Integrating Reconstructor and Post-Editor into Neural Machine Translation
Abstract
1 Introduction
2 Background
2.1 Encoder
2.2 Decoder
3 Methodology
3.1 Reconstructor
3.2 Post-Editor
4 Experiments
4.1 Dataset
Task | train | valid | test | |||
---|---|---|---|---|---|---|
et-en | WMT18 | 0.8M | Newsdev18 | 2000 | Newstest18 | 2000 |
ru-en | WMT14 | 1.5M | Newstest13 | 3000 | Newstest14 | 3000 |
en-de1 | WMT14 | 4.5M | Newstest13 | 3000 | Newstest14 | 2737 |
de-en2 | IWSLT17 | 0.2M | TED.dev2010 | 888 | TED.tst2010 | 1080 |
zh-en | IWSLT17 | 0.23M | TED.dev2010 | 879 | TED.tst2015 | 1000 |
de-it | IWSLT17 | 0.18M | TED.dev2010 | 923 | TED.tst2010 | 1567 |
en-tr | WMT17 | 0.19M | Newsdev2017 | 1001 | Newstest17 | 3000 |
system | Transformer | GS | GT | MG |
---|---|---|---|---|
rate | x | 1.94x | 1.94x | 2.16x |
4.2 Hyperparameters and Systems
5 Results
5.1 Comparison of Results from Different Methods
system | zh\(\rightarrow\)en | en\(\rightarrow\)zh | en\(\rightarrow\)de2 | de\(\rightarrow\)en2 |
---|---|---|---|---|
Base | 21.21 | 19.62 | 27.75 | 32.27 |
RL | 21.22 | 19.44 | 28.43 | 32.05 |
Source | 21.14 | 19.47 | 28.51 | 33.31 |
Target | 21.01 | 19.27 | 28.46 | 32.57 |
no cat | 21.48 | 19.64 | 28.21 | 32.68 |
GS | 22.04 | 19.81 | 28.53 | 33.38 |
GT | 22.12 | 20.06 | 28.15 | 33.21 |
MG | 22.34 | 20.10 | 28.96 | 33.67 |
system | de\(\rightarrow\)it | it\(\rightarrow\)de | en\(\rightarrow\)tr | tr\(\rightarrow\)en |
---|---|---|---|---|
Base | 19.61 | 20.04 | 12.6 | 15.7 |
GS | 20.35 | 21.1 | 13.36 | 16.52 |
GT | 20.35 | 20.88 | 13.51 | 16.91 |
MG | 21.21 | 20.99 | 13.62 | 17.31 |
5.2 Methods on Abundant Resources
system | ru\(\rightarrow\)en | en\(\rightarrow\)ru | en\(\rightarrow\)de1 |
---|---|---|---|
transformer | - | - | 27.30 |
RL | - | - | 27.49 |
BOW | - | - | 27.35 |
Base | 27.62 | 29.63 | 27.5 |
GS | 27.44 | 29.21 | 27.72 |
GT | 27.97 | 29.94 | 28.02 |
MG | 29.43 | 29.84 | 27.35 |
5.3 The Relationship between Model and Regularization
system | zh\(\rightarrow\)en | en\(\rightarrow\)zh | en\(\rightarrow\)de2 | de\(\rightarrow\)en2 |
---|---|---|---|---|
Base | 22.57 | 20.58 | 29.00 | 34.19 |
GS | 23.02 | 20.91 | 29.29 | 34.91 |
GT | 22.51 | 20.57 | 29.95 | 34.76 |
MG | 23.29 | 20.84 | 29.43 | 34.7 |
5.4 Reconstruction Results
system | de\(\rightarrow\)en2 | en\(\rightarrow\)de2 |
---|---|---|
Base | 32.27 | 27.75 |
Translation result | 33.11 | 28.12 |
Post-Editor results | 32.94 | 27.81 |
5.5 Losses in Some Translation Tasks
6 Related Work
7 Conclusion
Footnotes
References
Index Terms
- Integrating Reconstructor and Post-Editor into Neural Machine Translation
Recommendations
Post-editing neural machine translation versus phrase-based machine translation for English---Chinese
This paper aims to shed light on the post-editing process of the recently-introduced neural machine translation (NMT) paradigm. Using simple and more complex texts, we first evaluate the output quality from English to Chinese phrase-based statistical (...
On integrating a language model into neural machine translation
Recent advances in end-to-end neural machine translation models have achieved promising results on high-resource language pairs such as En Fr and En De. One of the major factor behind these successes is the availability of high quality parallel corpora. ...
Using Translation Memory to Improve Neural Machine Translations
ICDLT '22: Proceedings of the 2022 6th International Conference on Deep Learning TechnologiesIn this paper, we describe a way of using translation memory (TM) to improve the translation quality and stability of neural machine translation (NMT) systems, especially when the sentences to be translated have high similarity with sentences stored in ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
Funding Sources
- National Natural Science Foundation of China
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 720Total Downloads
- Downloads (Last 12 months)405
- Downloads (Last 6 weeks)81
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in