[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

On learning embedded midbit functions

Published: 18 January 2006 Publication History

Abstract

A midbit function on l binary inputs x1,...,xl outputs the middle bit in the binary representation of x1+...+xl. We consider the problem of Probably Approximately Correct (PAC) learning embedded midbit functions, where the set S ⊂ {x1,...,xn} of relevant variables on which the midbit depends is unknown to the learner.To motivate this problem, we first point out that a result of Green et al. implies that a polynomial time learning algorithm for the class of embedded midbit functions would immediately yield a fairly efficient (quasipolynomial time) (PAC) learning algorithm for the entire complexity class ACC. We then give two different subexponential learning algorithms, each of which learns embedded midbit functions under any probability distribution in 2n log n time. Finally, we give a polynomial time algorithm for learning embedded midbit functions under the uniform distribution.

References

[1]
{1} E. Allender, U. Hertrampf, Depth reduction for circuits of unbounded fan-in, Inform. Comput. 112 (2) (1994) 217-238.
[2]
{2} D. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1, J. Comput. System Sci. 38 (1) (1989) 150-164.
[3]
{3} D. Barrington, D. Therien, Finite monoids and the fine structure of NC 1, J. Assoc. Comput. Math. 35 (4) (1988) 941-952.
[4]
{4} R. Beigel, J. Tarui, On ACC, Comput. Complexity 4 (1994) 350-366.
[5]
{5} A. Blum, P. Chalasani, J. Jackson, On learning embedded symmetric concepts, in: Proc. Sixth Annu. Conf. on Computational Learning Theory, 1993, pp. 337-346.
[6]
{6} A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Math. 36 (4) (1989) 929-965.
[7]
{7} P. Fischer, H.U. Simon, On learning ring-sum expansions, SIAM J. Comput. 21 (1) (1992) 181-192.
[8]
{8} R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1994.
[9]
{9} F. Green, J. Kobler, K. Regan, T. Schwentick, J. Toran, The power of the middle bit of a #P function, J. Comput. System Sci. 50 (3) (1998) 456-467.
[10]
{10} D. Helmbold, R. Sloan, M. Warmuth, Learning integer lattices, SIAM J. Comput. 21 (2) (1992) 240-266.
[11]
{11} A. Klivans, R. Servedio, Learning DNF in time 2O(n 1/3), in: Proc. Thirty-Third Annu. Symp. on Theory of Computing, 2001, pp. 258-265.
[12]
{12} P. McKenzie, D. Therien, Automata theory meets circuit complexity, in: Proc. Internat. Colloq. on Automata, Languages and Programming, 1989, pp. 589-602.
[13]
{13} M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge, MA, 1968.
[14]
{14} C. Ramus, Solution générale d'un problè d'analyse combinatoire, J. Reine Angew. Math. 11 (1834) 353-355.
[15]
{15} J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
[16]
{16} J. Riordan, Combinatorial Identities, Wiley, New York, 1968.
[17]
{17} L. Valiant, A theory of the learnable, Comm. ACM 27 (11) (1984) 1134-1142.
[18]
{18} A. Yao, Separating the polynomial time hierarchy by oracles, in: Proc. Twenty-Sixth Annu. Symp. on Foundations of Computer Science, 1985, pp. 1-10.
[19]
{19} A. Yao, On ACC and threshold circuits, in: Proc. Thirty-First Annu. Symp. on Foundations of Computer Science, 1990, pp. 619-627.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 350, Issue 1
Algorithmic learning theory(ALT 2002)
18 January 2006
162 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 18 January 2006

Author Tags

  1. PAC learning
  2. embedded midbit functions

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media