[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Fast periodic correction networks

Published: 04 April 2006 Publication History

Abstract

We consider the problem of sorting N-element inputs differing from already sorted sequences by t small changes. To perform this task we construct a constant depth comparator network that is applied periodically. The two constructions for this problem made, by previous authors required O(log n + t) iterations of the network. Our construction requires O(log n + (log log N)2(log t)3) iterations which makes it asymptotically faster for t > log N.

References

[1]
{1} M. Ajtai, J. Komlós, E. Szemerédi, Sorting in c log n parallel steps, Combinatorica 3 (1983) 1-19.]]
[2]
{2} K.E. Batcher, Sorting networks and their applications, in: AFIPS Conf. Proc. 32 (1968) 307-314.]]
[3]
{3} M. Dowd, Y. Perl, M. Saks, L. Rudolph, The periodic balanced sorting network, J. ACM 36 (1989) 738-757.]]
[4]
{4} M. Kik, Periodic correction networks, EUROPAR 2000 proc. Lecture Notes in Computer Science, Springer, Berlin, 1900, pp. 471-478.]]
[5]
{5} M. Kik, M. Kutyłowski, M. Piotrów, Correction networks, in: Proc. 1999 ICPP, pp. 40-47.]]
[6]
{6} M. Kik, M. Kutyłowski, G. Stachowiak, Periodic constant depth sorting networks, Proc. 11th STACS, 1994, pp. 201-212.]]
[7]
{7} D.E. Knuth, The Art of Computer Programming, vol. 3, second ed., Addison Wesley, Reading, MA, 1975.]]
[8]
{8} J. Krammer, Lösung von Datentransportproblemen in integrierten Schaltungen, Dissertation, TU München, 1991.]]
[9]
{9} K. Loryś, M. Kutyłowski, B. Oesterdiekoff, R. Wanka, Fast and feasible periodic sorting networks of constant depth, Proc. 35 IEEE-FOCS, 1994, pp. 369-380.]]
[10]
{10} B. Oesterdiekoff, On the minimal period of fast periodic sorting networks, Technical Report TR-RI-95-167, University of Paderborn, 1995.]]
[11]
{11} M. Piotrów, Depth optimal sorting networks resistant to k passive faults, in: Proc. Seventh SIAM Symp. Discrete Algorithms, 1996, pp. 242-251 (also accepted for SIAM J. Comput.).]]
[12]
{12} M. Piotrów, Periodic random-fault-tolerant correction networks, Proc. 13th SPAA, ACM, 2001, pp. 298-305.]]
[13]
{13} L. Rudolph, A robust sorting network, IEEE Trans. Comput. 34 (1985) 326-336.]]
[14]
{14} M. Schimmler, C. Starke, A correction network for N-sorters, SIAM J. Comput. 18 (1989) 1179-1197.]]
[15]
{15} U. Schwiegelsohn, A shortperiodic two-dimensional systolic sorting algorithm, in: Internat. Conf. Systolic Arrays, Computer Society Press, Baltimore, 1988, pp. 257-264.]]
[16]
{16} G. Stachowiak, Fibonacci correction networks, in: M. Halldórsson (Ed.), Algorithm Theory--SWAT 2000, Lecture Notes in Computer Science, vol. 1851, Springer, Berlin, 2000, pp. 535-548.]]

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 354, Issue 3
Foundations of computation theory (FCT 2003)
4 April 2006
122 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 04 April 2006

Author Tags

  1. comparator
  2. periodic sorting network
  3. sorting network

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media