[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Novel algorithms and equivalence optimisation for resource allocation in cloud computing

Published: 01 April 2015 Publication History

Abstract

In this paper, we model the optimisation of the resource allocation in cloud computing as a constraint satisfaction problem considering three types of resources CPU, RAM and bandwidth and design a Choco-Based algorithm CB for VM resource allocation in virtualised cloud data centres. We also propose an Improved First-Fit Decreasing Algorithm IFFD and an Improved Best-Fit Decreasing Algorithm IBFD and conduct performance evaluation experiments using Choco. The experimental results show that CB has better results, whereas its solution time is longer than IFFD and IBFD in resource allocation. Moreover, to reduce the complexity of solving the problem of CSP-based resource allocation, we propose an equivalence optimisation which can greatly reduce the search space for resource allocation by making tree pruning with resource equivalence. Then, a resource allocation algorithm based on Equivalent Optimisation EO is designed. Experimental results also show that compared with CB, EO greatly reduces the time of allocating resource of cloud computing.

References

[1]
Abdelsalam, H.S., Maly, K. and Kaminsky, D. (2009) 'Analysis of energy efficiency in clouds', Proceedings of 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns (COMPUTATIONWORLD'09), 15-20 November, Athens, Greece, pp.416-422.
[2]
Armbrust, M., Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I. and Zaharia, M. (2009) Above the Clouds: A Berkeley View of Cloud Computing, Technical Report, University of California at Berkley, 10 February, CA, USA.
[3]
Beloglazov, A., Abawajy, J. and Buyya, R. (2012) 'Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing', Future Generation Computer Systems, Vol. 28, No. 5, pp.755-768.
[4]
Beloglazov, A. and Buyya, R. (2010) 'Energy efficient resource management in virtualized cloud data centers', Proceedings of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid 2010), 17-20 May, Melbourne, Australia, pp.826-831.
[5]
Bichler, M., Setzer, T. and Speitkamp, B. (2006) 'Capacity planning for virtualized servers', Proceedings of Workshop on Information Technologies and Systems (WITS 2006), Milwaukee, Wisconsin, USA, pp.1-6.
[6]
Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. (2009) 'Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility', Future Generation Computer Systems, Vol. 25, No. 6, pp.599-616.
[7]
Chaisiri, S., Lee, B-S. and Niyato, D. (2009) 'Optimal virtual machine placement across multiple cloud providers', Proceedings of IEEE Asia-Pacific Services Computing Conference, APSCC'2009, Singapore, pp.103-110.
[8]
Chang, F-Z., Ren, J. and Viswanathan, R. (2010) 'Optimal resource allocation in clouds', Proceedings of IEEE 3rd International Conference on Cloud Computing, CLOUD 2010, 7-11 December, Miami, FL, pp.418-425.
[9]
Ferreto, T.C. and Netto, M.A.S., Calheiros, R.N. and De Rose, C.A.F. (2011) 'Server consolidation with migration control for virtualized data centers', Future Generation Computer Systems, Vol. 27, No. 8, pp.1027-1034.
[10]
Flahive, A., Taniar, D. and Wenny, J.W. (2013a) 'Ontology as a service (OaaS): extracting and replacing sub-ontologies on the cloud', Cluster Computing, Vol. 16, No. 4, pp.947-960.
[11]
Flahive, A., Taniar, D. and Wenny, J.W. (2013b) 'Ontology as a service (OaaS): a case for subontology merging on the cloud', The Journal of Supercomputing, Vol. 65, No. 1, pp.185-216.
[12]
Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008) 'Cloud computing and grid computing 360-degree compared', Proceedings of Grid Computing Environments Workshop, GCE'08, 12-16 November, Austin, TX, pp.1-10.
[13]
Garg, S.K., Yeo, C.S., Anandasivam, A. and Buyya, R. (2011) 'Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers', Journal of Parallel and Distributed Computing, Vol. 71, No. 6, pp.732-749.
[14]
Goel, S., Sharda, H. and Taniar, D. (2005) 'Replica synchronisation in grid databases', International Journal of Web and Grid Services, Vol. 1, No. 1, pp.87-112.
[15]
Govindan, S., Nath, A.R., Das, A., Urgaonkar, B. and Sivasubramaniam, A. (2009) 'Xen and co.: communication-aware CPU scheduling for consolidated Xen-based hosting platforms', IEEE Transactions on Computers, Vol. 27, No. 8, pp.1111-1125.
[16]
Hermenier, F., Lorca, X., Menaud, J-M., Muller, G. and Lawall, J. (2009) 'Entropy: a consolidation manager for cluster', Proceedings of the 2009 International Conference on Virtual Execution Environments, VEE'09, 11-13 March, New York, NY, USA, pp.41-50.
[17]
Jussien, N., Rochart, G. and Lorca, X. (2008) 'Choco: an open source java constraint programming library', Proceedings of workshop on Open-Source Software for Integer and Contraint Programming, OSSICP'08, 20-23 May, Paris, France, pp.1-7.
[18]
Khanna, G., Beaty, K., Kar, G. and Kochut, A. (2006) 'Application performance management in virtualized server environments', Proceedings of 10th IEEE/IFIP Network Operations and Management Symposium, NOMS 2006, Vancouver, BC, pp.373-381.
[19]
Lee, Y.C. and Zomaya, A.Y. (2012) 'Energy efficient utilization of resources in cloud computing systems', The Journal of Supercomputing, Vol. 60, No. 2, pp.268-280.
[20]
Li, J., Wang, Q., Wang, C., Cao, N., Ren, K. and Lou, W.J. (2010) 'Fuzzy keyword search over encrypted data in cloud computing', Proceedings of the 29th IEEE International Conference on Computer Communications, INFOCOM 2010, 14-19 March, San Diego, CA, pp.441-445.
[21]
Lin, W., Liang, C., Wang, J. and Buyya, R. (2014) 'Bandwidth-aware divisible task scheduling for cloud computing', Software: Practice and Experience, Vol. 44, No. 2, pp.163-174.
[22]
Lin, W., Peng, B., Liang, C. and Liu, B. (2013) 'Novel resource allocation model and algorithms for cloud computing', Proceedings of 2013 4th International Conference on Emerging Intelligent Data and Web Technologies, EIDWT 2013, 9-11 September, Xi'an, China, pp.77-82.
[23]
Lin, W., Wang, J., Liang, C. and Qi, D. (2011) 'A threshold-based dynamic resource allocation scheme for cloud computing', Procedia Engineering, Vol. 23, pp.695-703.
[24]
Meng, X., Pappas, V. and Zhang, L. (2010) 'Improving the scalability of data center networks with traffic-aware virtual machine placement', Proceedings of the 29th IEEE International Conference on Computer Communications, INFOCOM 2010, 14-19 March, San Diego, CA, United states, pp.1-9.
[25]
Rodero, I., Jaramillo, J., Quiroz, A., Parashar, M. and Guim, F. (2010) 'Energy-efficient application-aware online provisioning for virtualized clouds and data centers', Proceedings of International Conference on Green Computing, GREENCOMP'10, 15-18 August, Chicago, IL, pp.31-45.
[26]
Taniar, D., Leung, C.H.C., Wenny, J.W. and Goel, S. (2008) High Performance Parallel Database Processing and Grid Databases, John Wiley & Sons.
[27]
Taniar, D. and Wenny, J.W. (2004) 'Global parallel index for multi-processors database systems', Information Sciences, Vol. 165, Nos. 1/2, pp.103-127.
[28]
Van, H.N., Tran, F.D. and Menaud, J.M. (2009a) 'SLA-aware virtual resource management for cloud infrastructures', Proceedings of 9th IEEE International Conference on Computer and Information Technology CIT'09, 11-14 October 2009, Xiamen, China, pp.357-362.
[29]
Van, H.N., Tran, F.D. and Menaud, J.M. (2009b) 'Autonomic virtual resource management for service hosting platforms', Proceedings of ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD'09, 23 May, Vancouver, BC, pp.1-8.
[30]
Van, H.N., Tran, F.D. and Menaud, J.M. (2010) 'Performance and power management for cloud infrastructures', Proceedings of IEEE 3rd International Conference on Cloud Computing, CLOUD 2010, 5-10 July, Miami, FL, pp.329-336.
[31]
Vaquero, L.M., Rodero-Merino, L., Caceres, J. and Lindner, M. (2009) 'A break in the clouds: towards a cloud definition', SIGCOMM Computer Communication Review, Vol. 39, No. 1, pp.50-55.
[32]
Wei, G., Vasilakos, A.V., Zheng, Y. and Xiong, N.X. (2010) 'A game-theoretic method of fair resource allocation for cloud computing services', The Journal of Supercomputing, Vol. 52, No. 2, pp.252-269.
[33]
Younge, A.J., Laszewski, G.Y. and Wang, L. (2010) 'Efficient resource management for cloud computing environments', Proceedings of IEEE International Green Computing Conference, IGCC 2010, Chicago, IL, pp.357-364.
[34]
You, X., Xu, X., Wan, J. and Yu, D. (2009) 'RAS-M: resource allocation strategy based on market mechanism in cloud computing', Proceedings of 4th China Grid Annual Conference, China Grid'09, 15-18 August, Yantai, Shandong, China, pp.256-263.

Cited By

View all
  • (2022)Effective scheduling algorithm for load balancing in fog environment using CNN and MPSOKnowledge and Information Systems10.1007/s10115-021-01649-264:3(773-797)Online publication date: 1-Mar-2022
  • (2022)Ensemble feature selection for multi‐label text classificationInternational Journal of Intelligent Systems10.1002/int.2304437:12(11319-11341)Online publication date: 29-Dec-2022
  • (2022)Multiobjective whale optimization algorithm‐based feature selection for intelligent systemsInternational Journal of Intelligent Systems10.1002/int.2297937:11(9037-9054)Online publication date: 26-Sep-2022
  • Show More Cited By
  1. Novel algorithms and equivalence optimisation for resource allocation in cloud computing

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image International Journal of Web and Grid Services
    International Journal of Web and Grid Services  Volume 11, Issue 2
    April 2015
    103 pages
    ISSN:1741-1106
    EISSN:1741-1114
    Issue’s Table of Contents

    Publisher

    Inderscience Publishers

    Geneva 15, Switzerland

    Publication History

    Published: 01 April 2015

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Effective scheduling algorithm for load balancing in fog environment using CNN and MPSOKnowledge and Information Systems10.1007/s10115-021-01649-264:3(773-797)Online publication date: 1-Mar-2022
    • (2022)Ensemble feature selection for multi‐label text classificationInternational Journal of Intelligent Systems10.1002/int.2304437:12(11319-11341)Online publication date: 29-Dec-2022
    • (2022)Multiobjective whale optimization algorithm‐based feature selection for intelligent systemsInternational Journal of Intelligent Systems10.1002/int.2297937:11(9037-9054)Online publication date: 26-Sep-2022
    • (2020)An energy-efficient algorithm for virtual machine placement optimization in cloud data centersCluster Computing10.1007/s10586-020-03096-023:4(3421-3434)Online publication date: 1-Dec-2020
    • (2018)A Task Scheduling Algorithm Based on Classification Mining in Fog Computing EnvironmentWireless Communications & Mobile Computing10.1155/2018/21023482018Online publication date: 1-Jan-2018
    • (2018)Resource provisioning for cloud applicationsThe Journal of Supercomputing10.1007/s11227-017-2156-x74:12(6470-6501)Online publication date: 1-Dec-2018
    • (2018)A new container scheduling algorithm based on multi-objective optimizationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3403-722:23(7741-7752)Online publication date: 1-Dec-2018
    • (2017)Multi-resource scheduling and power simulation for cloud computingInformation Sciences: an International Journal10.1016/j.ins.2017.02.054397:C(168-186)Online publication date: 1-Aug-2017
    • (2017)An intelligent power consumption model for virtual machines under CPU-intensive workload in cloud environmentSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2154-621:19(5755-5764)Online publication date: 1-Oct-2017
    • (2017)Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristicsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-015-1862-721:5(1301-1314)Online publication date: 1-Mar-2017
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media