )) for all (b1, . . . , bn−1, bn+1, . . . , bN );

• For type 2 VO n, its cooperation with the MNO may or

may not decrease the social welfare, which depends on

other VOs’ parameters and bargaining positions;

• For type 3 VO n, its cooperation with

the MNO decreases the social welfare, i.e.,
Ψ((b1, . . . , bn−1, 1, bn+1, . . . , bN ))< Ψ((b1, . . . , bn−1, 0,
bn+1, . . . , bN )) for all (b1, . . . , bn−1, bn+1, . . . , bN ).

We assume that the number of each type of VOs is N1, N2,

and N3, respectively, with N1+N2+N3 = N . Then we have

the following lemmas11.

Lemma 1. The MNO will always cooperate with a type 1 VO,
regardless of the VO’s position in the bargaining sequence.

Lemma 2. The MNO will never cooperate with a type 3 VO,
regardless of the VO’s position in the bargaining sequence.

Lemma 3. If the bargaining sequence follows 1, 2, . . . , N ,
and VO k belongs to type 1, where k ∈ {2, 3, . . . , N}, the

11The detailed proofs of all lemmas and theorems are given in [14].
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Algorithm 1 Optimal VO Bargaining Sequencing (OVBS)

1: Phase 1: Construct the reduced set LRE

2: Order all type 1 VOs arbitrarily, and denote the sequence

by a vector h1 =
(
h1
1, h

1
2 . . . , h

1
N1

)
;

3: Order all type 3 VOs arbitrarily, and denote the sequence

by a vector h3 =
(
h3
1, h

3
2 . . . , h

3
N3

)
;

4: Denote the set of all permutations of type 2 VOs by

set H2. Each permutation is denoted by a vector h2 =(
h2
1, h

2
2 . . . , h

2
N2

) ∈ H2.

5: Pick every h2 ∈ H2 and construct the corresponding total

sequencing by l=
(
h1,h2,h3

)
. Denote the set of all such

ls as LRE .

6: Phase 2: Search the optimal sequence

7: Apply the backward induction and (16) in Section IV to

compute U l
0 for each l∈LRE and return lRE=argmax

l∈LRE

U l
0.

MNO’s payoff does not decrease after exchanging VO k − 1
and k’s bargaining positions.

Lemma 3 shows that bargaining with a type 1 VO before

any other VO will not decrease the MNO’s payoff. Now we are

ready to state our main theorem, which describes the structural

property of the optimal bargaining sequence.

Theorem 1. There exists a non-empty set of optimal bargain-
ing sequences L∗ ⊆ L, such that any l ∈ L∗ satisfies both of
the following two conditions12:

(1) VO l1, l2, . . . , lN1
are of type 1;

(2) VO lN1+N2+1, lN1+N2+2, . . . , lN are of type 3.
For any optimal sequence l ∈ L∗,
(1) if the MNO interchanges the bargaining positions of any

two type 1 VOs, the MNO’s payoff will not change;
(2) if the MNO interchanges the bargaining positions of any

two type 3 VOs, the MNO’s payoff will not change.

Notice that, there may exist some optimal bargaining se-

quences that are not in set L∗. Since our focus is to maximize

the MNO’s payoff by a properly chosen sequence, we will

focus on set L∗ in this paper.

Based on Theorem 1, we propose an Optimal VO Bargain-
ing Sequencing (OVBS) algorithm (i.e., Algorithm 1), which

solves the optimal sequencing problem (17) as follows.

Theorem 2. The sequence lRE obtained by OVBS lies in set
L∗. In other words, lRE is one of the optimal bargaining
sequences for problem (17).

The basic idea of OVBS is to utilize Theorem 1 to reduce

the searching space of l∗ from set L to a new constructed set

LRE . Since |L| = N ! and
∣∣LRE

∣∣ = N2!, the complexity of

determining l∗ is significantly reduced.

To summarize, the optimal sequence determined by OVBS

has the following features:

12Naturally, VO lN1+1, lN1+2, . . . , lN1+N2
are of type 2 when these two

conditions are satisfied.

type 1 VO type 2 VO type 3 VO 

(arbitrary order) (arbitrary order) 

Fig. 3: Structure of the Optimal Bargaining Sequence under OVBS.

Xred=25, Qred=-1.2  
Example 3 

Optimal sequence l*: red white orange (unique) 

Xwhite=35, Qwhite=-2.8   

f(x)=x0.5   

Under l*: bred=1, bwhite=0, borange=1 
^ 

Xorange=9, Qorange=-0.8   

sequencing? 

^ ^ 

Fig. 4: Counter-Intuitive Sequencing for Type 2 VOs

(a) The MNO bargains with type 1, type 2, and type 3 VOs

sequentially (Theorem 1); (b) The MNO will cooperate with

all type 1 VOs (Lemma 1); (c) The MNO will not cooperate

with any type 3 VO (Lemma 2); (d) Interchanging any two

type 1 VOs’ positions will not change the MNO’s payoff

(Theorem 1); (e) Interchanging any two type 3 VOs’ positions

will not change the MNO’s payoff (Theorem 1).

We illustrate the optimal sequence’s structure in Figure 3.

The optimal sequencing problem among type 2 VOs is very

complicated. To see this, consider the illustrative example in

Figure 4 where all VOs are of type 2. The MNO’s unique

optimal sequencing strategy is red, white, and orange, and

the MNO will only cooperate with VOs red and orange. In

other words, it is optimal for the MNO in this example to

bargain with someone (VO white) that it will not cooperate

with ahead of someone (VO orange) that it will cooperate

with. The reason for this counter-intuitive result is that such

strategy helps the MNO earn more profit in the first step of

bargaining (with VO red). This example shows that sequencing

type 2 VOs is challenging, and it is difficult to further reduce

the searching space LRE .

C. Special Case 1: Only Type 1 VOs

We next study a special case where all VOs are of type 1,

i.e., Qn ≥ 0 for all n ∈ N . In this case, we not only know

that any bargaining sequence is optimal (based on Theorem

1), but also can obtain the closed-form solution of the MNO’s

payoff as follows.

Theorem 3. If all VOs are of type 1, the MNO’s payoff is
independent of the bargaining sequence l and is given as:

U0 =
1

2N

∑
bN∈B

Ψ(bN ), (18)

where B � {(b1, b2, . . . , bN ) : bn ∈ {0, 1} , ∀n ∈ N}.

Mathematically, the MNO’s payoff in (18) can be viewed

as the expected social welfare under such a scenario, where

the MNO cooperates with each VO with a probability of 0.5.
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This observation is consistent with [6], [10]. In fact, [6], [10]

studied the one-to-many bargaining without cooperation cost.

Hence, the buyer would definitely cooperate with all sellers.

That corresponds to the special case we study in this subsec-

tion, i.e., all VOs are of type 1. In this case, the bargaining

sequence does not affect the buyer’s payoff, so [6], [10] only

studied the one-to-many bargaining with exogenous sequence.

Our work in Sections IV and V considers a more general

case where the buyer (MNO) may not necessarily cooperate

with sellers (VOs), and provides a deeper understanding on the

one-to-many bargaining with both exogenous and endogenous

sequences.

D. Special Case 2: Sortable VOs

In this subsection, we study another special case where all

VOs are sortable, which is defined in the following.

Definition 2. A set N of VOs is sortable if and only if for
any i, j ∈ N , we have (Xi −Xj) (Qi −Qj) ≥ 0.

When a set of VOs are sortable13, we can sort them based

on (Xn, Qn). The following theorem shows that this simple

sorting generates the optimal bargaining sequence.

Theorem 4. If all VOs are sortable, we can construct a
sequence l such that Xln ≥ Xln+1 , Qln ≥ Qln+1 , ∀n ∈
{1, 2, . . . , N − 1}. Furthermore:

(1) l is the optimal bargaining sequence;
(2) Under l, the MNO will and only will cooperate with

the first k VOs, i.e., VO l1, l2, . . . , lk, where k ∈ {0} ∪ N is
uniquely determined by the following inequalities:

f

⎛
⎝ lk−1∑

n=l1

Xn +Xlk

⎞
⎠− f

⎛
⎝ lk−1∑

n=l1

Xn

⎞
⎠+Qlk ≥ 0, (19)

f

(
lk∑

n=l1

Xn +Xlk+1

)
− f

(
lk∑

n=l1

Xn

)
+Qlk+1

< 0. (20)

That is to say, when all VOs are sortable, we can explicitly

determine the optimal bargaining sequence and identify those

VOs that the MNO will cooperate with.

13In the extreme case where all VOs are homogeneous in Xn or Qn, they
are sortable according to Definition 2.
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Fig. 6: Influence of the Offloading Benefit Function f (·).

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the optimal

sequencing and study the impact of different parameters on

the MNO’s payoff.

A. Performance of Optimal Sequencing

First we define some criteria to capture the performance

gap between different sequencing strategies. For a set N of

VOs and the corresponding set L of bargaining sequences, we

define the MNO’s maximum, minimum, and average payoff

as follows:

Umax
0 � max

l∈L
U l
0, Umin

0 � min
l∈L

U l
0, Uave

0 � 1

|L|
∑
l∈L

U l
0.

Hence, Umax
0 , Umin

0 , and Uave
0 measure the MNO’s payoff

under the optimal sequence, worst sequence, and random se-

quence, respectively. Then we define the normalized maximum

gap (NMG) and the normalized maximum deviation (NMD):

NMG � Umax
0 − Umin

0

Umin
0

, NMD � Umax
0 − Uave

0

Uave
0

.

NMG and NMD capture the performance improvement of the

optimal sequence over the worst sequence and the random

sequence, respectively.

1) Distribution of NMG and NMD: We choose f (x) =
x1/2, |N | = 5, and assume that each VO n’s (Xn, Qn)
follows the same uniform distribution (Xn ∼ U [80, 110] and

Qn ∼ U [−8,−3]). We run the experiment 30,000 times, and

record the probability distribution of NMG and NMD in Figure

5. We conclude that, (1) compared with the worst sequence,

the optimal sequence improves the MNO’s payoff by 16.9%

on average and by 45.8% in the extreme case; (2) compared

with the random sequence, the optimal sequence improves

the MNO’s payoff by 7.8% on average and by 14.7% in the

extreme case.

2) Influence of the offloading benefit: We further investigate

the influence of the concavity of function f (·) on the bargain-

ing result. We still assume the uniformly distributed (Xn, Qn)
(Xn ∼ U [80, 110] and Qn ∼ U [−8,−3]) and set |N | = 4.

Furthermore, we assume f (x) = xc and choose c from 0 to 1,

where a smaller c means a more concave function. For each c,
we run the experiment 3,000 times and compute the expected

NMG and NMD, as shown in Figure 6. From Definition 1,
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Fig. 7: Influence of E {Qn}.

the percentage of type 3 VOs changes according to function

f (·). Hence, in Figure 6 we also plot the expected percentage

of type 3 VOs against c. We observe that both NMG and

NMD first increase and then decrease. This is because when

c is small, the offloading benefit for the MNO is small and

most VOs are of type 3. Based on Lemma 2, the MNO never

cooperates with these type 3 VOs. Hence, for small c, the

optimal sequencing does not significantly improve the MNO’s

payoff. As c increases to 0.47, the expected percentage of

type 3 VOs decreases to zero, and both NMG and NMD reach

their peak values. When c continues to increase, function f (·)
becomes less concave and the externalities among different

steps of bargaining become weaker. As a result, the advantage

of the optimal sequencing reduces and both NMG and NMD

decrease.

B. MNO’s Payoff

In this subsection, we simulate the impact of different

parameters on the MNO’s maximum payoff, i.e., Umax
0 .

1) Influence of Qn: In Figure 7, we set |N | = 4, f (x) =
x1/2, and plot Umax

0 against the mean of the random variable

Qn. We find Umax
0 increases with E {Qn}, because large

E {Qn} implies a large benefit (or a small cost) of deploying

Wi-Fi network, and the MNO can earn more profit from the

cooperative Wi-Fi deployment. Furthermore, we find Umax
0

eventually linearly increases when E {Qn} ≥ 6. To explain

this, we also show the percentage of type 1 VOs in Figure 7.

As E {Qn} increases, the percentage of type 1 VOs approaches

100%. Based on (3) and (18), when all VOs are of type 1, we

have

Umax
0 =

1

2N

∑
bN∈B

f

(
N∑

n=1

bnXn

)
+

1

2

N∑
n=1

Qn, (21)

where B is defined in Theorem 3. Hence, Umax
0 linearly

increases with E {Qn}, and the slope of the curve is N/2.

2) Influence of Xn: In Figure 8, we set |N | = 4, f (x) =
xc, and plot Umax

0 against the mean of the random variable Xn

under different values of c. We observe that Umax
0 concavely

increases with E {Xn}. Based on (1), such a concavity is due

to the concave offloading benefit function f (·). Since a larger

c corresponds to a less concave function f (·), we observe

that, in Figure 8, an increase of c leads to a decrease of the

concavity of the Umax
0 curve.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

Average X

M
N

O
 M

ax
im

um
 P

ay
of

f

c=0.625
c=0.5625
c=0.5

Fig. 8: Influence of E {Xn}.

VII. CONCLUSION

In this paper, we investigated the economic interactions

among the MNO and VOs in the cooperative Wi-Fi de-

ployment. We analyzed the problem under the one-to-many

bargaining framework with both exogenous and endogenous

sequences. For the former case, we applied backward induction

to compute the bargaining results in terms of the cooperation

decisions and payments for a given bargaining sequence.

For the latter case, we proposed the OVBS algorithm that

searches for the optimal bargaining sequence by leveraging the

structural property. Numerical results showed that the optimal

bargaining sequence improves the MNO’s payoff as compared

with the random and worst bargaining sequences. In our future

work, we will further analyze the optimal bargaining strategy

when the MNO has limited information of the VOs.
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