[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

Person re-identification based on deep learning — An overview

Published: 01 January 2022 Publication History

Abstract

Person re-identification(ReID) is an intelligent video surveillance technology that retrieves the same person from different cameras. This task is extremely challenging due to changes in person poses, different camera views, and occlusion. In recent years, person ReID based on deep learning technology has received widespread attention due to the rapid development and excellent performance of deep learning. In this paper, we first divide person ReID based on deep learning approaches into seven types, i.e., fused hand-crafted features deep model, representation learning model, metric learning model, part-based deep model, video-based model, GAN-based model, unsupervised model. Furthermore, we launched a brief overview of the seven types. Then, we introduce some examples of commonly used datasets, compare the performance of some algorithms on image and video datasets in recent years, and analyze the advantages and disadvantages of various methods. Finally, we summarize the possible future research directions of person ReID technology.

Highlights

Dividing person ReID based on deep learning approaches into seven types.
Introducing some examples of commonly used datasets.
Comparing the performance of some algorithms on image and video datasets in recent years.
Analyzing the advantages and disadvantages of various methods.
Summarizing the possible future research directions of person ReID technology.

References

[1]
Zheng L., Yang Y., Hauptmann A.G., Person re-identification: Past, present and future, 2016.
[2]
Zheng L., Shen L., Tian L., Wang S., Wang J., Tian Q., Scalable person re-identification: A benchmark, 2015, pp. 1116–1124.
[3]
Ristani E., Solera F., Zou R.S., Cucchiara R., Tomasi C., Performance measures and a data set for multi-target, multi-camera tracking, 2016, pp. 17–35.
[4]
N. Gheissari, T.B. Sebastian, R. Hartley, Person reidentification using spatiotemporal appearance, 2 (2006) 1528–1535.
[5]
Farenzena M., Bazzani L., Perina A., Murino V., Cristani M., Person re-identification by symmetry-driven accumulation of local features, 2010, pp. 2360–2367.
[6]
Liao S., Hu Y., Zhu X., Li S.Z., Person re-identification by Local Maximal Occurrence representation and metric learning, 2015, pp. 2197–2206.
[7]
Liao S., Zhao G., Kellokumpu V., Pietikainen M., Li S.Z., Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes, 2010, pp. 1301–1306.
[8]
Liu X., Song M., Tao D., Zhou X., Chen C., Bu J., Semi-supervised coupled dictionary learning for person re-identification, 2014, pp. 3550–3557.
[9]
Layne R., Hospedales T.M., Gong S., Person re-identification by attributes, 2012, pp. 1–11.
[10]
Prosser B.J., Zheng W., Gong S., Xiang T., Person re-identification by support vector ranking, 2010, pp. 1–11.
[11]
Weinberger K.Q., Saul L.K., Distance metric learning for large margin nearest neighbor classification, J. Mach. Learn. Res. 10 (9) (2009) 207–244.
[12]
Davis J.V., Kulis B., Jain P., Sra S., Dhillon I.S., Information-theoretic metric learning, 2007, pp. 209–216.
[13]
Kostinger M., Hirzer M., Wohlhart P., Roth P.M., Bischof H., Large scale metric learning from equivalence constraints, 2012, pp. 2288–2295.
[14]
Deng J., Guo J., Xue N., Zafeiriou S., ArcFace: Additive angular margin loss for deep face recognition, Comput. Vis. Pattern Recognit. (2018) arXiv:.
[15]
Peng C., Wang N., Li J., Gao X., DLFace: Deep local descriptor for cross-modality face recognition, Pattern Recognit. 90 (2019) 161–171.
[16]
Yang L., Dong P.Z., Young C.J., Dong J.Z., Zhang W., Sun B., Object detection and recognition apparatus based on CNN based integrated circuits, 2018.
[17]
Ghiasi G., Lin T.-Y., Pang R., Le Q.V., NAS-FPN: Learning scalable feature pyramid architecture for object detection, 2019.
[18]
Wang Q., Zhang L., Bertinetto L., Hu W., Torr P.H.S., Fast online object tracking and segmentation: A unifying approach, 2019, pp. 1328–1338.
[19]
Sun S., Akhtar N., Song H., Mian A., Shah M., Deep affinity network for multiple object tracking, IEEE Trans. Pattern Anal. Mach. Intell. (2019) 1.
[20]
Wu S., Chen Y., Li X., Wu A., You J., Zheng W., An enhanced deep feature representation for person re-identification, 2016, pp. 1–8.
[21]
Zheng L., Wang S., Tian L., He F., Liu Z., Tian Q., Query-adaptive late fusion for image search and person re-identification, 2015, pp. 1741–1750.
[22]
Li Y., Zhuo L., Hu X., Zhang J., A combined feature representation of deep feature and hand-crafted features for person re-identification, 2016, pp. 224–227.
[23]
Wu L., Shen C., Den Hengel A.V., Deep linear discriminant analysis on Fisher networks: A hybrid architecture for person re-identification, Comput. Vis. Pattern Recognit. (2016) arXiv:.
[24]
Liu Y., Zhang Y., Bhanu B., Coleman S., Kerr D., Multi-level cross-view consistent feature learning for person re-identification, Neurocomputing 435 (21) (2021).
[25]
Bromley J., Guyon I., Lecun Y., Sackinger E., Shah R., Signature verification using a ”siamese” time delay neural network, 1993, pp. 737–744.
[26]
Li W., Zhao R., Xiao T., Wang X., DeepReID: Deep filter pairing neural network for person re-identification, 2014, pp. 152–159.
[27]
Yi D., Lei Z., Liao S., Li S.Z., Deep metric learning for person re-identification, 2014, pp. 34–39.
[28]
Wang F., Zuo W., Lin L., Zhang D., Zhang L., Joint learning of single-image and cross-image representations for person re-identification, 2016, pp. 1288–1296.
[29]
Zheng L., Zhang H., Sun S., Chandraker M., Yang Y., Tian Q., Person re-identification in the wild, 2017, pp. 3346–3355.
[30]
Xiao T., Li H., Ouyang W., Wang X., Learning deep feature representations with domain guided dropout for person re-identification, 2016, pp. 1249–1258.
[31]
Zheng L., Bie Z., Sun Y., Wang J., Su C., Wang S., Tian Q., MARS: A video benchmark for large-scale person re-identification, 2016, pp. 868–884.
[32]
Krizhevsky A., Sutskever I., Hinton G.E., ImageNet classification with deep convolutional neural networks, 2012, pp. 1097–1105.
[33]
Sun Y., Zheng L., Deng W., Wang S., SVDNet for pedestrian retrieval, 2017, pp. 3820–3828.
[34]
Fan X., Jiang W., Luo H., Fei M., SphereReID: Deep hypersphere manifold embedding for person re-identification, J. Vis. Commun. Image Represent. 60 (2019) 51–58.
[35]
Lin Y., Zheng L., Zheng Z., Wu Y., Hu Z., Yan C., Yang Y., Improving person re-identification by attribute and identity learning, Pattern Recognit. 95 (2019) 151–161.
[36]
Matsukawa T., Suzuki E., Person re-identification using CNN features learned from combination of attributes, 2016, pp. 2428–2433.
[37]
Li D., Zhang Z., Chen X., Ling H., Huang K., A richly annotated dataset for pedestrian attribute recognition, Comput. Vis. Pattern Recognit. (2016) arXiv:.
[38]
Zheng Z., Zheng L., Yang Y., A discriminatively learned CNN embedding for person reidentification, ACM Trans. Multimed. Comput. Commun. Appl. 14 (1) (2017) 13.
[39]
Qian X., Fu Y., Jiang Y., Xiang T., Xue X., Multi-scale deep learning architectures for person re-identification, 2017, pp. 5409–5418.
[40]
Zhang Z., Huang M., Learning local embedding deep features for person re-identification in camera networks, Eurasip J. Wirel. Commun. Netw. 2018 (1) (2018) 85.
[41]
Zhang S., He Y., Wei J., Mei S., Wan S., Chen K., Person re-identification with joint verification and identification of identity-attribute labels, IEEE Access 7 (2019) 126116–126126.
[42]
Varior R.R., Shuai B., Lu J., Xu D., Wang G., A siamese long short-term memory architecture for human re-identification, 2016, pp. 135–153.
[43]
Ding S., Lin L., Wang G., Chao H., Deep feature learning with relative distance comparison for person re-identification, Pattern Recognit. 48 (10) (2015) 2993–3003.
[44]
Cheng D., Gong Y., Zhou S., Wang J., Zheng N., Person re-identification by multi-channel parts-based CNN with improved triplet loss function, 2016, pp. 1335–1344.
[45]
Hermans A., Beyer L., Leibe B., In defense of the triplet loss for person re-identification, Comput. Vis. Pattern Recognit. (2017) arXiv:.
[46]
Chen W., Chen X., Zhang J., Huang K., Beyond triplet loss: A deep quadruplet network for person re-identification, 2017, pp. 1320–1329.
[47]
Zhong W., Zhang T., Jiang L., Ji J., Zhang Z., Xiong H., Discriminative representation learning for person re-identification via multi-loss training, J. Vis. Commun. Image Represent. 62 (2019) 267–278.
[48]
Wang J., Song Y., Leung T., Rosenberg C., Wang J., Philbin J., Chen B., Wu Y., Learning fine-grained image similarity with deep ranking, 2014, pp. 1386–1393.
[49]
Schroff F., Kalenichenko D., Philbin J., FaceNet: A unified embedding for face recognition and clustering, 2015, pp. 815–823.
[50]
Chen H., Wang Y., Shi Y., Yan K., Geng M., Tian Y., Xiang T., Deep transfer learning for person re-identification, 2018, pp. 1–5.
[51]
Song H.O., Xiang Y., Jegelka S., Savarese S., Deep metric learning via lifted structured feature embedding, 2016, pp. 4004–4012.
[52]
Yang F., Yan K., Lu S., Jia H., Xie X., Gao W., Attention driven person re-identification, Pattern Recognit. 86 (2019) 143–155.
[53]
Bryan B., Gong Y., Zhang Y., Poellabauer C., Second-order non-local attention networks for person re-identification, 2019, pp. 3760–3769.
[54]
Wang G., Yuan Y., Chen X., Li J., Zhou X., Learning discriminative features with multiple granularities for person re-identification, 2018, pp. 274–282.
[55]
Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao, T.S. Huang, Horizontal pyramid matching for person re-identification, 33 (2019) 8295–8302.
[56]
Zheng F., Deng C., Sun X., Jiang X., Guo X., Yu Z., Huang F., Ji R., Pyramidal person re-identification via multi-loss dynamic training, 2019, pp. 8514–8522.
[57]
Shen Y., Ji R., Hong X., Zheng F., Guo X., Wu Y., Huang F., A part power set model for scale-free person retrieval, 2019, pp. 3397–3403.
[58]
Su C., Li J., Zhang S., Xing J., Gao W., Tian Q., Pose-driven deep convolutional model for person re-identification, 2017, pp. 3980–3989.
[59]
Zheng L., Huang Y., Lu H., Yang Y., Pose invariant embedding for deep person re-identification, Comput. Vis. Pattern Recognit. (2017) arXiv:.
[60]
Zhao H., Tian M., Sun S., Shao J., Yan J., Yi S., Wang X., Tang X., Spindle net: Person re-identification with human body region guided feature decomposition and fusion, 2017, pp. 907–915.
[61]
Liu H., Feng J., Qi M., Jiang J., Yan S., End-to-end comparative attention networks for person re-identification, IEEE Trans. Image Process. 26 (7) (2017) 3492–3506.
[62]
Liu X., Zhao H., Tian M., Sheng L., Shao J., Yi S., Yan J., Wang X., HydraPlus-Net: Attentive deep features for pedestrian analysis, 2017, pp. 350–359.
[63]
Li W., Zhu X., Gong S., Harmonious attention network for person re-identification, 2018, pp. 2285–2294.
[64]
Zhang X., Luo H., Fan X., Xiang W., Sun Y., Xiao Q., Jiang W., Zhang C., Sun J., AlignedReID: Surpassing human-level performance in person re-identification, Comput. Vis. Pattern Recognit. (2017) arXiv:.
[65]
Sun Y., Zheng L., Yang Y., Tian Q., Wang S., Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), 2018, pp. 501–518.
[66]
Long J., Shelhamer E., Darrell T., Fully convolutional networks for semantic segmentation, 2015, pp. 3431–3440.
[67]
Wei S.-E., Ramakrishna V., Kanade T., Sheikh Y., Convolutional pose machines, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4724–4732. https://doi.org/10.1109/CVPR.2016.511.
[68]
Zhang Z., Zou Y., Gan C., Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression, Neurocomputing 275 (2018) 1407–1415.
[69]
Zang J., Wang L., Liu Z., Zhang Q., Hua G., Zheng N., Attention-based temporal weighted convolutional neural network for action recognition, 2018, pp. 97–108.
[70]
Chen H., Lagadec B., Brémond F., Learning discriminative and generalizable representations by spatial-channel partition for person re-identification, in: IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, IEEE, 2020, pp. 2472–2481,.
[71]
Cong D.N.T., Achard C., Khoudour L., Douadi L., Video sequences association for people re-identification across multiple non-overlapping cameras, 2009, pp. 179–189.
[72]
Bedagkargala A., Shah S.K., Multiple person re-identification using part based spatio-temporal color appearance model, 2011, pp. 1721–1728.
[73]
Mclaughlin N., Rincon J.M.D., Miller P., Recurrent convolutional network for video-based person re-identification, 2016, pp. 1325–1334.
[74]
Zhou Z., Huang Y., Wang W., Wang L., Tan T., See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification, 2017, pp. 6776–6785.
[75]
Xu S., Cheng Y., Gu K., Yang Y., Chang S., Zhou P., Jointly attentive spatial-temporal pooling networks for video-based person re-identification, 2017, pp. 4743–4752.
[76]
Zhu X., Jing X., Wu F., Feng H., Video-based person re-identification by simultaneously learning intra-video and inter-video distance metrics, 2016, pp. 3552–3558.
[77]
Huang W., Liang C., Yu Y., Wang Z., Ruan W., Hu R., Video-based person re-identification via self paced weighting, 2018, pp. 2273–2280.
[78]
Meng J., Wu A., Zheng W., Deep asymmetric video-based person re-identification, Pattern Recognit. 93 (2019) 430–441.
[79]
Meng J., Wu S., Zheng W., Weakly supervised person re-identification, 2019, pp. 760–769.
[80]
Chai T., Chen Z., Li A., Chen J., Mei X., Wang Y., Video person re-identification using attribute-enhanced features, 2021, CoRR abs/2108.06946.
[81]
Goodfellow I., Pougetabadie J., Mirza M., Xu B., Wardefarley D., Ozair S., Courville A., Bengio Y., Generative adversarial nets, 2014, pp. 2672–2680.
[82]
Lin K., Li D., He X., Zhang Z., Sun M., Adversarial ranking for language generation, 2017, pp. 3158–3168.
[83]
Hsu C., Hwang H., Wu Y., Tsao Y., Wang H., Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks, Comput. Lang. (2017) arXiv:.
[84]
Zhu J., Park T., Isola P., Efros A.A., Unpaired image-to-image translation using cycle-consistent adversarial networks, 2017, pp. 2242–2251.
[85]
Ehsani K., Mottaghi R., Farhadi A., SeGAN: Segmenting and generating the invisible, 2018, pp. 6144–6153.
[86]
Vondrick C., Pirsiavash H., Torralba A., Generating videos with scene dynamics, 2016, pp. 613–621.
[87]
Ledig C., Theis L., Huszar F., Caballero J., Cunningham A., Acosta A., Aitken A.P., Tejani A., Totz J., Wang Z., et al., Photo-realistic single image super-resolution using a generative adversarial network, Comput. Vis. Pattern Recognit. (2016) arXiv:.
[88]
Zheng Z., Zheng L., Yang Y., Unlabeled samples generated by GAN improve the person re-identification baseline in vitro, 2017, pp. 3774–3782.
[89]
Huang Y., Xu J., Wu Q., Zheng Z., Zhang Z., Zhang J., Multi-pseudo regularized label for generated data in person re-identification, IEEE Trans. Image Process. 28 (3) (2019) 1391–1403.
[90]
Radford A., Metz L., Chintala S., Unsupervised representation learning with deep convolutional generative adversarial networks, Learning (2015) arXiv:.
[91]
He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, 2016, pp. 770–778.
[92]
Liu J., Ni B., Yan Y., Zhou P., Cheng S., Hu J., Pose transferrable person re-identification, 2018, pp. 4099–4108.
[93]
Qian X., Fu Y., Xiang T., Wang W., Qiu J., Wu Y., Jiang Y., Xue X., Pose-normalized image generation for person re-identification, 2018, pp. 661–678.
[94]
Zhang C., Wu L., Wang Y., Crossing generative adversarial networks for cross-view person re-identification, Neurocomputing 340 (2019) 259–269.
[95]
Kingma D.P., Welling M., Auto-encoding variational Bayes, Mach. Learn. (2013) arXiv:.
[96]
Wei L., Zhang S., Gao W., Tian Q., Person transfer GAN to bridge domain gap for person re-identification, 2018, pp. 79–88.
[97]
Deng W., Zheng L., Ye Q., Kang G., Yang Y., Jiao J., Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification, 2018, pp. 994–1003.
[98]
Zhong Z., Zheng L., Zheng Z., Li S., Yang Y., Camera style adaptation for person re-identification, 2018, pp. 5157–5166.
[99]
Li Y., Lin C., Lin Y., Wang Y.F., Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation, 2019.
[100]
Chen Y., Zhu X., Gong S., Instance-guided context rendering for cross-domain person re-identification, 2019, pp. 232–242.
[101]
Zhou S., Ke M., Luo P., Multi-camera transfer GAN for person re-identification, J. Vis. Commun. Image Represent. 59 (2019) 393–400.
[102]
Choi Y., Choi M., Kim M., Ha J., Kim S., Choo J., StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation, 2018, pp. 8789–8797.
[103]
Wei X., Luo J., Wu J., Zhou Z., Selective convolutional descriptor aggregation for fine-grained image retrieval, IEEE Trans. Image Process. 26 (6) (2017) 2868–2881.
[104]
Yu H., Wu A., Zheng W., Cross-view asymmetric metric learning for unsupervised person re-identification, 2017, pp. 994–1002.
[105]
Y. Lin, X. Dong, L. Zheng, Y. Yan, Y. Yang, A bottom-up clustering approach to unsupervised person re-identification, 33 (2019) 8738–8745.
[106]
Li M., Zhu X., Gong S., Unsupervised person re-identification by deep learning tracklet association, 2018, pp. 772–788.
[107]
Li M., Zhu X., Gong S., Unsupervised tracklet person re-identification, IEEE Trans. Pattern Anal. Mach. Intell. (2019) 1.
[108]
Wu J., Liu H., Yang Y., Lei Z., Liao S., Li S.Z., Unsupervised graph association for person re-identification, 2019, pp. 8321–8330.
[109]
Zhang X., Cao J., Shen C., You M., Self-training with progressive augmentation for unsupervised cross-domain person re-identification, 2019.
[110]
Fan H., Zheng L., Yan C., Yang Y., Unsupervised person re-identification: Clustering and fine-tuning, ACM Trans. Multimed. Comput. Commun. Appl. 14 (4) (2018) 83.
[111]
Li Y., Yang F., Liu Y., Yeh Y., Du X., Wang Y.F., Adaptation and re-identification network: An unsupervised deep transfer learning approach to person re-identification, 2018, pp. 172–178.
[112]
Wu J., Liao S., Lei Z., Wang X., Yang Y., Li S.Z., Clustering and dynamic sampling based unsupervised domain adaptation for person re-identification, 2019, pp. 886–891.
[113]
Long M., Zhu H., Wang J., Jordan M.I., Deep transfer learning with joint adaptation networks, 2017, pp. 2208–2217.
[114]
Shu R., Bui H.H., Narui H., Ermon S., A DIRT-T approach to unsupervised domain adaptation, 2018.
[115]
C. Chen, Z. Chen, B. Jiang, X. Jin, Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation, 33 (2019) 3296–3303.
[116]
Wang J., Zhu X., Gong S., Li W., Transferable joint attribute-identity deep learning for unsupervised person re-identification, 2018, pp. 2275–2284.
[117]
Zhu X., Morerio P., Murino V., Unsupervised domain-adaptive person re-identification based on attributes, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[118]
Zheng W., Li X., Xiang T., Liao S., Lai J., Gong S., Partial person re-identification, 2015, pp. 4678–4686.
[119]
He L., Liang J., Li H., Sun Z., Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach, 2018, pp. 7073–7082.
[120]
Miao J., Wu Y., Liu P., Ding Y., Yang Y., Pose-guided feature alignment for occluded person re-identification, 2019, pp. 542–551.
[121]
Jiao J., Zheng W., Wu A., Zhu X., Gong S., Deep low-resolution person re-identification, 2018, pp. 6967–6974.
[122]
Zhuang Z., Ai H., Chen L., Shang C., Cross-resolution person re-identification with deep antithetical learning, Comput. Vis. Pattern Recognit. (2018) arXiv:.
[123]
Wang G., Zhang T., Cheng J., Liu S., Yang Y., Hou Z., RGB-infrared cross-modality person re-identification via joint pixel and feature alignment, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[124]
Liang W., Wang G., Lai J., Xie X., Homogeneous-to-heterogeneous: Unsupervised learning for RGB-infrared person re-identification, IEEE Trans. Image Process. 30 (2021) 6392–6407,.
[125]
Hafner F.M., Bhuiyan A., Kooij J.F.P., Granger E., A cross-modal distillation network for person re-identification in RGB-depth, Comput. Vis. Pattern Recognit. (2018) arXiv:.
[126]
Li S., Xiao T., Li H., Yang W., Wang X., Identity-aware textual-visual matching with latent co-attention, 2017, pp. 1908–1917.
[127]
Pang L., Wang Y., Song Y., Huang T., Tian Y., Cross-domain adversarial feature learning for sketch re-identification, 2018, pp. 609–617.
[128]
Zheng Z., Zheng L., Hu Z., Yang Y., Open set adversarial examples, 2018.
[129]
Bai S., Li Y., Zhou Y., Li Q., Torr P.H.S., Adversarial metric attack for person re-identification, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[130]
Zhao G., Zhang M., Liu J., Wen J., Unsupervised adversarial attacks on deep feature-based retrieval with GAN, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[131]
Ding W., Wei X., Hong X., Ji R., Gong Y., Universal adversarial perturbations against person re-identification, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[132]
Gray D., Tao H., Viewpoint invariant pedestrian recognition with an ensemble of localized features, 2008, pp. 262–275.
[133]
Loy C.C., Xiang T., Gong S., Multi-camera activity correlation analysis, 2009, pp. 1988–1995.
[134]
Li W., Zhao R., Wang X., Human reidentification with transferred metric learning, 2012, pp. 31–44.
[135]
Hirzer M., Beleznai C., Roth P.M., Bischof H., Person re-identification by descriptive and discriminative classification, 2011, pp. 91–102.
[136]
Wang T., Gong S., Zhu X., Wang S., Person re-identification by video ranking, 2014, pp. 688–703.
[137]
Li J., Zhang S., Wang J., Gao W., Tian Q., LVreID: Person re-identification with long sequence videos, 2017, arXiv:1712.07286.
[138]
Cheng D.S., Cristani M., Stoppa M., Bazzani L., Murino V., Custom pictorial structures for re-identification, 2011, pp. 1–11.
[139]
Wu A., Zheng W., Yu H., Gong S., Lai J., RGB-infrared cross-modality person re-identification, 2017, pp. 5390–5399.
[140]
Nguyen D.T., Hong H.G., Kim K.W., Park K.R., Person recognition system based on a combination of body images from visible light and thermal cameras, Sensors 17 (3) (2017) 605.
[141]
Munaro M., Fossati A., Basso A., Menegatti E., Gool L.V., One-shot person re-identification with a consumer depth camera, 2014.
[142]
Liu H., Hu L., Ma L., Online RGB-D person re-identification based on metric model update, CAAI Trans. Intell. Technol. 2 (1) (2017) 48–55.
[143]
Zhong Z., Zheng L., Cao D., Li S., Re-ranking person re-identification with k-reciprocal encoding, 2017, pp. 3652–3661.
[144]
Wei L., Zhang S., Yao H., Gao W., Tian Q., GLAD: Global–local-alignment descriptor for scalable person re-identification, IEEE Trans. Multimed. 21 (4) (2019) 986–999.
[145]
Tay C., Roy S., Yap K., AANet: Attribute attention network for person re-identifications, 2019, pp. 7134–7143.
[146]
Zheng M., Karanam S., Wu Z., Radke R.J., Re-identification with consistent attentive siamese networks, 2019, pp. 5735–5744.
[147]
Zhou K., Yang Y., Cavallaro A., Xiang T., Omni-scale feature learning for person re-identification, 2019, pp. 3702–3712.
[148]
Zheng Z., Yang X., Yu Z., Zheng L., Yang Y., Kautz J., Joint discriminative and generative learning for person re-identification, 2019, pp. 2138–2147.
[149]
Chen B., Deng W., Hu J., Mixed high-order attention network for person re-identification, 2019, pp. 371–381.
[150]
Chen Y., Wang H., Sun X., Fan B., Tang C., Deep attention aware feature learning for person re-identification, Comput. Vis. Pattern Recognit. (2020) arXiv:.
[151]
Wu D., Wang C., Wu Y., Huang D., Attention deep model with multi-scale deep supervision for person re-identification, Comput. Vis. Pattern Recognit. (2019) arXiv:.
[152]
Chen H., Lagadec B., Bremond F.F., Learning discriminative and generalizable representations by spatial-channel partition for person re-identification, 2020.
[153]
Gong Y., Wang L., Li Y., Du A., A discriminative person re-identification model with global-local attention and adaptive weighted rank list loss, IEEE Access 8 (2020) 203700–203711.
[154]
He S., Luo H., Wang P., Wang F., Li H., Jiang W., TransReID: Transformer-based object re-identification, 2021, arXiv:2102.04378.
[155]
Liu Y., Zhang Y., Bhanu B., Coleman S., Kerr D., Multi-level cross-view consistent feature learning for person re-identification, Neurocomputing 435 (2021) 1–14.
[156]
Zhong Z., Zheng L., Li S., Yang Y., Generalizing a person retrieval model hetero- and homogeneously, 2018, pp. 176–192.
[157]
Zhong Z., Zheng L., Luo Z., Li S., Yang Y., Invariance matters: Exemplar memory for domain adaptive person re-identification, 2019, pp. 598–607.
[158]
Wang D., Zhang S., Unsupervised person re-identification via multi-label classification, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10978–10987,.
[159]
J. Li, S. Zhang, T. Huang, Multi-scale 3D convolution network for video based person re-identification, 33 (2019) 8618–8625.
[160]
Li J., Zhang S., Wang J., Gao W., Tian Q., Global-local temporal representations for video person re-identification, 2019, pp. 3958–3967.
[161]
You J., Wu A., Li X., Zheng W., Top-push video-based person re-identification, 2016, pp. 1345–1353.
[162]
Wu Y., Qiu J., Takamatsu J., Ogasawara T., Temporal-enhanced convolutional network for person re-identification, 2018, pp. 7412–7419.
[163]
Liu Y., Yan J., Ouyang W., Quality aware network for set to set recognition, 2017, pp. 4694–4703.
[164]
Y. Liu, Z. Yuan, W. Zhou, H. Li, Spatial and temporal mutual promotion for video-based person re-identification, 33 (2019) 8786–8793.
[165]
Chen D., Li H., Xiao T., Yi S., Wang X., Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding, 2018, pp. 1169–1178.
[166]
Zhang Z., Lan C., Zeng W., Chen Z., Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10404–10413,.
[167]
Zhang Z., Lan C., Zeng W., Chen Z., Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification, 2020, arXiv:2003.12224.
[168]
Suh Y., Wang J., Tang S., Mei T., Lee K.M., Part-aligned bilinear representations for person re-identification, 2018, pp. 418–437.

Cited By

View all
  • (2023)Person re-identification based on human semantic parsing and message passingThe Journal of Supercomputing10.1007/s11227-022-04866-w79:5(5223-5247)Online publication date: 1-Mar-2023

Index Terms

  1. Person re-identification based on deep learning — An overview
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Visual Communication and Image Representation
    Journal of Visual Communication and Image Representation  Volume 82, Issue C
    Jan 2022
    395 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 January 2022

    Author Tags

    1. Person re-identification
    2. Deep learning
    3. Convolutional neural networks
    4. Attention mechanism

    Qualifiers

    • Review-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Person re-identification based on human semantic parsing and message passingThe Journal of Supercomputing10.1007/s11227-022-04866-w79:5(5223-5247)Online publication date: 1-Mar-2023

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media