[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Inequalities in Computational Thinking Among Incoming Students in an STEM Chilean University

Published: 05 December 2023 Publication History

Abstract

While computational thinking arises as an essential skill worldwide, formal primary and secondary education in Latin America rarely incorporates mechanisms to develop it in their curricula. The extent to which students in the region acquire computational thinking skills remains largely unknown. To start addressing this void, this article presents findings from a cross sectional study that characterizes the computational thinking abilities of incoming students at a Chilean university with a strong emphasis on STEM disciplines. Based on more than 500 responses, this study provides evidence of significant inequalities in computational thinking across gender, type of school (private or no), and prior programming knowledge. The discussion offers insights into how these disparities relate to contextual factors of the country, such as a highly socio-economically segregated educational system, public policies focused mainly on technology access, and heavy reliance on voluntary initiatives, to develop computational thinking. The findings can enlighten upcoming research endeavors and formulate strategies to create a more equitable field for students entering STEM degrees in nations facing similar circumstances.

References

[1]
J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3, pp. 33–35, 2006.
[2]
D. Barr, J. Harrison, and L. Conery, “Computational thinking: A digital age skill for everyone,” Learn. Lead. Technol., vol. 38, no. 6, pp. 20–23, 2011.
[3]
A. Monteiro and C. Leite, “Digital literacies in higher education: Skills, uses, opportunities and obstacles to digital transformation,” Revista de Educación a Distancia (RED), vol. 21, no. 65, pp. 1–20, 2021.
[4]
C. Enríquez, O. Aguilar, and F. Domínguez, “Using robot to motivate computational thinking in high school students,” IEEE Latin America Trans., vol. 14, no. 11, pp. 4620–4625, Nov. 2016.
[5]
C. P. Brackmann, M. Román-González, G. Robles, J. Moreno-León, A. Casali, and D. Barone, “Development of computational thinking skills through unplugged activities in primary school,” in Proc. 12th Workshop Primary 2nd. Comput. Educ. (WiPSCE), 2017, pp. 65–72.
[6]
F. Heintz, L. Mannila, and T. Färnqvist, “A review of models for introducing computational thinking, computer science and computing in k-12 education,” in Proc. IEEE Front. Educ. Conf. (FIE), 2016, pp. 1–9.
[7]
S. Bocconiet al., “Developing computational thinking in compulsory education-implications for policy and practice,” Joint Res. Centre, Brussels, Belgium, Rep. JRC104188, 2016.
[8]
H.-J. So, M. S.-Y. Jong, and C.-C. Liu, “Computational thinking education in the Asian pacific region,” Asia-Pac. Educ. Res., vol. 29, no. 1, pp. 1–8, 2020.
[9]
J. Moreno-León, M. Román-González, and G. Robles, “On computational thinking as a universal skill: A review of the latest research on this ability,” in Proc. IEEE Glob. Eng. Educ. Conf. (EDUCON), 2018, pp. 1684–1689.
[10]
S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of computational thinking through programming: What is next for k-12?,” Comput. Human Behav., vol. 41, pp. 51–61, Dec. 2014.
[11]
B. Ericson and M. Guzdial, “Measuring demographics and performance in computer science education at a nationwide scale using AP CS data,” in Proc. 45th ACM Tech. Symp. Comput. Sci. Educ. (SIGCSE), 2014, p. 217–222.
[12]
E. Pereiro, M. Montaldo, K. Victor, and A. Urruticoechea, “Computational thinking, artificial intelligence and education in Latin America,” UNESCO, Paris, France, Rep. 12270, 2022.
[13]
J. Simmonds, F. J. Gutierrez, F. Meza, C. Torrent, and J. Villalobos, “Changing teacher perceptions about computational thinking in grades 1–6, through a national training program,” in Proc. 52nd ACM Tech. Symp. Comput. Sci. Educ. (SIGCSE), 2021, pp. 260–266.
[14]
R. F. Lacoa, J. F. Lacoa, and A. Blair, “La enseñanza de lenguajes de programación en la escuela: ¿por qué hay que prestarle atención?,” Fundación Telefónica, Madrid, Spain, Rep. 2022/03, 2016.
[15]
R. Roig-Vila and V. Moreno-Isac, “El pensamiento computacional en educación. análisis bibliométrico y temático,” Revista de Educación a Distancia, vol. 20, no. 63, pp. 1–24, 2020.
[16]
J. M. Merino-Armero, J. A. González-Calero, and R. Cozar-Gutierrez, “Computational thinking in k-12 education. An insight through meta-analysis,” J. Res. Technol. Educ., vol. 54, no. 3, pp. 410–437, 2022.
[17]
M. Román-González, J.-C. Pérez-González, and C. Jiménez-Fernández, “Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test,” Comput. Human Behav., vol. 72, pp. 678–691, Jul. 2017.
[18]
N. M. Hutchins, N. Zhang, and G. Biswas, “The role gender differences in computational thinking confidence levels plays in stem applications,” in Proc. Int. Conf. Comput. Think. Educ., 2017, pp. 34–38.
[19]
S. Atmatzidou and S. Demetriadis, “Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences,” Robot. Auton. Syst., vol. 75, pp. 661–670, Jan. 2016.
[20]
N. V. Mendoza Diaz, R. Meier, D. A. Trytten, and S. Y. Yoon, “Computational thinking growth during a first-year engineering course,” in Proc. IEEE Front. Educ. Conf. (FIE), 2020, pp. 1–7.
[21]
R. Ata and K. Yıldırım, “Analysis of the relation between computational thinking and new media literacy skills of first-year engineering students,” J. Educ. Multimedia Hypermedia, vol. 29, no. 1, pp. 5–20, 2020.
[22]
C. M. Lewis, N. Shah, and K. Falkner, “16 equity and diversity,” The Cambridge Handbook of Computing Education Research. Cambridge, U.K.: Cambridge Univ. Press, 2019, p. 481.
[23]
N. Shahet al., “Racial hierarchy and masculine space: Participatory in/equity in computational physics classrooms,” Comput. Sci. Educ., vol. 30, no. 3, pp. 254–278, 2020.
[24]
H. Lei, M. M. Chiu, F. Li, X. Wang, and Y.-J. Geng, “Computational thinking and academic achievement: A meta-analysis among students,” Child. Youth Services Rev., vol. 118, Nov. 2020, Art. no.
[25]
F. J. García-Peñalvo and A. J. Mendes, “Exploring the computational thinking effects in pre-university education,” Comput. Human Behav., vol. 80, pp. 407–411, Mar. 2018.
[26]
D. A. Quiroz-Vallejo, J. A. Carmona-Mesa, A. Castrillón-Yepes, and J. A. Villa-Ochoa, “Integration of computational thinking in elementary and secondary school in latin america: A systematic literature,” Revista de Educación a Distancia (RED), vol. 21, no. 68, pp. 1–29, 2021.
[27]
C. Brackmann, D. Barone, A. Casali, R. Boucinha, and S. Muñoz-Hernandez, “Computational thinking: Panorama of the Americas,” in Proc. Int. Symp. Comput. Educ., 2016, pp. 1–6.
[28]
“Agenda digital. Imagina CHILE 2013-2020,” Gobierno de Chile; Secretaría Ejecutiva de Desarrollo, Santiago, Chile, Rep. 2014/02, 2015.
[29]
A. Peroni Fiscarelli, D. Escobar Riffo, and C. Escobedo Seguel, Informe Final De Evaluación Programs Gubernamentales (EPG), UNESCO, Paris, France, 2018.
[30]
“SIMCE TIC 2013, Evaluación de habilidades tic para el aprendizaje. resultados nacionales,” Enlaces, Centro de Educación y Tecnología. Ministerio de Educación, Santiago, Chile, Rep. 2.9.2[47], 2014.
[31]
R. P. Y. Lai, “Beyond programming: A computer-based assessment of computational thinking competency,” ACM Trans. Comput. Educ., vol. 22, no. 2, pp. 1–27, 2022.
[32]
S.-W. Chan, C.-K. Looi, and B. Sumintono, “Assessing computational thinking abilities among Singapore secondary students: A Rasch model measurement analysis,” J. Comput. Educ., vol. 8, pp. 213–236, Jun. 2021.
[33]
S.-C. Kong and M. Lai, “Validating a computational thinking concepts test for primary education using item response theory: An analysis of students’ responses,” Comput. Educ., vol. 187, Oct. 2022, Art. no.
[34]
A. Sullivan and M. U. Bers, “Girls, boys, and bots: Gender differences in young children’s performance on robotics and programming tasks,” J. Inf. Technol. Educ. Innovat. Pract., vol. 15, pp. 145–165, Aug. 2016.
[35]
M. Lachney, “Computational communities: African-American cultural capital in computer science education,” Comput. Sci. Educ., vol. 27, nos. 3–4, pp. 175–196, 2017.
[36]
C. Bellei, “The public-private school controversy in Chile,” in School Choice Internacional. Exploring Public-Private Partnerships, R. Chakrabarti and P. E. Peterson, Eds. Cambridge, MA, USA: MIT Press, 2009, ch. 8, pp. 165–192.
[37]
J. P. Valenzuela, C. Bellei, and D. de los Ríos, “Socioeconomic school segregation in a market-oriented educational system. The case of Chile,” J. Educ. Policy, vol. 29, no. 2, pp. 217–241, 2014.
[38]
G. Elacqua, M. Schneider, and J. Buckley, “School choice in Chile: Is it class or the classroom?,” J. Policy Anal. Manag., vol. 25, no. 3, pp. 577–601, 2006.
[39]
P. J. McEwan, M. Urquiola, E. Vegas, R. Fernandes, and F. A. Gallego, “School choice, stratification, and information on school performance: Lessons from Chile,” Economia, vol. 8, no. 2, pp. 1–42, 2008.
[40]
N. P. Diaz and L. Rocconi, “Examining science achievement in Chile: A multilevel model approach,” J. Res. STEM Educ., vol. 7, no. 2, pp. 93–116, 2021.
[41]
M. V. Santelices, P. Galleguillos, and X. Catalán, “El acceso y la transición a la universidad en Chile,” A. Bernasconi, La educación superior en Chile: transformación, desarrollo y Crisis. Santiago de Chile: Colección Educación Superior. Santiago, Chile: Ediciones UC, 2015.
[42]
P. Muñoz and A. Redondo, “Inequality and academic achievement in Chile,” CEPAL Review, Santiago, Chile, Rep. 109, 2013.
[43]
J. S. Hastings, C. A. Neilson, and S. D. Zimmerman, “Are some degrees worth more than others? Evidence from college admission cutoffs in Chile,” Nat. Bureau Econ. Res., Cambridge, MA, USA, Rep. 19241, 2013.
[44]
M. R. González, “Computational thinking test: Design guidelines and content validation,” in Proc. EDULEARN15 Conf., 2015, pp. 2436–2444.
[45]
M. Román-Gonzalez, J. C. Pérez-González, and C. Jiménez-Fernández, “Test de pensamiento computacional: diseño y psicometría general,” in Proc. III Congreso Internacional Sobre Aprendizaje, Innovación y Competitividad (CINAIC), 2015, pp. 1–6.
[46]
J. Guggemos, S. Seufert, and M. Román-González, “Computational thinking assessment–towards more vivid interpretations,” Technol. Knowl. Learn., vol. 28, no. 2, pp. 539–568, 2023.
[47]
K. Tsaravaet al., “A cognitive definition of computational thinking in primary education,” Comput. Educ., vol. 179, Apr. 2022, Art. no.
[48]
A. Gomeset al., “Understanding loops: A visual methodology,” in Proc. IEEE Int. Conf. Eng. Technol. Educ., 2019, pp. 1–7.
[49]
U. Çakiroğlu and I. Çevik, “A framework for measuring abstraction as a sub-skill of computational thinking in block-based programming environments,” Educ. Inf. Technol., vol. 27, pp. 9455–9484, Mar. 2022.
[50]
M. Saqr, K. Ng, S. S. Oyelere, and M. Tedre, “People, ideas, milestones: A scientometric study of computational thinking,” ACM Trans. Comput. Educ., vol. 21, no. 3, pp. 1–17, 2021.
[51]
M. R. González, “Test de pensamiento computacional: Principios de diseño, validación de contenido y análisis de ítems,” in Perspectivas y avances de la investigación: I Jornada de Doctorandos. Madrid, Spain: UNED, 2015, pp. 291–314.
[52]
P. Bharadwaj, G. De Giorgi, D. Hansen, and C. A. Neilson, “The gender gap in mathematics: Evidence from Chile,” Econ. Develop. Cult. Change, vol. 65, no. 1, pp. 141–166, 2016.
[53]
C. V. Diaz and C. M. Correa, “Brechas persistentes de género en matemáticas en las pruebas nacionales chilenas simce,” Estudios pedagógicos (Valdivia), vol. 48, no. 1, pp. 389–400, 2022.
[54]
“Informe GET (género, educación y trabajo). La brecha persistente. Primer estudio sobre la desigualdad de género en el ciclo de vida. una revisión de los últimos 25 años,” Comunidad Mujer, Santiago, Chile, Rep. 2016/06, 2016.
[55]
J. Van Dijk, The Digital Divide. New York, NY, USA: Wiley, 2020.
[56]
P. Gibson and M. Brown, “9 computational thinking and technology-enhanced learning (TEL),” in Inspiring Primary Learners: Insights and Inspiration Across the Curriculum, R. McDonald and P. Gibson, Eds. London, U.K.: Routledge, 2021, ch. 9, pp. 151–168.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Education
IEEE Transactions on Education  Volume 67, Issue 2
April 2024
147 pages

Publisher

IEEE Press

Publication History

Published: 05 December 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media