[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights

Published: 01 January 2019 Publication History

Abstract

Visualizing 3D trajectories to extract insights about their similarities and spatial configuration is a critical task in several domains. Air traffic controllers for example deal with large quantities of aircrafts routes to optimize safety in airspace and neuroscientists attempt to understand neuronal pathways in the human brain by visualizing bundles of fibers from DTI images. Extracting insights from masses of 3D trajectories is challenging as the multiple three dimensional lines have complex geometries, may overlap, cross or even merge with each other, making it impossible to follow individual ones in dense areas. As trajectories are inherently spatial and three dimensional, we propose FiberClay: a system to display and interact with 3D trajectories in immersive environments. FiberClay renders a large quantity of trajectories in real time using GP-GPU techniques. FiberClay also introduces a new set of interactive techniques for composing complex queries in 3D space leveraging immersive environment controllers and user position. These techniques enable an analyst to select and compare sets of trajectories with specific geometries and data properties. We conclude by discussing insights found using FiberClay with domain experts in air traffic control and neurology.

References

[1]
Companion video. [Online]. Available: http://recherche.enac.fr/-hurter/FiberClav.html. Accessed: 2018-08-01.
[2]
C. Ahlberg and B. Shneiderman. “Visual information seeking: Tight coupling of dynamic query filters with starfield displays”. In The Craft of Information Visualization, pp. 7–13. Elsevier, 2003. 10.10161B978-0-08-051574-8.50047-9.
[3]
Y. Assaf and O. Pasternak. Diffusion tensor imaging (dti)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34 (1) pp. 51–61, 2008. https://doi.org/10.1007/s12031-007-0029-0.
[4]
B. Bach, R. Dachselt, S. Carpendale, T. Dwyer, C. Collins, and B. Lee. Immersive analytics: Exploring future interaction and visualization technologies for data analytics. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces, ISS'16, pp. 529–533. ACM, New York, NY, USA, 2016. https://doi.org/10.1145/2992154.2996365.
[5]
B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale. A descriptive framework for temporal data visualizations based on generalized spacetime cubes. Computer Graphics Forum, 36 (6) pp. 36–61. https://doi.org/10.1111/cgf.12804.
[6]
F. Bacim, R. Kopper, and D.A. Bowman. Design and evaluation of 3d selection techniques based on progressive refinement. International Journal of Human-Computer Studies, 71 (7) pp. 785–802, 2013. https://doi.org/10.1016/j.ijhcs.2013.03.003.
[7]
R.A. Becker and W.S. Cleveland. Brushing scatterplots. Technometrics, 29 (2) pp. 127–142, May 1987. https://doi.org/10.2307/1269768.
[8]
L. Besanon, P. Issartel, M. Ammi, and T. Isenberg. Hybrid tactile/tangible interaction for 3d data exploration. IEEE Transactions on Visualization and Computer Graphics, 23 (1) pp. 881–890, Jan 2017. https://doi.org/10.1109/TVCG.2016.2599217.
[9]
A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.D. Fekete. Graphdice: A system for exploring multivariate social networks. In Proceedings of the 12th Eurographics / IEEE - VGTC Conference on Visualization, EuroVis'10, pp. 863–872. The Eurographs Association John Wiley Sons, Ltd., Chichester, UK, 2010. https://doi.org/10.1111/j.1467-8659.2009.01687.x.
[10]
M. Borkin, K. Gajos, A. Peters, D. Mitsouras, S. Melchionna, F. Rybicki, C. Feldman, and H. Pfister. Evaluation of artery visualizations for heart disease diagnosis. IEEE transactions on visualization and computer graphics, 17 (12) pp. 2479–2488, 2011. https://doi.org/10.1109/TVCG.2011.192.
[11]
R. Brath. 3d infovis is here to stay: Deal with it. In 2014 IEEE VIS International Workshop on 3DVis (3DVis), pp. 25–31, Nov 2014. https://doi.org/10.1109/3DVis.2014.7160096.
[12]
A. Buja, J.A. McDonald, J. Michalak, and W. Stuetzle. Interactive data visualization using focusing and linking. In Visualization, 1991. Visualization'91, Proceedings., IEEE Conference on, pp. 156–163. IEEE, 1991. https://doi.org/10.1109/VISUAL.1991.175794.
[13]
T. Chandler, M. Cordeil, T. Czauderna, T. Dwyer, J. Glowacki, C. Goncu, M. Klapperstueck, K. Klein, K. Marriott, F. Schreiber, and E. Wilson. Immersive analytics. In 2015 Big Data Visual Analytics (BDVA), pp. 1–8, Sept 2015. 10.1109IBDVA.2015.7314296.
[14]
M. Cordeil, A. Cunningham, T. Dwyer, B.H. Thomas, and K. Marriott. Imaxes: Immersive axes as embodied affordances for interactive multivariate data visualisation. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST'17, pp. 71–83. ACM, New York, NY, USA, 2017. https://doi.org/10.1145/3126594.3126613.
[15]
T. Dwyer, N.H. Riche, K. Klein, W. Stuerzlinger, and B. Thomas. Immersive Analytics (Dagstuhl Seminar 16231). Dagstuhl Reports, 6 (6) pp. 1–9, 2016. https://doi.org/10.4230/DagRep.6.6.1.
[16]
N. Elmqvist, P. Dragicevic, and J.D. Fekete. Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics, 14 (6) pp. 1539–1148, Nov 2008. https://doi.org/10.1109/TVCG.2008.153.
[17]
O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-based edge bundling for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 17 (12) pp. 2364–2373, Dec 2011. https://doi.org/10.1109/TVCG.2011.233.
[18]
M. Erwig and M. Schneider. Query-by-Trace: Visual Predicate Specification in Spatio-Temporal Databases, pp. 199–218. Boston, MA: Springer US, 2000. https://doi.org/10.1007/978-0-387-35504-7_14.
[19]
M.H. Everts, E. Begue, H. Bekker, J. B. T.M. Roerdink, and T. Isen-berg. Exploration of the brain's white matter structure through visual abstraction and multi-scale local fiber tract contraction. IEEE Transactions on Visualization and Computer Graphics, 21 (7) pp. 808–821, 2015. https://doi.org/10.1109/TVCG.2015.2403323.
[20]
N. Ferreira, J. Poco, H.T. Vo, J. Freire, and C.T. Silva. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. IEEE Transactions on Visualization and Computer Graphics, 19 (12) pp. 2149–2158, Dec 2013. https://doi.org/10.1109/TVCG.2013.226.
[21]
D. Filonik, T. Bednarz, M. Rittenbruch, and M. Foth. Glance: Generalized geometric primitives and transformations for information visualization in ar/vr environments. In Proceedings-VRCAI 2016: 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, vol. 1, pp. 461–468, 2016. https://doi.org/10.1145/3013971.3014006.
[22]
J. Heer, M. Agrawala, and W. Willett. Generalized selection via interactive query relaxation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 959–968. ACM, 2008. https://doi.org/10.1145/1357054.1357203.
[23]
H. Hochheiser and B. Shneiderman. Dynamic query tools for time series data sets: Timebox widgets for interactive exploration. Information Visualization, 3 (1) pp. 1–18, 2004. https://doi.org/10.1057/palgrave.ivs.9500061.
[24]
D. Holten, P. Isenberg, J.J. van Wijk, and J.D. Fekete. An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In 2011 IEEE Pacific Visualization Symposium, pp. 195–202, March 2011. https://doi.org/10.1109/PACIFICVIS.2011.5742390.
[25]
Y.-J. Huang, T. Fujiwara, Y.-X. Lin, W.-C. Lin, and K.-L. Ma. A gesture system for graph visualization in virtual reality environments. In 2017 IEEE Pacific Visualization Symposium (PacificVis), pp. 41–45, April 2017. https://doi.org/10.1109/PACIFICVIS.2017.8031577.
[26]
C. Hurter, R. Alligier, D. Gianazza, S. Puechmorel, G. Andrienko, and N. Andrienko. Wind parameters extraction from aircraft trajectories. Computers, Environment and Urban Systems, 47: pp. 28–43, 2014. Progress in Movement Analysis Experiences with Real Data. https://doi.org/10.1016/j.compen-vurbsys.2014.01.005.
[27]
C. Hurter, G. Andrienko, N. Andrienko, R. Gting, and M. Sakr. Air Traffic Analysis, p. 240258. Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139128926.013.
[28]
C. Hurter, S. Conversy, D. Gianazza, and A. Telea. Interactive image-based information visualization for aircraft trajectory analysis. Transportation Research Part C: Emerging Technologies, 47: pp. 207–227, 2014. https://doi.org/10.1016/j.trc.2014.03.005.
[29]
C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density estimation. Comput. Graph. Forum, 31(3 pt. ): pp. 865–874, June 2012. https://doi.org/10.1111/j.1467-8659.2012.03079.x.
[30]
C. Hurter, S. Puechmorel, F. Nicol, and A. Telea. Functional decomposition for bundled simplification of trail sets. IEEE Transactions on Visualization and Computer Graphics, 24 (1) pp. 500–510, Jan 2018. https://doi.org/10.1109/TVCG.2017.2744338.
[31]
C. Hurter, R. Taylor, S. Carpendale, and A. Telea. Color tunneling: Interactive exploration and selection in volumetric datasets. In 2014 IEEE Pacific Visualization Symposium, pp. 225–232, March 2014. https://doi.org/10.1109/PacificVis.2014.61.
[32]
C. Hurter, B. Tissoires, and S. Conversy. Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics, 15 (6) pp. 1017–1024, Nov. 2009. https://doi.org/10.1109/TVCG.2009.145.
[33]
T. Kapler and W. Wright. Geotime information visualization. Information visualization, 4 (2) pp. 136–146, 2005. https://doi.org/10.1109/INFVIS.2004.27.
[34]
J.F. Kruiger, A. Hassoumi, H.-J. Schulz, A. Telea, and C. Hurter. Multidimensional data exploration by explicitly controlled animation. Informatics, 4: 26, 2017. https://doi.org/10.3390/informatics4030026.
[35]
O.H. Kwon, C. Muelder, K. Lee, and K.L. Ma. A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Transactions on Visualization and Computer Graphics, 22 (7) pp. 1802–1815, July 2016. https://doi.org/10.1109/TVCG.2016.2520921.
[36]
J.J. LaViola Jr, E. Kruijff, R.P. McMahan, D. Bowman, and I.P. Poupyrev. 3D user interfaces: theory and practice. Addison-Wesley Professional, 2017.
[37]
C. Lundstrom, T. Rydell, C. Forsell, A. Persson, and A. Ynnerman. Multi-touch table system for medical visualization: Application to orthopedic surgery planning. IEEE Transactions on Visualization and Computer Graphics, 17 (12) pp. 1775–1784, Dec 2011. https://doi.org/10.1109/TVCG.2011.224.
[38]
J.P. McIntire and K.K. Liggett. The (possible) utility of stereoscopic 3d displays for information visualization: The good, the bad, and the ugly. In 2014 IEEE VIS International Workshop on 3DVis (3DVis), pp. 1–9, Nov 2014. https://doi.org/10.1109/3DVis.2014.7160093.
[39]
T. Munzner. Visualization analysis and design. CRC Press, 2014.
[40]
G.G. Robertson, J.D. Mackinlay, and S.K. Card. Cone trees: animated 3d visualizations of hierarchical information. In Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 189–194. ACM, 1991. https://doi.org/10.1145/108844.108883.
[41]
M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm. Bringing up opensky: A large-scale ads-b sensor network for research. In IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 83–94, April 2014. https://doi.org/10.1109/IPSN.2014.6846743.
[42]
R. Scheepens, C. Hurter, H.V.D. Wetering, and J.J.V. Wijk. Visualization, Visualization, selection, and analysis of traffic flows. IEEE Transactions on Visualization and Computer Graphics, 22 (1) pp. 379–388, Jan 2016. https://doi.org/10.1109/TVCG.2015.2467112.
[43]
M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot and dimension reduction technique choices. IEEE transactions on visualization and computer graphics, 19 (12) pp. 2634–2643, 2013. https://doi.org/10.1109/TVCG.2013.153.
[44]
D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings 23rd ACM National Conference, pp. 517–524, 1968. https://doi.org/10.1145/800186.810616.
[45]
A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell. Exploring connectivity of the brain's white matter with dynamic queries. IEEE Transactions on Visualization and Computer Graphics, 11 (4) pp. 419–430, July 2005. https://doi.org/10.1109/TVCG.2005.59.
[46]
H.S. Smallman, M.S. John, H.M. Oonk, and M.B. Cowen. Information availability in 2d and 3d displays. IEEE Computer Graphics and Applications, 21 (5) pp. 51–57, Sep 2001. https://doi.org/10.1109/38.946631.
[47]
R.L. Sollenberger and P. Milgram. Effects of stereoscopic and rotational displays in a three-dimensional path-tracing task. Human Factors, 35 (3) pp. 483–499, 1993. https://doi.org/10.1177/001872089303500306.
[48]
M. Sousa, D. Mendes, S. Paulo, N. Matela, J. Jorge, and D.S. Lopes. Vrrrroom: Virtual reality for radiologists in the reading room. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 4057–4062. ACM, 2017. https://doi.org/10.1145/3025453.3025566.
[49]
K. Tijmen, G. Florimond, P. Luc, V. Frdric, and I. Tobias. A design study of direct touch interaction for exploratory 3d scientific visualization. Computer Graphics Forum, 31(3 pt. ): pp. 1225–1234. https://doi.org/10.1111/j.1467-8659.2012.03115.x.
[50]
C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. Stacking-based visualization of trajectory attribute data. IEEE Transactions on Visualization and Computer Graphics, 18 (12) pp. 2565–2574, Dec 2012. https://doi.org/10.1109/TVCG.2012.265.
[51]
W. Usher, P. Klacansky, F. Federer, P.T. Bremer, A. Knoll, J. Yarch, A. Angelucci, and V. Pascucci. A virtual reality visualization tool for neuron tracing. IEEE Transactions on Visualization and Computer Graphics, 24 (1) pp. 994–1003, Jan 2018. https://doi.org/10.1109/TVCG.2017.2744079.
[52]
J.J. van Wijk and C. W. A.M. van Overveld. Preset Based Interaction with High Dimensional Parameter Spaces, pp. 391–406. Boston, MA: Springer US, 2003. https://doi.org/10.1007/978-1-4615-1177-9_27.
[53]
J. Vesanto. Som-based data visualization methods. Intell. Data Anal., 3 (2) pp. 111–126, Mar. 1999. https://doi.org/10.1016/S1088-467X(99)00013-X.
[54]
C. Ware and G. Franck. Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Transactions on Graphics (TOG), 15 (2) pp. 121–140, 1996. https://doi.org/10.1145/234972.234975.
[55]
C. Ware and P. Mitchell. Visualizing graphs in three dimensions. ACM Trans. Appl. Percept., 5 (1) pp. 2:1–2:15, Jan. 2008. https://doi.org/10.1145/1279640.1279642.
[56]
S.J. Westerman, J. Collins, and T. Cribbin. Browsing a document collection represented in two- and three-dimensional virtual information space. International Journal of Human-Computer Studies, 62 (6) pp. 713–736, 2005. https://doi.org/10.1016/j.ijhcs.2005.02.001.
[57]
C. Wheatstone. Contributions to the Physiology of Vision: Part the First: On Some Remarkable and Hitherto Unobserved Phenomena of Binocular Vision. 1838.
[58]
L. Yu, K. Efstathiou, P. Isenberg, and T. Isenberg. Efficient structure-aware selection techniques for 3d point cloud visualizations with 2dof input. IEEE Transactions on Visualization and Computer Graphics, 18 (12) pp. 2245–2254, Dec 2012. https://doi.org/10.1109/TVCG.2012.217.

Cited By

View all
  • (2024)Lights, Headset, Tablet, Action: Exploring the Use of Hybrid User Interfaces for Immersive Situated AnalyticsProceedings of the ACM on Human-Computer Interaction10.1145/36981478:ISS(517-539)Online publication date: 24-Oct-2024
  • (2024)A Survey of Designs for Combined 2D+3D Visual RepresentationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.338851630:6(2888-2902)Online publication date: 22-Apr-2024
  • (2024)MeTACAST: Target- and Context-Aware Spatial Selection in VRIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332651730:1(480-494)Online publication date: 1-Jan-2024
  • Show More Cited By

Index Terms

  1. FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Visualization and Computer Graphics
    IEEE Transactions on Visualization and Computer Graphics  Volume 25, Issue 1
    Jan. 2019
    1266 pages

    Publisher

    IEEE Educational Activities Department

    United States

    Publication History

    Published: 01 January 2019

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Lights, Headset, Tablet, Action: Exploring the Use of Hybrid User Interfaces for Immersive Situated AnalyticsProceedings of the ACM on Human-Computer Interaction10.1145/36981478:ISS(517-539)Online publication date: 24-Oct-2024
    • (2024)A Survey of Designs for Combined 2D+3D Visual RepresentationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.338851630:6(2888-2902)Online publication date: 22-Apr-2024
    • (2024)MeTACAST: Target- and Context-Aware Spatial Selection in VRIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332651730:1(480-494)Online publication date: 1-Jan-2024
    • (2024)Multilevel Visual Analysis of Aggregate Geo-NetworksIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.322995330:7(3135-3150)Online publication date: 1-Jul-2024
    • (2023)Immersive Analysis of Spatiotemporal Racing DataProceedings of the 2023 ACM Symposium on Spatial User Interaction10.1145/3607822.3614542(1-12)Online publication date: 13-Oct-2023
    • (2023)AI-Human Collaboration for in Situ Interactive Exploration of Behaviours From Immersive EnvironmentProceedings of the 2023 ACM International Conference on Interactive Media Experiences10.1145/3573381.3596506(427-430)Online publication date: 12-Jun-2023
    • (2023)Deimos: A Grammar of Dynamic Embodied Immersive Visualisation Morphs and TransitionsProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580754(1-18)Online publication date: 19-Apr-2023
    • (2023)Pearl: Physical Environment based Augmented Reality Lenses for In-Situ Human Movement AnalysisProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580715(1-15)Online publication date: 19-Apr-2023
    • (2023)Point- and Volume-Based Multi-object Acquisition in VRHuman-Computer Interaction – INTERACT 202310.1007/978-3-031-42280-5_2(20-42)Online publication date: 28-Aug-2023
    • (2022)Watch The Videos Whenever You Have TimeProceedings of the 2022 International Conference on Advanced Visual Interfaces10.1145/3531073.3531181(1-5)Online publication date: 6-Jun-2022
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media