[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Volumetric Homogenization for Knitwear Simulation

Published: 19 November 2024 Publication History

Abstract

This paper presents volumetric homogenization, a spatially varying homogenization scheme for knitwear simulation. We are motivated by the observation that macro-scale fabric dynamics is strongly correlated with its underlying knitting patterns. Therefore, homogenization towards a single material is less effective when the knitting is complex and non-repetitive. Our method tackles this challenge by homogenizing the yarn-level material locally at volumetric elements. Assigning a virtual volume of a knitting structure enables us to model bending and twisting effects via a simple volume-preserving penalty and thus effectively alleviates the material nonlinearity. We employ an adjoint Gauss-Newton formulation[Zehnder et al. 2021] to battle the dimensionality challenge of such per-element material optimization. This intuitive material model makes the forward simulation GPU-friendly. To this end, our pipeline also equips a novel domain-decomposed subspace solver crafted for GPU projective dynamics, which makes our simulator hundreds of times faster than the yarn-level simulator. Experiments validate the capability and effectiveness of volumetric homogenization. Our method produces realistic animations of knitwear matching the quality of full-scale yarn-level simulations. It is also orders of magnitude faster than existing homogenization techniques in both the training and simulation stages.

References

[1]
Grégoire Allaire and Robert Brizzi. 2005. A multiscale finite element method for numerical homogenization. Multiscale Modeling & Simulation 4, 3 (2005), 790--812.
[2]
Erik Andreassen and Casper Schousboe Andreasen. 2014. How to determine composite material properties using numerical homogenization. Computational Materials Science 83 (2014), 488--495.
[3]
David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '94). Association for Computing Machinery, New York, NY, USA, 23--34.
[4]
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). Association for Computing Machinery, New York, NY, USA, 43--54.
[5]
David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Transactions on Graphics (TOG) 22, 3 (2003), 862--870.
[6]
Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen Bathe, MA, USA.
[7]
Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Transactions on graphics (TOG) 29, 4 (2010), 1--10.
[8]
Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A quadratic bending model for inextensible surfaces. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Cagliari, Sardinia, Italy) (SGP '06). Eurographics Association, Goslar, DEU, 227--230.
[9]
Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 63, 12 pages.
[10]
Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2021. PBNS: physically based neural simulation for unsupervised garment pose space deformation. ACM Trans. Graph. 40, 6, Article 198 (dec 2021), 14 pages.
[11]
Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2022. Neural cloth simulation. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1--14.
[12]
Pablo J Blanco, Pablo J Sánchez, Eduardo A de Souza Neto, and Raúl A Feijóo. 2016. Variational foundations and generalized unified theory of RVE-based multiscale models. Archives of Computational Methods in Engineering 23 (2016), 191--253.
[13]
Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM transactions on graphics (TOG) 22, 3 (2003), 917--924.
[14]
Léon Bottou et al. 1991. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes 91, 8 (1991), 12.
[15]
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4, Article 154 (jul 2014), 11 pages.
[16]
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (jul 2002), 594--603.
[17]
R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '03). Eurographics Association, Goslar, DEU, 28--36.
[18]
Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. A multiresolution framework for dynamic deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA '02). Association for Computing Machinery, New York, NY, USA, 41--47.
[19]
Juan J. Casafranca, Gabriel Cirio, Alejandro Rodriguez, Eder Miguel, and Miguel A. Otaduy. 2020. Mixing Yarns and Triangles in Cloth Simulation. Computer Graphics Forum 39, 2 (2020), 101--110.
[20]
Desai Chen, David IW Levin, Wojciech Matusik, and Danny M Kaufman. 2017. Dynamics-aware numerical coarsening for fabrication design. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--15.
[21]
Desai Chen, David IW Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven finite elements for geometry and material design. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.
[22]
Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical coarsening using discontinuous shape functions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--12.
[23]
Yunuo Chen, Tianyi Xie, Cem Yuksel, Danny Kaufman, Yin Yang, Chenfanfu Jiang, and Minchen Li. 2023. Multi-Layer Thick Shells. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH '23). Association for Computing Machinery, New York, NY, USA, Article 25, 9 pages.
[24]
Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3 (jul 2002), 604--611.
[25]
Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-level simulation of woven cloth. ACM Trans. Graph. 33, 6, Article 207 (nov 2014), 11 pages.
[26]
Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient simulation of knitted cloth using persistent contacts. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '15). Association for Computing Machinery, New York, NY, USA, 55--61.
[27]
David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages.
[28]
Roy R Craig Jr. 1985. A review of time-domain and frequency-domain component mode synthesis method. (1985).
[29]
Roy R Craig Jr and Arthur L Hale. 1988. Block-Krylov component synthesis method for structural model reduction. Journal of Guidance, Control, and Dynamics 11, 6 (1988), 562--570.
[30]
Eduardo Alberto De Souza Neto, Pablo Javier Blanco, Pablo Javier Sánchez, and Raúl Antonino Feijóo. 2015. An RVE-based multiscale theory of solids with micro-scale inertia and body force effects. Mechanics of Materials 80 (2015), 136--144.
[31]
Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. Diffpd: Differentiable projective dynamics. ACM Transactions on Graphics (TOG) 41, 2 (2021), 1--21.
[32]
Elliot English and Robert Bridson. 2008. Animating developable surfaces using non-conforming elements. ACM Trans. Graph. 27, 3 (aug 2008), 1--5.
[33]
Hans A Eschenauer and Niels Olhoff. 2001. Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54, 4 (2001), 331--390.
[34]
Xudong Feng, Wenchao Huang, Weiwei Xu, and Huamin Wang. 2022. Learning-based bending stiffness parameter estimation by a drape tester. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1--16.
[35]
Xudong Feng, Weiwei Xu, Huamin Wang, and Yin Yang. 2024. Neural-Assisted Homogenization of Yarn-Level Cloth. ACM Transactions on Graphics (TOG) 34, 4 (2024), 1--11.
[36]
Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. 35, 6, Article 214 (Nov. 2016), 9 pages.
[37]
Akash Garg, Eitan Grinspun, Max Wardetzky, and Denis Zorin. 2007. Cubic shells. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '07). Eurographics Association, Goslar, DEU, 91--98.
[38]
Marc GD Geers, Varvara G Kouznetsova, and WAM1402 Brekelmans. 2010. Multi-scale computational homogenization: Trends and challenges. Journal of computational and applied mathematics 234, 7 (2010), 2175--2182.
[39]
Dan Givoli. 2021. A tutorial on the adjoint method for inverse problems. Computer Methods in Applied Mechanics and Engineering 380 (2021), 113810.
[40]
Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (jul 2007), 49--es.
[41]
F. Sebastin Grassia. 1998. Practical parameterization of rotations using the exponential map. J. Graph. Tools 3, 3 (mar 1998), 29--48.
[42]
Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '03). Eurographics Association, Goslar, DEU, 62--67.
[43]
Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A simple framework for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281--290.
[44]
Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen.tuxfamily.org 3, 1 (2010).
[45]
Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph Teran. 2018. A material point method for thin shells with frictional contact. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.
[46]
David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust Treatment of Simultaneous Collisions. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 23, 4 pages.
[47]
Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O'Brien. 2012. Updated sparse cholesky factors for corotational elastodynamics. ACM Transactions on Graphics (TOG) 31, 5 (2012), 1--13.
[48]
Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3 (aug 2008), 1--9.
[49]
Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, Article 105 (jul 2010), 10 pages.
[50]
Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Cagliari, Sardinia, Italy) (SGP '06). Eurographics Association, Goslar, DEU, 61--70.
[51]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Transactions on graphics (TOG) 28, 3 (2009), 1--8.
[52]
Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Computer Graphics Forum 39, 8 (2020), 171--179.
[53]
Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations (ICLR). ICLR, San Diega, CA, USA, 15 pages.
[54]
Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM Trans. Graph. 41, 4, Article 67 (jul 2022), 14 pages.
[55]
Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang. 2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1--16.
[56]
Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L James, and Steve Marschner. 2018. Interactive design of periodic yarn-level cloth patterns. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--15.
[57]
Yongjoon Lee, Sung-eui Yoon, Seungwoo Oh, Duksu Kim, and Sunghee Choi. 2010. Multi-Resolution Cloth Simulation. Computer Graphics Forum (2010).
[58]
Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby, George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (July 2018), 15 pages.
[59]
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.
[60]
Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. 42, 1, Article 2 (oct 2022), 20 pages.
[61]
Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc., Vancouver, Canada.
[62]
Chenchen Liu and Celia Reina. 2016. Discrete averaging relations for micro to macro transition. Journal of Applied Mechanics 83, 8 (2016), 081006.
[63]
Tiantian Liu, Adam W Bargteil, James F O'Brien, and Ladislav Kavan. 2013. Fast simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1--7.
[64]
E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput. Graph. Forum 31, 2pt2 (May 2012), 519--528.
[65]
Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A. Otaduy. 2013. Modeling and Estimation of Internal Friction in Cloth. ACM Trans. Graph. 32, 6, Article 212 (Nov. 2013), 10 pages.
[66]
Jorge J Moré. 2006. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical analysis: proceedings of the biennial Conference held at Dundee, June 28--July 1, 1977. Springer Berlin, Heidelberg, Heidelberg, Germany, 105--116.
[67]
Rahul Narain, Tobias Pfaff, and James F O'Brien. 2013. Folding and crumpling adaptive sheets. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--8.
[68]
Rahul Narain, Armin Samii, and James F O'brien. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM transactions on graphics (TOG) 31, 6 (2012), 1--10.
[69]
Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting machine programming. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--13.
[70]
Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation of Laplace-Beltrami Eigenproblems. Computer Graphics Forum 37, 5 (2018), 121--134.
[71]
Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, Article 52 (jul 2009), 9 pages.
[72]
Jorge Nocedal and Stephen J Wright. 1999. Numerical optimization. Springer, New York, NY, USA.
[73]
Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit Contact Handling for Deformable Objects. Computer Graphics Forum 28, 2 (2009), 559--568.
[74]
Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352.
[75]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4 (2015), 135--1.
[76]
Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph. 37, 4, Article 42 (jul 2018), 14 pages.
[77]
Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. 2017. ClothCap: Seamless 4D clothing capture and retargeting. ACM Transactions on Graphics (ToG) 36, 4 (2017), 1--15.
[78]
Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour. In Proceedings of Graphics Interface '95 (Quebec, Quebec, Canada) (GI '95). Canadian Human-Computer Communications Society, Toronto, Ontario, Canada, 147--154.
[79]
Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Computer Animation and Simulation '97, Daniel Thalmann and Michiel van de Panne (Eds.). Springer Vienna, Vienna, 177--189.
[80]
Rosa M. Sánchez-Banderas, Alejandro Rodriguez, Héctor Barreiro, and Miguel A. Otaduy. 2020. Robust eulerian-on-lagrangian rods. ACM Trans. Graph. 39, 4, Article 59 (aug 2020), 10 pages.
[81]
Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019), 355--366.
[82]
Igor Santesteban, Miguel A Otaduy, and Dan Casas. 2022. Snug: Self-supervised neural dynamic garments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8140--8150.
[83]
Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. 2001. PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Generation Computer Systems 18, 1 (2001), 69--78.
[84]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Transactions on Graphics (Tog) 34, 4 (2015), 1--13.
[85]
Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth. ACM Trans. Graph. 39, 4 (2020), 48.
[86]
Georg Sperl, Rosa M. Sánchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A. Otaduy. 2022. Estimation of yarn-level simulation models for production fabrics. ACM Trans. Graph. 41, 4, Article 65 (jul 2022), 15 pages.
[87]
J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '07). Eurographics Association, Goslar, DEU, 63--72.
[88]
Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation multigrid for cloth simulation. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--13.
[89]
Albert Tarantola. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
[90]
Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 205--214.
[91]
Rosell Torres, Alejandro Rodriguez, José M Espadero, and Miguel A Otaduy. 2016. High-resolution interaction with corotational coarsening models. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--11.
[92]
Bruno Vallet and Bruno Lévy. 2008. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27, 2 (2008), 251--260.
[93]
Pascal Volino and Nadia Magnenat Thalmann. 2000. Implementing Fast Cloth Simulation with Collision Response. In Proceedings of the International Conference on Computer Graphics (CGI '00). IEEE Computer Society, USA, 257.
[94]
Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, Yajuan Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math kernel library. High-Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC Architectures (2014), 167--188.
[95]
HuaminWang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective and Position-Based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015), 9 pages.
[96]
Huamin Wang. 2018. Rule-free sewing pattern adjustment with precision and efficiency. ACM Trans. Graph. 37, 4, Article 53 (jul 2018), 13 pages.
[97]
Huamin Wang, James O'Brien, and Ravi Ramamoorthi. 2010. Multi-resolution isotropic strain limiting. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1--10.
[98]
Huamin Wang, James F. O'Brien, and Ravi Ramamoorthi. 2011. Data-Driven Elastic Models for Cloth: Modeling and Measurement. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH '11). Association for Computing Machinery, New York, NY, USA, Article 71, 12 pages.
[99]
Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6, Article 212 (Nov. 2016), 10 pages.
[100]
Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang. 2018. Parallel Multigrid for Nonlinear Cloth Simulation. Computer Graphics Forum 37, 7 (2018), 131--141.
[101]
Zhendong Wang, Yin Yang, and Huamin Wang. 2023. Stable Discrete Bending by Analytic Eigensystem and Adaptive Orthotropic Geometric Stiffness. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1--16.
[102]
Nicholas J Weidner, Kyle Piddington, David IW Levin, and Shinjiro Sueda. 2018. Eulerian-on-lagrangian cloth simulation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--11.
[103]
Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable stitch meshes. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1--13.
[104]
Kui Wu, Marco Tarini, Cem Yuksel, Jim McCann, and Xifeng Gao. 2021. Wearable 3D Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World Objects. IEEE Transactions on Visualization & Computer Graphics 1, 01 (feb 2021), 1--1.
[105]
Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion Method for GPU-based Cloth Self Collisions. ACM Trans. Graph. 40, 1, Article 5 (dec 2020), 18 pages.
[106]
Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid method for real-time simulation of deformable objects. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--13.
[107]
Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--11.
[108]
Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware multidomain subspace deformation. IEEE transactions on visualization and computer graphics 19, 10 (2013), 1633--1645.
[109]
Cem Yuksel, Jonathan M Kaldor, Doug L James, and Steve Marschner. 2012. Stitch meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--12.
[110]
Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2021. SGN: Sparse Gauss-Newton for Accelerated Sensitivity Analysis. ACM Trans. Graph. 41, 1, Article 4 (sep 2021), 10 pages.
[111]
Yumin Zhang, Steven Garcia, Weiwei Xu, Tianjia Shao, and Yin Yang. 2018. Efficient voxelization using projected optimal scanline. Graphical Models 100 (2018), 61--70.
[112]
Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Transactions on Graphics (TOG) 29, 2 (2010), 1--18.
[113]
Simon Zimmermann, Roi Poranne, James M. Bern, and Stelian Coros. 2019. Puppet-Master: robotic animation of marionettes. ACM Trans. Graph. 38, 4, Article 103 (jul 2019), 11 pages.
[114]
Borut Žalik, Gordon Clapworthy, and Črtomir Oblonšek. 1997. An Efficient Code-Based Voxel-Traversing Algorithm. Computer Graphics Forum 16, 2 (1997), 119--128.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 6
December 2024
1828 pages
EISSN:1557-7368
DOI:10.1145/3702969
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2024
Published in TOG Volume 43, Issue 6

Check for updates

Author Tags

  1. yarn-level simulation
  2. homogenization
  3. physics-based simulation
  4. domain decomposition

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 40
    Total Downloads
  • Downloads (Last 12 months)40
  • Downloads (Last 6 weeks)40
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media