[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Logo des Repositoriums
 
Konferenzbeitrag

Latent representations of transaction network graphs in continuous vector spaces as features for money laundering detection

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This paper explores the construction of network graphs from a large ban ktransaction dataset and draws from Ąndings in language modeling and unsupervised learning to transform these graphs into multidimensional vector representations. Such latent representations encode relationships and community structures within the transaction network. Three classiĄers with varying complexity are trained on these latent representations to detect suspicious behavior with respect to money laundering. The specific challenges accompanying highly imbalanced classes are discussed as well and two strategies to overcome these challenges are compared.

Beschreibung

Wagner, Dominik (2019): Latent representations of transaction network graphs in continuous vector spaces as features for money laundering detection. SKILL 2019 - Studierendenkonferenz Informatik. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1614-3213. ISBN: 978-3-88579-449-3. pp. 143-154. Security. Kassel. 25.-26. September 2019

Zitierform

DOI

Tags