[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

One-Shot Triple-Resource Trade-Off in Quantum Channel Coding

Published: 01 April 2023 Publication History

Abstract

We analyze a task in which classical and quantum messages are simultaneously communicated via a noisy quantum channel, assisted with a limited amount of shared entanglement. We derive direct and converse bounds for the one-shot capacity region, represented by the smooth conditional entropies and the error tolerance. The proof is based on the randomized partial decoupling theorem, which is a generalization of the decoupling theorem. The two bounds match in the asymptotic limit of infinitely many uses of a memoryless channel and coincide with the previous result obtained by Hsieh and Wilde. Direct and converse bounds for various communication tasks are obtained as corollaries, both for the one-shot and asymptotic scenarios.

References

[1]
M. Wilde, Quantum Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2013.
[2]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.
[3]
A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, Jan. 1998.
[4]
B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A, Gen. Phys., vol. 56, p. 131, Jul. 1997.
[5]
S. Lloyd, “Capacity of the noisy quantum channel,” Phys. Rev. A, Gen. Phys., vol. 55, no. 3, p. 1613, Mar. 1997.
[6]
P. W. Shor, “The quantum channel capacity and coherent information,” in Proc. MSRI Workshop Quantum Comput., 2002, p. 311.
[7]
I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55, Jan. 2005.
[8]
C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett., vol. 83, no. 15, p. 3081, 1999.
[9]
C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,” IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, Oct. 2002.
[10]
P. W. Shor, “The classical capacity achievable by a quantum channel assisted by limited entanglement,” Quantum Inf. Comput., vol. 4, nos. 6–7, pp. 537–545, Dec. 2004.
[11]
I. Devetak, A. W. Harrow, and A. Winter, “A family of quantum protocols,” Phys. Rev. Lett., vol. 93, no. 23, Dec. 2004, Art. no.
[12]
J. Devetak, A. W. Harrow, and A. J. Winter, “A resource framework for quantum Shannon theory,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4587–4618, Oct. 2008.
[13]
I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. Math. Phys., vol. 256, no. 2, pp. 287–303, Jun. 2005.
[14]
M.-H. Hsieh and M. M. Wilde, “Entanglement-assisted communication of classical and quantum information,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4682–4704, Sep. 2010.
[15]
M. Mosonyi and N. Datta, “Generalized relative entropies and the capacity of classical-quantum channels,” J. Math. Phys., vol. 50, no. 7, Jul. 2009, Art. no.
[16]
J. M. Renes and R. Renner, “Noisy channel coding via privacy amplification and information reconciliation,” IEEE Trans. Inf. Theory, vol. 57, no. 11, pp. 7377–7385, Nov. 2011.
[17]
L. Wang and R. Renner, “One-shot classical-quantum capacity and hypothesis testing,” Phys. Rev. Lett., vol. 108, May 2012, Art. no.
[18]
F. Buscemi and N. Datta, “The quantum capacity of channels with arbitrarily correlated noise,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1447–1460, Mar. 2010.
[19]
N. Datta and M.-H. Hsieh, “One-shot entanglement-assisted quantum and classical communication,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1929–1939, Mar. 2013.
[20]
F. Salek, A. Anshu, M.-H. Hsieh, R. Jain, and J. R. Fonollosa, “One-shot capacity bounds on the simultaneous transmission of classical and quantum information,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2141–2164, Apr. 2020.
[21]
F. Dupuis, O. Szehr, and M. Tomamichel, “A decoupling approach to classical data transmission over quantum channels,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1562–1572, Mar. 2013.
[22]
N. Datta and M.-H. Hsieh, “The apex of the family tree of protocols: Optimal rates and resource inequalities,” New J. Phys., vol. 13, no. 9, Sep. 2011, Art. no.
[23]
N. Datta, M. Mosonyi, M.-H. Hsieh, and F. G. S. L. Brandao, “A smooth entropy approach to quantum hypothesis testing and the classical capacity of quantum channels,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8014–8026, Dec. 2013.
[24]
W. Matthews and S. Wehner, “Finite blocklength converse bounds for quantum channels,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7317–7329, Nov. 2014.
[25]
N. Datta, M. Tomamichel, and M. M. Wilde, “On the second-order asymptotics for entanglement-assisted communication,” Quantum Inf. Process., vol. 15, no. 6, pp. 2569–2591, Jun. 2016.
[26]
M. Tomamichel, M. Berta, and J. M. Renes, “Quantum coding with finite resources,” Nature Commun., vol. 7, no. 1, pp. 1–8, Sep. 2016.
[27]
H. Qi, Q. Wang, and M. M. Wilde, “Applications of position-based coding to classical communication over quantum channels,” J. Phys. A, Math. Theor., vol. 51, no. 44, Nov. 2018, Art. no.
[28]
A. Anshu, R. Jain, and N. A. Warsi, “Building blocks for communication over noisy quantum networks,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 1287–1306, Feb. 2019.
[29]
A. Anshu, R. Jain, and N. A. Warsi, “On the near-optimality of one-shot classical communication over quantum channels,” J. Math. Phys., vol. 60, no. 1, Jan. 2019, Art. no.
[30]
E. Wakakuwa and Y. Nakata, “One-shot randomized and nonrandomized partial decoupling,” Commun. Math. Phys., vol. 386, no. 2, pp. 589–649, Sep. 2021.
[31]
B. Groisman, S. Popescu, and A. Winter, “Quantum, classical, and total amount of correlations in a quantum state,” Phys. Rev. A, Gen. Phys., vol. 72, Feb. 2005, Art. no.
[32]
M. Horodecki, J. Oppenheim, and A. Winter, “Quantum state merging and negative information,” Commun. Math. Phys., vol. 269, no. 1, pp. 107–136, Jan. 2007.
[33]
A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, “The mother of all protocols: Restructuring quantum information’s family tree,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 465, no. 2108, pp. 2537–2563, Jun. 2009.
[34]
P. Hayden, M. Horodecki, J. Yard, and A. Winter, “A decoupling approach to the quantum capacity,” Open Syst. Inf. Dyn., vol. 15, no. 1, pp. 7–19, 2008.
[35]
F. Dupuis, M. Berta, J. Wullschleger, and R. Renner, “One-shot decoupling,” Commun. Math. Phys., vol. 328, no. 1, pp. 251–284, May 2014.
[36]
C. Majenz, M. Berta, F. Dupuis, R. Renner, and M. Christandl, “Catalytic decoupling of quantum information,” Phys. Rev. Lett., vol. 118, no. 8, Feb. 2017, Art. no.
[37]
W. F. Stinespring, “Positive functions on C*-algebras,” Proc. Amer. Math. Soc., vol. 6, pp. 211–216, Apr. 1955.
[38]
M. Tomamichel, R. Colbeck, and R. Renner, “Duality between smooth min- and max-entropies,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4674–4681, Sep. 2010.
[39]
M. Tomamichel, Quantum Information Processing With Finite Resources (Springer Briefs in Mathematical Physics). Cham, Switzerland: Springer, 2016.
[40]
A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators,” Rep. Math. Phys., vol. 3, p. 275, Dec. 1972.
[41]
M. D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra Appl., vol. 10, p. 285, Mar. 1975.
[42]
A. Uhlmann, “The ‘transition probability’ in the state space of a *-algebra,” Rep. Math. Phys., vol. 9, no. 2, pp. 273–279, 1976.
[43]
E. Y. Zhu, Q. Zhuang, and P. W. Shor, “Superadditivity of the classical capacity with limited entanglement assistance,” Phys. Rev. Lett., vol. 119, no. 4, Jul. 2017, Art. no.
[44]
M. Tomamichel, R. Colbeck, and R. Renner, “A fully quantum asymptotic equipartition property,” IEEE Trans. Inf. Theory, vol. 55, no. 12, pp. 5840–5847, Dec. 2009.
[45]
A. Winter, “Coding theorem and strong converse for quantum channels,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2481–2485, Nov. 1999.
[46]
T. Ogawa and H. Nagaoka, “Strong converse to the quantum channel coding theorem,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2486–2489, Nov. 1999.
[47]
Y. Nakata, E. Wakakuwa, and H. Yamasaki, “One-shot quantum error correction of classical and quantum information,” Phys. Rev. A, Gen. Phys., vol. 104, no. 1, Jul. 2021, Art. no.
[48]
E. Wakakuwa, Y. Nakata, and M.-H. Hsieh, “One-shot hybrid state redistribution,” Quantum, vol. 6, p. 724, May 2022.
[49]
M. M. Wilde, M. Tomamichel, and M. Berta, “Converse bounds for private communication over quantum channels,” IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1792–1817, Mar. 2017.
[50]
A. Anshu, V. K. Devabathini, and R. Jain, “Quantum communication using coherent rejection sampling,” Phys. Rev. Lett., vol. 119, no. 12, Sep. 2017, Art. no.
[51]
F. Salek, A. Anshu, M.-H. Hsieh, R. Jain, and J. R. Fonollosa, “One-shot capacity bounds on the simultaneous transmission of public and private information over quantum channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 296–300.
[52]
M. M. Wilde, “Position-based coding and convex splitting for private communication over quantum channels,” Quantum Inf. Process., vol. 16, no. 10, p. 264, Oct. 2017.
[53]
C. N. Gagatsos, M. S. Bullock, and B. A. Bash, “Covert capacity of bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 555–567, Aug. 2020.
[54]
P. Sen, “Inner bounds via simultaneous decoding in quantum network information theory,” Sādhanā, vol. 46, no. 1, p. 18, Dec. 2021.
[55]
S.-Y. Wang, T. Erdoğan, and M. Bloch, “Towards a characterization of the covert capacity of bosonic channels under trace distance,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2022, pp. 318–323.
[56]
A. Anshu and R. Jain, “Efficient methods for one-shot quantum communication,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–7, Aug. 2022.
[57]
F. Salek, M.-H. Hsieh, and J. R. Fonollosa, “Single-serving quantum broadcast channel with common, individualized, and confidential messages,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7752–7771, Dec. 2020.
[58]
F. Salek, M.-H. Hsieh, and J. R. Fonollosa, “Publicness, privacy and confidentiality in the single-serving quantum broadcast channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1712–1716.
[59]
R. Alicki and M. Fannes, “Continuity of quantum conditional information,” J. Phys. A, Math. Gen., vol. 37, no. 5, pp. L55–L57, Feb. 2004.
[60]
E. Wakakuwa, A. Soeda, and M. Murao, “A coding theorem for bipartite unitaries in distributed quantum computation,” IEEE Trans. Inf. Theory, vol. 63, no. 8, pp. 5372–5403, Aug. 2017.
[61]
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Hoboken, NJ, USA: Wiley, 2005.
[62]
I. Devetak and A. Winter, “Classical data compression with quantum side information,” Phys. Rev. A, Gen. Phys., vol. 68, no. 4, Oct. 2003, Art. no.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Theory
IEEE Transactions on Information Theory  Volume 69, Issue 4
April 2023
678 pages

Publisher

IEEE Press

Publication History

Published: 01 April 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media