[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A fast and scalable multidimensional multiple-choice knapsack heuristic

Published: 25 October 2013 Publication History

Abstract

Many combinatorial optimization problems in the embedded systems and design automation domains involve decision making in multidimensional spaces. The multidimensional multiple-choice knapsack problem (MMKP) is among the most challenging of the encountered optimization problems. MMKP problem instances appear for example in chip multiprocessor runtime resource management and in global routing of wiring in circuits. Chip multiprocessor resource management requires solving MMKP under real-time constraints, whereas global routing requires scalability of the solution approach to extremely large MMKP instances. This article presents a novel MMKP heuristic, CPH (for Compositional Pareto-algebraic Heuristic), which is a parameterized compositional heuristic based on the principles of Pareto algebra. Compositionality allows incremental computation of solutions. The parameterization allows tuning of the heuristic to the problem at hand. These aspects make CPH a very versatile heuristic. When tuning CPH for computation time, MMKP instances can be solved in real time with better results than the fastest MMKP heuristic so far. When tuning CPH for solution quality, it finds several new solutions for standard benchmarks that are not found by any existing heuristic. CPH furthermore scales to extremely large problem instances. We illustrate and evaluate the use of CPH in both chip multiprocessor resource management and in global routing.

References

[1]
Akbar, M. M., Rahman, M. S., Kaykobad, M., Manning, E. G., and Shoja, G. C. 2006. Solving the multidimensional multiple-choice knapsack problem by constructing convex hulls. Comput. Oper. Res. 33, 5, 1259--1273.
[2]
Bentley, J. 1980. Multidimensional divide-and-conquer. Comm. ACM 23, 214--229.
[3]
Borzsonyi, S., Kossmann, D., and Stocker, K. 2001. The skyline operator. In Proceedings of the IEEE Conference on Data Engineering. IEEE, 421--430.
[4]
Chang, Y.-J., Lee, Y.-T., and Wang, T.-C. 2008. NTHU-Route 2.0: a fast and stable global router. In Proceedings of the IEEE International Conference on Computer-Aided Design. 338--343.
[5]
Cherfi, N. 2009. Hybrid algorithms for knapsack problems. Ph.D. thesis, University of Paris I, France.
[6]
Cherfi, N. and Hifi, M. 2008. A column generation method for the multiple-choice multi-dimensional knapsack problem. Comput. Optim. Appl. 46, 1, 51--73.
[7]
Cherfi, N. and Hifi, M. 2009. Hybrid algorithms for the multiple-choice multi-dimensional knapsack problem. Int. J. Operational Research 5, 1, 89--109.
[8]
Cplex 2012. IBM ILOG Cplex. http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/.
[9]
Crévits, I., Hanafi, S., Mansi, R., and Wilbaut, C. 2012. Iterative semi-continuous relaxation heuristics for the multiple-choice multidimensional knapsack problem. Comput. Operations Research 39, 32--41.
[10]
Dai, K.-R., Liu, W.-H., and Li, Y.-L. 2012. NCTU-GR: Efficient simulated evolution-based rerouting and congestion-relaxed layer assignment on 3-d global routing. IEEE Trans. VLSI Syst. 20, 3, 459--472.
[11]
Geilen, M. and Basten, T. 2007. A calculator for Pareto points. In Proceedings of the Conference and Exhibition on Design, Automation and Test in Europe. IEEE, 285--290.
[12]
Geilen, M., Basten, T., Theelen, B. D., and Otten, R. 2005. An algebra of Pareto points. In Proceedings of the 5th International Conference on Application of Concurrency to System Design (ACSD'05). IEEE, 88--97.
[13]
Geilen, M., Basten, T., Theelen, B. D., and Otten, R. 2007. An algebra of Pareto points. Fundamenta Informaticae 78, 1, 35--74.
[14]
Godfrey, P., Shipley, R., and Gryz, J. 2005. Maximal vector computation in large data sets. In Proceedings of the 31st International Conference on Very Large Databases. VLDB Endowment, 229--240.
[15]
Hanafi, S., Mansi, R., and Wilbaut, C. 2009. Iterative relaxation-based heuristics for the multiple-choice multidimensional knapsack problem. In Proceedings of the 6th International Workshop on Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 5818, 73--83.
[16]
Hifi, M., Michrafy, M., and Sbihi, A. 2004. Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. Operational Research Soc. 55, 12, 1323--1332.
[17]
Hifi, M., Michrafy, M., and Sbihi, A. 2006. A reactive local search-based algorithm for the multiple-choice multidimensional knapsack problem. Comput. Optim. Appl. 33, 2--3, 271--285.
[18]
Hiremath, C. S. and Hill, R. R. 2007. New greedy heuristics for the multiple-choice multi-dimensional knapsack problem. Int. J. Operational Research 2, 4, 495--512.
[19]
Hu, J., Roy, J., and Markov, I. 2010. Completing high-quality global routes. In Proceedings of the International Symposium on Physical Design. ACM, 35--41.
[20]
ISPD Contests 2007, 2008. http://www.ispd.cc/contests/.
[21]
Khan, S. 1998. Quality adaptation in a multisession multimedia system: Model, algorithms and architecture. Ph.D. thesis, Univ. of Victoria, Victoria, B.C., Canada.
[22]
Khan, S., Li, K. F., Manning, E. G., and Akbar, M. M. 2002. Solving the knapsack problem for adaptive multimedia systems. Stud. Inform. Univ. 2, 1, 157--178.
[23]
Kung, H., Luccio, F., and Preparata, F. 1975. On finding the maxima of a set of vectors. J. ACM 22, 469--476.
[24]
MMKP Benchmarks. 2010. MMKP benchmarks. ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/MMKP/MMKP.html.
[25]
MMKP Benchmarks. 2012. MMKP benchmarks. http://www.es.ele.tue.nl/pareto/mmkp/.
[26]
Moser, M., Jokanovic, D. P., and Shiratori, N. 1997. An algorithm for the multidimensional multiple-choice knapsack problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 80, 3, 582--589.
[27]
Parra-Hernandez, R. and Dimopoulos, N. J. 2005. A new heuristic for solving the multichoice multidimensional knapsack problem. IEEE Trans. Syst. Man Cybernetics, Part A 35, 5, 708--717.
[28]
Pisinger, D. 1995. Algorithms for knapsack problems. Ph.D. thesis, DIKU, University of Copenhagen, Denmark.
[29]
Preparata, F. and Shamos, M. 1985. Computational Geometry: An Introduction. Springer.
[30]
Sbihi, A. 2003. Hybrid methods in combinatorial optimization: Exact algorithms and heuristics. Ph.D. thesis, Univ. of Paris I, France.
[31]
Sbihi, A. 2007. A best first search exact algorithm for the multiple-choice multidimensional knapsack problem. J. Comb. Optim. 13, 4, 337--351.
[32]
Shojaei, H., Ghamarian, A., Basten, T., Geilen, M., Stuijk, S., and Hoes, R. 2009. A parameterized compositional multi-dimensional multiple-choice knapsack heuristic for CMP run-time management. In Proceedings of the IEEE/ACM Design Automation Conference. ACM, 917--922.
[33]
Shojaei, H., Wu, T.-H., Davoodi, A., and Basten, T. 2010. A Pareto-algebraic framework for signal power optimization in global routing. In Proceedings of the International Symposium on Low-Power Electronics and Design. ACM. 407--412.
[34]
Simit-ARM 2012. SimIt-ARM. http://simit-arm.sourceforge.net.
[35]
Xu, Y. and Chu, C. 2011. MGR: Multi-level global router. In Proceedings of the IEEE International Conference on Computer-Aided Design. IEEE, 250--255.
[36]
Xu, Y., Zhang, Y., and Chu, C. 2009. Fastroute 4.0: global router with efficient via minimization. In Proceedings of the Asia and South Pacific Design Automation Conference. 576--581.
[37]
Ykman-Couvreur, C., Nollet, V., Catthoor, F., and Corporaal, H. 2011. Fast multidimension multichoice knapsack heuristic for MP-SoC runtime management. ACM Trans. Embed. Comput. Syst. 10, 3, Article 35.
[38]
Ykman-Couvreur, C., Nollet, V., Marescaux, T., Brockmeyer, E., Catthoor, F., and Corporaal, H. 2006. Fast multi-dimension multi-choice knapsack heuristic for MP-SoC run-time management. In Proceedings of the International Symposium on System-on-Chip. IEEE, 1--4.
[39]
Yukish, M. 2004. Algorithms to identify Pareto points in multi-dimensional data sets. Ph.D. thesis, Pennsylvania State University.

Cited By

View all
  • (2023)Primal-Dual-Based Computation Offloading Method for Energy-Aware Cloud-Edge CollaborationIEEE Transactions on Mobile Computing10.1109/TMC.2023.3237938(1-15)Online publication date: 2023
  • (2022)A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack ProblemMathematics10.3390/math1004060210:4(602)Online publication date: 16-Feb-2022
  • (2022)A decomposition approach for multidimensional knapsacks with family‐split penaltiesInternational Transactions in Operational Research10.1111/itor.1320731:4(2247-2271)Online publication date: 8-Sep-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems  Volume 18, Issue 4
Special Section on Networks on Chip: Architecture, Tools, and Methodologies
October 2013
380 pages
ISSN:1084-4309
EISSN:1557-7309
DOI:10.1145/2541012
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 25 October 2013
Accepted: 01 April 2013
Revised: 01 March 2013
Received: 01 August 2012
Published in TODAES Volume 18, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Runtime management and design-time optimization for embedded systems
  2. VLSI routing
  3. chip multiprocessors
  4. combinatorial optimization
  5. design automation
  6. knapsack problems

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)35
  • Downloads (Last 6 weeks)7
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Primal-Dual-Based Computation Offloading Method for Energy-Aware Cloud-Edge CollaborationIEEE Transactions on Mobile Computing10.1109/TMC.2023.3237938(1-15)Online publication date: 2023
  • (2022)A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack ProblemMathematics10.3390/math1004060210:4(602)Online publication date: 16-Feb-2022
  • (2022)A decomposition approach for multidimensional knapsacks with family‐split penaltiesInternational Transactions in Operational Research10.1111/itor.1320731:4(2247-2271)Online publication date: 8-Sep-2022
  • (2022)Simple strategies that generate bounded solutions for the multiple‐choice multi‐dimensional knapsack problem: a guide for OR practitionersInternational Transactions in Operational Research10.1111/itor.1314430:6(4061-4077)Online publication date: 11-Apr-2022
  • (2022)A two-phase kernel search variant for the multidimensional multiple-choice knapsack problemEuropean Journal of Operational Research10.1016/j.ejor.2021.05.007297:1(53-65)Online publication date: Feb-2022
  • (2022)Exponential extrapolation memory for tabu searchEURO Journal on Computational Optimization10.1016/j.ejco.2022.10002810(100028)Online publication date: 2022
  • (2022)Knapsack problems — An overview of recent advances. Part IIComputers and Operations Research10.1016/j.cor.2021.105693143:COnline publication date: 1-Jul-2022
  • (2021)Towards cloud-edge collaborative online video analytics with fine-grained serverless pipelinesProceedings of the 12th ACM Multimedia Systems Conference10.1145/3458305.3463377(80-93)Online publication date: 24-Jun-2021
  • (2021)EdgeDASH: Exploiting Network-Assisted Adaptive Video Streaming for Edge CachingIEEE Transactions on Network and Service Management10.1109/TNSM.2020.303714718:2(1732-1745)Online publication date: Jun-2021
  • (2021)Design and management of image processing pipelines within CPSMicroprocessors & Microsystems10.1016/j.micpro.2021.10435087:COnline publication date: 1-Nov-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media