[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3274895.3274944acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
poster

An ontology-based algorithm for managing the evolution of multi-level territorial partitions

Published: 06 November 2018 Publication History

Abstract

Through times, regions all over the world are very often subject to change (their names, their belonging, their composition, and their geometries). In this paper, we present a Semantic Matching Algorithm for automatically detecting, describing and publishing in the Linked Open Data Web, rich descriptions of changes occurring in multi-level territorial partitions (e.g., partitions made of major regions, regions and districts levels). We adopt a Linked Data (LD) approach for the semantic descriptions of the changes they undergo, relying on two existing generic ontologies, TSN-Ontology and TSN-Change Ontology. The created RDF graphs draw the lineage of each region over time (horizontal reading of the graphs), as well as the propagation of a change event through the partition levels (vertical reading).

References

[1]
Ben Balter. 2014. Diffable, more customizable maps. https://blog.github.com/2014-02-05-diffable-more-customizable-maps/
[2]
Atef Bel Adj Ali and François Vauglin. 1999. Geometric Matching of Polygons in GISs and assessment of Geometrical Quality of Polygons. In International Symposium on Spatial Data Quality'99, Michael Goodchild Wenzhong Shi and Peter Fisher (Eds.). Hong Kong Polytechnic University, 33--43.
[3]
Camille Bernard, Marlène Villanova-Oliver, Jérôme Gensel, and Hy Dao. 2018. Modeling Changes in Territorial Partitions Over Time: Ontologies TSN and TSN-change. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18). ACM, 866--875.
[4]
Christophe Claramunt and Marius Thériault. 1995. Managing Time in GIS An Event-Oriented Approach. In Recent Advances in Temporal Databases, C. J. van Rijsbergen, James Clifford, and Alexander Tuzhilin (Eds.). Springer London, London, 23--42.
[5]
G. Del Mondo, M.A. Rodríguez, C. Claramunt, L. Bravo, and R. Thibaud. 2013. Modeling consistency of spatio-temporal graphs. Data & Knowledge Engineering 84 (March 2013), 59--80.
[6]
Thore Fechner, Dennis Wilhelm, and Christian Kray. 2015. Ethermap: Real-time Collaborative Map Editing. In CHI.
[7]
Benjamin Harbelot, Helbert Arenas, and Christophe Cruz. 2013. Continuum: A spatiotemporal data model to represent and qualify filiation relationships. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming. ACM, 76--85.
[8]
Benjamin Harbelot, Helbert Arenas, and Christophe Cruz. 2015. LC3: A spatio-temporal and semantic model for knowledge discovery from geospatial datasets. Web Semantics: Science, Services and Agents on the World Wide Web 35 (2015), 3--24. http://www.sciencedirect.com/science/article/pii/S1570826815000840
[9]
Boundless Inc. 2018. GeoGig. http://geogig.org/
[10]
Tomi Kauppinen and Eero Hyvönen. 2007. Modeling and reasoning about changes in ontology time series. In Ontologies. Springer, 319--338.
[11]
Tomi Kauppinen, Jari Väätäinen, and Eero Hyvönen. 2008. Creating and using geospatial ontology time series in a semantic cultural heritage portal. Springer.
[12]
Javier Lacasta, Francisco Javier Lopez-Pellicer, Aneta Florczyk, Francisco Javier Zarazaga-Soria, and Javier Nogueras-Iso. 2014. Population of a spatio-temporal knowledge base for jurisdictional domains. International Journal of Geographical Information Science 28, 9 (Sept. 2014), 1964--1987.
[13]
Vladimir Iosifovich Levenshtein. 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 8 (1966), 707--710. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.
[14]
Luís Theodoro O. Camargo Claudia Bauzer Medeiros Longo, João Sávio C. and André Santanchè. 2012. Using the DBV Model to Maintain Versions of Multi-scale Geospatial Data. In Advances in Conceptual Modeling, David et al. Hutchison (Ed.). Vol. 7518. Springer Berlin Heidelberg, Berlin, Heidelberg, 284--293.
[15]
Marco Negretti. 2015. Operation-based revision control for geospatial data sets. (2015), 15.
[16]
Christine Plumejeaud. 2011. Modèles et méthodes pour l'information spatio-temporelle évolutive. Ph.D. Dissertation. Université de Grenoble.
[17]
Christine Plumejeaud, Hélène Mathian, Jérôme Gensel, and Claude Grasland. 2011. Spatio-temporal analysis of territorial changes from a multi-scale perspective. International Journal of Geographical Information Science 25, 10 (2011), 1597--1612.
[18]
M. Wachowicz. 2003. Object-Oriented Design for Temporal GIS. Taylor & Francis.

Cited By

View all
  • (2023)Building spatio-temporal knowledge graphs from vectorized topographic historical mapsSemantic Web10.3233/SW-22291814:3(527-549)Online publication date: 5-Apr-2023
  • (2022) Symbolic and subsymbolic GeoAI : Geospatial knowledge graphs and spatially explicit machine learning Transactions in GIS10.1111/tgis.1301226:8(3118-3124)Online publication date: 18-Dec-2022
  • (2022)Theseus: A framework for managing knowledge graphs about geographical divisions and their evolutionTransactions in GIS10.1111/tgis.1298826:8(3202-3224)Online publication date: 23-Sep-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '18: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2018
655 pages
ISBN:9781450358897
DOI:10.1145/3274895
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2018

Check for updates

Author Tags

  1. change detection
  2. evolutive multi-level territorial partition
  3. geospatial data matching
  4. linked open data
  5. semantic matching algorithm
  6. semantic web
  7. spatio-temporal ontology
  8. versioning

Qualifiers

  • Poster

Conference

SIGSPATIAL '18
Sponsor:

Acceptance Rates

SIGSPATIAL '18 Paper Acceptance Rate 30 of 150 submissions, 20%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Building spatio-temporal knowledge graphs from vectorized topographic historical mapsSemantic Web10.3233/SW-22291814:3(527-549)Online publication date: 5-Apr-2023
  • (2022) Symbolic and subsymbolic GeoAI : Geospatial knowledge graphs and spatially explicit machine learning Transactions in GIS10.1111/tgis.1301226:8(3118-3124)Online publication date: 18-Dec-2022
  • (2022)Theseus: A framework for managing knowledge graphs about geographical divisions and their evolutionTransactions in GIS10.1111/tgis.1298826:8(3202-3224)Online publication date: 23-Sep-2022
  • (2020)Semantic Graphs to Reflect the Evolution of Geographic DivisionsHandbook of Big Geospatial Data10.1007/978-3-030-55462-0_6(135-159)Online publication date: 17-Dec-2020
  • (2020)Building Linked Spatio-Temporal Data from Vectorized Historical MapsThe Semantic Web10.1007/978-3-030-49461-2_24(409-426)Online publication date: 27-May-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media