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Abstract—Wireless networks have emerged as the most popu-
lar access technologies. Multiple technologies like WiFi, WiMAX,
LTE, along with traditional cellular networks augmented with
pico and femto base stations, are available for a user to access
the Internet. Many emerging user devices, e.g. smart phones,
allow for Internet connectivity using most of the available
technologies. Thus, at a given point in time, a user can be
in the communication range of many base stations, potentially
using different access technologies. This naturally gives a user
a choice as to which base station he should select for network
access. The association chosen by a user determines not only
his own performance, but also the performance perceived by
other users. Though user performances are coupled, association
decisions can seldom be taken in a centralised manner. This is
because different access technologies may not share the required
control information and cooperate. Also, different user devices
may not want to divulge their own information, for privacy
or security reasons, and also on account of additional power
requirement for control message exchange. Thus, one needs
to devise distributed association schemes that do not require
any message passing. In this paper, we consider the problem
of maximising network utility subject to constraints on user
requirements. To this end, we propose a distributed association
scheme in which a user chooses his association based only on
his own past association and the utility he obtained. We prove
that it is indeed possible to achieve maximum network utility
while satisfying individual user requirements in a completely
distributed manner. We also evaluate the performance of the
proposed scheme using simulations.

I. INTRODUCTION

Wireless networks are emerging as the preferred access net-
works. In addition to the traditional WiFi networks, WiMAX
and LTE networks are becoming available for Internet access.
Moreover, cellular networks are evolving into HetNets with the
addition of picocells and femtocells. Ubiquitous networking
ensures that user devices have the ability to connect to the
Internet through any of the available access technologies.
Thus, at a given point in time, a user may lie in the range of
multiple base stations, using possibly multiple technologies.
This naturally leads to the question, which base station should
a user connect to (user association)? The decision may depend
on the performance that a user can get and the cost he
incurs by connecting to various available base stations. In this
paper, our aim is to propose a completely distributed user
association algorithm that maximises network utility while
satisfying individual user requirements, whenever possible.
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Fig. 1. A sample network topology

Let us first demonstrate the trade-offs that a user association
scheme needs to address. The demonstration is through the
following examples: consider a network topology with three
base stations BSj; for ¥ = 1,2,3 and five users (mobile
stations) M .S; fori =1,...,5, as shown in Fig. 1. The dotted
circle centered at BSj, denotes the boundary of its coverage
area, i.e., M S; can associate and get nonzero rate from BS}
only if it lies within the dotted circle centered at BSy. We
assume that the time is slotted and multiple access control
(MAC) used at all the base stations is Time Division Multiple
Access (TDMA). Also, consider a saturated system, i.e., users
always have data to send/receive.

Example 1: Here, let us assume that the base stations do not
have rate adaptation capability. Thus, each user can communi-
cate 1 packet/slot, when he is scheduled by the base station to
which he chose to associate. Now, consider the following two
user associations: (1) All users associate to BS7, and (2) users
M S; and M S5 associate with BS5, user M S5 associates with
BS; and the remaining associate with B.S3. Note that the total
system throughput in case of association (1) is 1, whereas
it equals 3 in case of association (2). This example, though
simplistic, demonstrates the importance of load balancing in
the association in order to achieve good system performance.
Also, though the example seems contrived, the association
in (1) can happen in practice on account of user preference
for a certain technology. For example, in case of Unlicensed
Mobile Access (UMA), priority is always given to WiFi over



Universal Mobile Telecommunications System (UMTS) [1].
Thus, if BS; were a WiFi access point and the remaining
were UMTS base stations, then the user association will be
given by (1).

Example 2: Here, let us consider a scenario in which the
base stations have rate adaptation capability. Thus, based on
the user’s channel quality, his rate can be appropriately chosen.
We assume slow fading, i.e., the channel quality does not
vary with time. Let r;, = [ry; - --745] denote the rate vector
for BS), where ry; is the transmission rate (in packets/slot)
to user ¢, if it associates to B.S;. We assume the following
rate vectors: 71 = [4 6 6 6 6], 72 = [6 2 0 0 1], and
rs = [0 0 0 5 5]. Consider the following two associations:
(1) All users except MS; associate with BS; and M S,
associates with BS5, and (2) user M .S; associates with B.S,
users M Sy and M S5 associate with B.S; and the remaining
associate with B.Ss. Observe that the total system throughput
in case of association (1) is 12, whereas it equals 17 in case
of association (2). This example shows that associating to the
base station with the best channel condition does not guarantee
the best performance. Note that in conventional Wifi networks
based on IEEE 802.11 standards, a user connects to the access
point with the best Received Signal Strength Indication (RSSI)
[2].

Example 3: Consider the same setting as in Example 2. In
addition, let us assume that each user has certain minimum
throughput requirements. Specifically, we assume that the
minimum rate requirements of the users A S; through M S5
are 3, 3, 6, 2 and 2 respectively. In this case, observe that both
the association schemes proposed in Example 2 do not satisfy
the users’ requirements. However, an association scheme in
which M S, and M S, associate to BSy, M S3 associates to
BSs, and the rest associate to BS3 satisfies the requirements
of all the users. Thus, user requirements play a significant role
in determining a user association.

Our aim in this paper is to propose a user association scheme
that maximises the total network utility subject to satisfying
individual user requirements, whenever doing so is feasible.
Key features of our scheme are that it is completely distributed
and does not need any message passing. Specifically, we treat
each user as a separate entity who periodically decides his
association based only on the performance he has observed in
the past. Thus, our proposed algorithm does not require any in-
formation from the network. This feature is crucial, as, unlike
in traditional cellular networks, heterogeneity in the available
access technologies means that there may not exist a backbone
connecting all the base stations. Thus, the network wide state
is not known at each base station. Moreover, depending on
the underlying access technology, the base station may or
may not be able to assist users with information that aids
choosing an appropriate association. Observe that optimally
addressing the above trade-offs in a distributed manner without
any assistance from the network is a challenging task. Indeed,
prima facie, it seems magical for the users to be able to find an
association that maximises network utility without requiring
any information about the remaining network (other users,

their past associations and the utilities they have obtained).
However, in their seminal work, the authors, in [3], have
proposed a randomised algorithm for optimising social utility
in games in which each player knows nothing about the actions
and utilities of the other players. Our proposed algorithm is
motivated by the algorithm in [3]. Here, we generalise the
algorithm of [3] to account for individual user constraints. At
this point we would like to mention that most of the existing
work in the area of user association is either a centralised
scheme (e.g. see [4], [5]) or a scheme that takes inputs from the
network (e.g. see [1], [6], [7]). To the best of our knowledge,
ours is the first optimal distributed algorithm that does not
require any message passing.

The rest of the paper is laid out as follows: In Section II,
we describe our network model and problem formulation.
In Section III, we describe the proposed algorithm and the
intuition behind it. In Section IV, we provide the numerical
simulations. In Section V, we provide the literature survey.
Finally, we conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network with [V users and K base stations.
Let N ={1,2,3,..,N} and K = {1,2,3, ..., K} be the sets
of all the users and all the base stations, respectively. For
each user 1 € N, let K; C K denote the set of base stations
to which ¢ can associate. We do not put any restrictions on
the technology employed by any of the base stations. All the
base stations can potentially employ different technologies for
providing connectivity to the users. Let B denote the set of all
possible associations in the network. We denote an element
of B as N-dimensional vector b, = [by, bne], where
bie € K;. We denote by r;¢ and c¢; the throughput obtained
and cost incurred, respectively, by user ¢ under association by.
Cost can be on account of access fee for the technology used
by b;s. Next, we assume that a user has requirements on the
achieved throughput and also has constraints on the incurred
cost. We capture these through a function f; : R? — {0,1}.
If fi(rie,cie) = 1, then we say that the user requirements
are met (user is satisfied) under association by, otherwise the
user is said to be unsatisfied. Note that the function f;(-) can
model any user requirement. For example, if user ¢ desires his
throughput to be at least &; and cost to be at most (;, then we
can can choose f;(r¢,cie) =1 only when 7 > &; and ¢;p <
(;. Finally, let u;¢ denote the utility for user ¢ under association
by. Without loss of generality, we assume that u;; € [0,1) for
every ¢ and ¢. Thus, network utility under association by is
Zie A Uie- Let U; denote the set containing all the possible
utilities the player ¢ can receive, i.e., for every configuration
b, € B, the utility the player ¢ receives using by, u;e, lies in
U;. Let uy denote the N-dimensional vector [uyp «-+ ung].
Our aim is to find a user association that maximises network
utility subject to satisfying throughput and cost constraints.
Formally, we solve the following optimisation:

MaXp,eB D e Uit
st. fi(rie,cie) =1 VieN.



Note that when wu,; = log(r;) for every 4, then the
above optimisation program obtains proportionally fair user
association, subject to the throughput and cost constraints. We
can recover other notions of fairness like «-fairness (see [8])
by choosing an appropriate utility function.

We require that the notion of interdependence holds in such
a scenario. We first define what we mean by interdependence.

Definition 1: By interdependence, it is meant that for ev-
ery association b, € B, and every proper subset of users
J C N, there exists a user i ¢ J, and a configuration of
associations for the subset J of users, fﬂ € Il,.e 7 Km,
such that the utility of the agent ¢ does not stay unaffected,
ie. (b7, b 70) # ui(bge, b 70) [3].

Note that this notion of interdependence seems to be quite
valid in the case of wireless networks. Since, for a given
profile, if we take any proper subset of players J C A and
change only their strategies, that would affect the utilities of
at least one player not in this subset. The throughput received
by some player ¢ ¢ J might change due to the alteration of
the associations of the base station ¢ is associated to. Even if
this does not happen, the interferences observed by the players
will get affected due to a change in strategy of the players in
J, thus resulting in a change in the throughputs of at least one
player i/ ¢ J. Also note that if the set A/ can be partitioned
into two disjoint sets of mutually non-interacting users, the
two sets can form two independent games, in each of which,
interdependence holds.

In the following section, we describe our proposed algo-
rithm.

III. ASSOCIATION ALGORITHM FOR CONSTRAINED
OPTIMUM NETWORK UTILITY

In our proposed algorithm, users periodically assess their
performance with their current association and may decide to
change it. We assume that the users update their associations
synchronously. Let {T};},>1 denote the monotone increasing
sequence of update time epochs, i.e., for every user, T); denotes
the instance of j*" association update. Let bie(j) € K; denote
the base station to which user ¢ has chosen to associate at T}.
Thus, by ;) determines the user associations in the network for
the time interval [T}, Tj11). We refer to [T}, T}+1) as the j*&
update interval. Let u;(;) denote the utility that user 7 gets in
the interval [T}, Tj41). Each user chooses his next association
randomly as per a distribution that depends on the performance
perceived by the user. Next, we explain the algorithm in detail.

A. Explanation of the Algorithm

The algorithm is based on randomised search. Here, each
user decides his association at random at every Tj. If it were
a centralised random search, then upon finding a new random
association by, the algorithm will check for its feasibility
(fi(rie, cie) = 1 for every i) and whether the new association
has a higher value of network utility than that of the previous
one. If the new association is feasible and improves upon the
previous then we retain it and generate a new association at
random. In finite networks, this procedure clearly converges

to the optimal association if the set of feasible associations
is non-empty. However, the same algorithm can not be used
in a distributed manner as users cannot check for overall
feasibility or utility improvement based on only the knowledge
of their own feasibility and obtained utility. The solution to
this challenging problem is addressed as follows:

Each player can have two moods, viz., content or discontent,
and these moods affect the decisions taken by a user. Broadly,
a user is content only if he strongly believes that the network
has reached an optimal association. A content player is very
inclined to stay associated to the same base station. But
occasionally, he may leave his association in order to look
for better opportunities. To change his association, he chooses
from the set of base stations, /C;, randomly and uniformly.
A discontent player, on the other hand, keeps on trying new
associations very frequently in order to become content. He
also chooses from /C;, randomly and uniformly. Thus, when
all the players are content, the system stays in the same state
with a high probability. Thus, at T}, depending on the mood
of a user, he updates his association and gets associated to
his chosen base station at 7. For this chosen association each
user measures his utility, throughput and cost in the j*" update
interval. Thus, (b;¢(;y, uis(;)) is known to each user ¢ at the end
of the j™ interval. Now, using (bie(j—1), Wie(j—1): Mie(j—1))
and (D), ui(;)) user i computes his mood myg;y. The
computation is described below.

Let us explain how the mood for a user is updated. First,
we consider a scenario in which my;_1) = D and explain
conditions under which the mood for the user will become
content at end of j*" update interval. For mi;y = C to
happen, first we need that f; (7, Cie(;)) = 1, otherwise the
user will remain discontent. Given that the user constraints are
satisfied at the end of the 5" update interval, the user changes
his mood to content with probability (w.p.) ! ~%i¢), where €
is a small parameter for the algorithm. Note that the user is
more likely to become content and stop exploring aggressively
for higher values of utility obtained. Next, we explain how a
user’s mood gets updated from content to discontent. A user
may update his mood to discontent in any one of the following
two scenarios: (i) he changes its own association (bje(;—1) #
big(j))> or (i) his utility gets changed (uj(;—1) # Wig(j))-
In both the scenarios, if f;(ri(;),cie(j)) = O, then the user
changes his mood to discontent w.p. 1, otherwise the change
happens w.p. 1 — e! =%t Note that both (i) and (i7) indicate
that the system configuration has changed. Thus, if the user’s
own requirements are violated in the new configuration, then
the user becomes discontent and explores aggressively. On
the other hand, if the user himself is satisfied in the new
configuration, then, he decides with a small probability to
become content and stops exploring. Else, he stays discontent
and continues his search.

Pseudo code for the proposed algorithm is given in Al-
gorithm 1. In the pseudo code, lines 1 to 7 show how user
association is updated at 7. Lines 8 to 18 explain how mood
for a user is updated at the end of ;" update interval, i.e. at

T,



Algorithm 1
1: Each user ¢ updates his association at T; as follows:
2: if Mip(j—1) = C thenl
3 by =k wp. =g for k€ Ko\ {bir; 1)}

4 big(j) =k w.p. 1 — € for k= bié(j—l)
5: else if m;p;_1) = D then

6:  biy) =k w.p. “Cl—‘ for all k € K;

7

8

9

. end if
: Bach user ¢ updates his mood at T}, as follows:
- if (mig(j_l) = C) ([bif(j%uie(j)] -
[bie(i—1)» Uie(j—1)]) then
10: Mie(5) < C

and

11: else

12: if f(rii(j)a Cie(j)) =1 then

13: Mp(j) < C w.p. el

14: Mig(5) D wp. 1— el
15: else if f(rio(;), cie(;)) = O then
16: Mie(5) < D

17:  end if

18: end if

B. Convergence

In this section, we show that the fraction of time the system
spends in states in which all the users’ constraints are satisfied
and the system utility is maximised can be made as close to
1 as desired by choosing an appropriate € > 0.

Let 25y = [bie(j)s Uie(j), Mie(;)] be the state of player 4 at
the end of the j** period. Then, 2oj) = [2100) - - ZNe()) 18
the state of the system at the end of the j** period. Let Z =
{z¢ : by € B} denote the collection of all possible system
states. Z C S = [[;cn Ki x Ui x M, where M = {C, D}.
Note that Z is a strict subset of S. Specifically, Z is that subset
of § which contains all the states [bg, ug, my] € S, excluding
the states in which the utilities and associations are not aligned,
i.e. uzp # u;(by) for some 7 € N, and also excluding the ones
which have m;y = C when f;(r;, c;e) = 0.

Lemma I: The system state process {z(;)}j=12,. is a
finite state, irreducible, and aperiodic Markov chain for every
e > 0.

Proof: Note from Algorithm 1 that for each user i, at the
instance T}, we first decide an association. The association
is solely decided by the mood of the user m;p;_1). Once
the association for all the users in decided, i.e. when by
is decided, then for every 4 utility w;4(;), throughput 7,
and cost cy;) is also decided. Thus, user i can decide
his mood m; ;) based on the values of fi(’l"ig(j)7 Cit(j))
and [bg(;—1y, Uie(j—1)] and [big(5), Uie(jy]- This shows that the
state zg(jy = [by(s), We(s), My(j)] obtained at the end of gt
update interval is determined only by the state z,;_1) =
[Bie(j—1) Wie(j—1), Mie(j—1)] observed at the end of (j —1)™
update interval. Thus, the state evolution process is Markovian.

We know that the set K; is finite. The set U, is also
finite, since for each unique element in Uf;, there exists at
least one unique association which results in that utility. So,

|U;| is bounded by |B|. Thus, Z is finite. The probability
of transitioning from any state z, = [by,us,m¢] € Z to
any other state zp = [by,up,my] € Z is greater than
0. So, every state z, € Z communicates with every other
state zp» € Z. Thus, the whole state space, Z is a single
communicating class, implying that the process is irreducible.
The probability of making a transition in a single step, from
z¢ € Z, to zy again, is also greater than 0, thus making the
process aperiodic. [ ]

The process is irreducible, aperiodic, and has a finite
state space. So, it is ergodic. Let P¢ be the transition
probability matrix (TPM) for this process and u€ be its
unique stationary distribution, since the process is ergodic.
Now, let us define C° as the subset of states of Z in
which the mood of each player is content. By D°, we refer
to the subset of states in which each user’s mood is discontent.

Though Lemma 1 shows that the state evolution matrix P¢
is irreducible for every € > 0, same is not true for e = 0.
Consider P°, the transition probability matrix of a process on
the finite state space Z with e = 0. For our proof, we will view
P¢ as a regular perturbation of PC. Let us first understand the
topology of P°. This will be useful in establishing the final
result.

Lemma 2: The recurrence classes of the process P? are D°
and all singletons z € C°.

Proof: For any two states 2z, , z¢, € D, the probability
of transitioning from zy, to z,, is greater than O as each user
chooses his association uniformly randomly, and his mood can
not be updated to Content as ¢ = (0. Thus, all states in Do
communicate with each other. Also, there is no possibility of
leaving D, making D a closed, aperiodic recurrence class
of PY.

Note that a user can be in Content mood only if his
constraints are satisfied. Thus, for any state z; € CO, the users
will keep on choosing the same association with probability 1
as € = 0. Thus, each such state in CY is an absorbing state.

Consider a state, zy, in which a proper subset of users
J C N are discontent and the associations and the utilities
of the users are given by by, and wy, respectively. Using
interdependence, there exists a user ¢ ¢ J and a strategy bfﬂ
such that us # u;(b’;,,b7¢). The users in J will play this
strategy b’;, at some time with probability 1. Thus, the user i
will no longer be able to stay content. This argument can be
repeated to show that finally all the users become discontent.
Therefore, such states are transient and cannot belong to any
recurrence class. u

Now, we consider P¢ as a perturbed version of P°. By
perturbations, we mean the users experiment with some small
probabilities, i.e., with high probabilities, the users make
transitions as per PO, but with small probabilities, some
transitions happen which would not have happened in P°. Let
perturbations be characterized by a scalar § > 0 in a certain
perturbed process. This scalar ¢ gives a sense of the size of
the perturbations. We can see that the process P€ is also a
perturbed process, derived from P°, with § in this case being



equal to e. Using our knowledge about the process P°, we
want to deduce the behavior of the process P¢. If somehow we
are able to comment on the fraction of time the system, using
the dynamics in P€, can spend in the optimum utility states,
we will have an idea about the performance of the algorithm.
For this, we use the concept of stochastically stable states [9].

Definition 2: The stochastically stable states of the process
P¢ are defined as the states z, € Z such that lim¢ . g, > 0.

Remark: Note that P° does not necessarily have a
unique stationary measure. Thus, though lim,_,o P¢ = PY,
lime 0 g, depends on the relative rate at which various
perturbed transitions approach 0.

From [10], we know that the time spent in the stochastically
stable states can be made to go as close to 1 as desired, by a
correct choice of e. Formally,

Statement 1: Given any small o > 0, there exists a number
€q > 0 such that for any 0 < € < ¢4, the process will be in
one of the stochastically stable states for at least 1 —« fraction
of the times.

If we can show that the stochastically stable states of the
process P€ are in fact the states which maximise the system
utility while satsifying the user constraints, we will be done.
This is what we show in Theorem 1.

Theorem 1: A state of the process P€, zy = [by, ug, my] €
Z, is stochastically stable if and only if:

e The configuration b, maximises the system utility, while
satisfying the constraints of all the users (f;(ri¢, ci¢) = 1 Vi €
N)

e The mood of each agent is content, i.e. m; = C Vi € N'

Proof: We know that P€ is a perturbation of the process
PO, A regular perturbed process is a perturbed process which
satisfies the following additional constraints, from [9]:

e P< is ergodic Ve € (0,a],a >0

o lim,_,o P¢ = P°

e P, > 0 for some € implies 3 ggr > 0 such that,

0 < lime_,g €922 P§), < 00.

We call oy as the resistance of the transition from the
state z, to the state z¢. Note that ggr = 0 implies Pf,, > 0,
i.e., the resistance of the zy — =z, transition is zero if
the probability of reaching z, from z, is positive in the
unperturbed process. Taking examples from our dynamics, if
the transition probability of a transition is ! ~%¢, its resistance
would be 1 — u;. On the other hand, if the probability were
1 — e!=%i_ then the resistance for the transition would be 0.

As we have already seen, the perturbed process defined
by P¢ is ergodic. The second requirement, lim._,o Pj,, =
Peoz' Yz, ze € Z, holds, since P° is defined as such. Also,
since all the transition probabilities are finite summations of
non-negative exponents of ¢, the resistances for the transitions
will be non-negative. So, the process introduced earlier is a
regular perturbed Markov process.

Let Z1, Z, ..., Z be the recurrence classes of P°. An s—t
path « is defined as a sequence of states, z; — zo — -+ —
zZMm, such that z; € Z; and z,; € Z;. The resistance of this

path is defined as:

0(K) = 02,25 T 0zp25 + oo+ Ozpy 12

Let ps; be the minimum resistance amongst all s — ¢ paths.

Now let us define a directed graph G, with 21, 2, ..., Zx
as vertices and for each pair of vertices (Z;, Z;), there is a
weighted edge from Z; to Z;, with weight p;;. A j—tree is a
spanning subtree of G such that for every vertex Z; # Z;,
there exists exactly one path from Z; to Z;. For each j,
find a j—tree of least resistance, and the resistance of this
j—tree is called the stochastic potential, v;, of the class Z;.
Let 21, 25, ..., Zx be the recurrence classes of P°. From [9],
we get,

e lim,_,q € is a stationary distribution p® of P9

o ul, >0 < 2z, € Z;: Z; € argming, .

Thus, we know that the stochastically stable states of P¢
are the set of states which lie in the recurrence class(es) of
P° with minimum stochastic potential. Now, we try to find
the stochastic potential of the recurrence classes of P°.

The resistance of the transition from z, € C° to z) € Do
is ¢, since change in association of one player can lead the
system to a DY state.

The resistance of the transition from z, € D° to 2} € C° is
> ienr(1 —ugp), since the transition for each user < € N has
a resistance (1 — w;p).

The resistance of the transition from z, € C° to z) € CO
is 02,2z, > min;en (1 — uier) + ¢, since, at least one player
needs to change his action, which has a resistance ¢, and then
accept a utility of (1 — u;) to become content.
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Fig. 2. The three j—trees rooted at z, € C°. The tree in Fig. 2(c) has the
minimum stochastic potential

Lemma 3: The stochastic potential of any state z, =
[bg,U[,mg] € CYis ")/(Zg) = C(‘CO| — 1) + ZZEN(l — uw),
and this is less than the stochastic potential of the DY class.

Proof: Let us start with a scenario in which there is only
one state zy € C°, i.e. |C°| = 1. In this case, there can only be



a single j—tree rooted at D" and a single j—tree rooted at z, €
CP. Thus, the stochastic potential of z, € C%is >, (1—usr).
The stochastic potential of DO is > ¢, and thus, greater than
that of z, € CC.

Now, suppose we have two states, 24, z¢ € CY, i.e. |CO] =
2. There are 3 possible j—trees rooted at z,, as can be seen
in Fig. 2. There are 3 possible j—trees rooted at D, of which
two are similar - interchanging z, and z, in one tree will get
the other, with the resistances remaining the same. We have
shown one of those two trees and also the third tree in Fig. 3.
As we can see, the stochastic potentials of zy, z,» € C° satisfy
the formula given in Lemma 3 and that the stochastic potential
of the DP state is more than the two C° states’ potentials, as

per Lemma 3.
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Fig. 3.

Now, we consider the general case, when there are M + 1
states in C°, 240, - - , 2Z¢pr. In this case, the minimum weight
j—tree rooted at zy9 will be the one shown in Fig. 4. For the
interested reader, a rigorous proof is provided in the following
paragraphs.

Consider a tree T as described by Fig. 4. This tree has
(|C°| —1) edges of the kind z, € C° — D, each having a re-
sistance c. There is one edge of the form D° — z, € C°, with a
resistance of ) . \-(1—u;¢). Thus, the stochastic potential of a
state z¢ € C° is upper bounded by ¢(|C°|—1)+>",;c \ (1 —uie).

Now, let us suppose that there exists another tree 7" whose
resistance is less than that of T, i.e., R(T") < R(T). Since
the tree is rooted at z, € C°, there exists a path P from DO
to zy,

P:{DO—)ZM —)Zzg—)‘“—)ZgK*)Z[}

Notice that the resistance of the path P is R(P) >
Kec+ 3 car(1 — ), since, at some point during the set of
transitions, each user ¢ needs to accept a utility of u;y. Also,
during the last K transitions, at least one player will have to
first change his/her action, which has a resistance of ¢, other
than the resistance associated with accepting a certain utility.

Let’s construct a new tree 7" which is derived from T".
We begin by removing the edges in P. The nodes which get
removed through this edge removal are added to 7" by adding
the following edges to T": D° — z,, with a resistance of
D ien(d —ug), and zg — DYV 1< j < K, with each of
the K edges with a resistance of c. All other edges in 7" are

preserved in 7". Thus, the resistance of 7", R(T") < R(T").
We construct a new tree 7" from T” as follows. For any
edge in R” of the form zy — zy~, which has a resistance > c,
remove that edge and instead add an edge z, — D, which
has a resistance of c. Thus, R(T"") < R(T") < R(T"). But,
after all the transformations are done, what we have with us
is R, i.e., R"” = R. But this contradicts our assumption that
R(T") < R(T). So, the minimum weight tree rooted at z; is
T and has a resistance of ¢(|C°| — 1) + 3=, -\ (1 — uie).
Now all we are left to prove is that the stochastic potential of
DY is greater than ¢(|C°| —1)+ >, (1 —us). Let us assume
the contrary and call the tree rooted at D° with the minimum
weight as 7. 77 must have an edge of the form z, — DO,
with a resistance of c. Remove this edge and add an edge
DY — z;, with a resistance of Y, (1 —uy) < N < c.
This gives a tree rooted at z,, T with R(T}) < R(T}).
But we had assumed that R(7}) < R(T). Therefore, we get,
R(T]) < R(T). This can’t be possible, as we have proved
earlier. Thus, our assumption was incorrect. So, DO does not
have the minimum stochastic potential. [ ]

Fig. 4. The minimum weight j—tree of the state 2,9 € C°

Thus, from Lemma 3, we have that the stochastically
stable states are contained in C°. We know that they have
the minimum stochastic potential. Therefore, a state z, =
[be, ug, my] € Z is stochastically stable if and only if:

Zy € argmax E Wipr
ZZ/GCO ieN

This completes the proof of Theorem 1. [ ]

This shows that for any o > 0, there exists an € > 0 such
that the fraction of time for which the optimal association is
chosen by the algorithm is greater than 1 — a.. As a becomes
smaller and smaller, we also need to correspondingly reduce
€. Notice that as € decreases, the algorithm becomes more
cautious in accepting a new association and also in deviating
from the accepted association. Thus, for a smaller value of e,
it takes longer for the algorithm to find an optimal association,
but once it is found, the algorithm retains it for a much longer
time as well.

C. Heuristic

We expect the average social utility of the system, U, to
increase with decreasing e, due to Statement 1. Let 7% denote



the time taken to reach for the first time, a state in which all the
users’ constraints are satisfied. Then, it is also expected that
T will increase with decreasing €. Since, with decreasing
€, the probability that the users experiment decreases, i.e.
they take more time to reach to any given configuration. In
accordance with our expectations, we provide a heuristic to
improve the performance of our algorithm. Instead of keeping
e fixed throughout, we can start with a high initial value of e,
€nitial, and then at each iteration, we can subsequently decrease
€ by a small fraction until it reaches a final value of €gpq.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm using
simulations.

A. Network Model and Parameter Values

We simulate a network in which base stations and mobile
users are positioned randomly on a 2-dimensional square
region of side length 5 units. We consider topologies with
ten users (N = 10) and five base stations (K = 5). We
only consider path loss, and assume path loss exponent to be
2 (simulation results for other values of path loss exponent
show the same trend and are omitted on account of the
space constraints). So, if user ¢ is connected to the base
station k, then the transmission rate for 7 is assumed to be
ri = log(l + di_,f /oik), where d;;, is the distance between
¢ and the base station j and oy is the noise power spectral
density on the channel from ¢ to k. We choose o, uniformly
at random from [0.1,1]. We consider the base stations to
implement time fairness, i.e., each base station provides equal
amount of access time to each of the users that is connected
to it. We also choose T; = 1 for every j. Thus, if n users
are associated to the k'M base station, then the throughput
of user i associated to k in j*' update period is 71 /n.
We allow each user to associate with one of the three base
stations that are located closest to him. For the constraints, we
consider the minimum throughput requirement for each user.
To generate the feasibility constraints, we first associate the
users randomly to any of the possible base stations, and then
choose the minimum required throughput to be the 50% of the
throughput received by each player in this configuration. Also,
we consider the problem of maximizing network throughput,
i.e., the utility for a user is equal to its throughput. We take
c=11.

We simulate 1000 randomly generated topologies, in each
of which our algorithm is run for 10° iterations. €ipiga is varied
from 0.1 to 0.5 in all the topologies. In the implementation
of the heuristic, the value of € is decreased by 0.1% at each
epoch and egp, is taken to be 0.1.

B. Observations and Results

Fig. 5(a) shows a typical sample path of the algorithm for
€ = 0.1 and 0.5. The sample paths look broadly as a step
function, where the flat portions are the states in which all the
users are content (which also implies that their throughput
requirements are satisfied). Note that for a larger value of
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€, a state in which all the users are content is found sooner
than for a smaller value of e. However, for a larger value of
€, the system explores different states more aggressively and
as a result the states change more often. This is a classical
exploration versus exploitation trade-off. For a larger value
of ¢, the exploration dominates whereas when ¢ is smaller the
system tends to respond comparatively slowly, but it maintains
an optimal state for a much longer duration. This trade-off
is further illustrated in Fig. 5(b) and 6(a). In Fig. 5(b), we
observe that the fraction of time all the users’ constraints
are satisfied increases slowly for higher values of ¢, whereas
in the proposed heuristic, this fraction increases much more
slowly, almost looking to be constant. Note that the heuristic
starts with a higher value ¢ and then decreases it gradually.
Same phenomenon can be seen in Fig. 6(a). Here we plot the
number of iterations required for all the users to be satisfied
for the first time simultaneously. Note that this value is smaller
for a larger value of initial €. The heuristic gives the benefit
of a faster response in this case, although not as fast as the
original algorithm. Finally, Fig. 6(b) plots the achieved system
throughput as a function of e. Note that the throughput is
higher for the smaller values of e. This justifies Statement 1.
From these figures, we can see that while using the heuristic,
the long term characteristics of the system depend almost only
on the final value of €, whereas the the initial response also
depends on the initial value of €, as we would expect.
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V. RELATED WORK

A lot of research is being done to cater to the problem of
finding an efficient user association scheme. [4] consider fair-
ness and load balancing in wireless LANs but in a centralised
manner. [S5] also provide a centralised algorithm. Coucheney
et al., in [1] provide a distributed scheme for association
which requires base stations to send their users rewards, which
help the users reach an a-fair profile [8]. [7] also provide a
distributed scheme which requires the base stations to convey
information to the users. In [6], Kauffmann et al. propose a
distributed algorithm for channel association and user associa-
tion, albeit again with user - base station communication. The
difficulty with requiring the base stations to interact in some
way with the users is that if they were to be implemented,
every base station, independent of its technology, would be
needed to follow these algorithms. This requirement is very
difficult to be satisfied. Bejerano and Han, in [11], present
schemes for optimal load balancing in IEEE 802.11 WLANS,
by utilising cell breathing techniques. They only require that
the access points have the ability of dynamically changing the
transmission power of their beacons. But this technique is only
applicable in the case of single technology networks, where
only IEEE 802.11 access points are present.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a user association algo-
rithm which requires no interaction amongst the users and

the base stations. We have proved the convergence of the
algorithm in a stochastically stable sense. Through numerical
experiments, we have also demonstrated that the algorithm
can lead to efficient system usage, with each user getting
throughputs meeting his or her desired throughput and cost
requirements.

This leads to even more interesting problems, such as trying
to rid the requirement of synchronicity in user updates; and to
accommodate the presence of noise in the utilities observed
by the users, and still contrive the algorithm in such a way
that it leads to optimal configurations.
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