[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Hybrid quantum architecture for smart city security

Published: 21 November 2024 Publication History

Abstract

Currently and in the near future, Smart Cities are vital to enhance urban living, address resource challenges, optimize infrastructure, and harness technology for sustainability, efficiency, and improved quality of life in rapidly urbanizing environments. Owing to the high usage of networks, sensors, and connected devices, Smart Cities generate a massive amount of data. Therefore, Smart City security concerns encompass data privacy, Internet-of-Things (IoT) vulnerabilities, cyber threats, and urban infrastructure risks, requiring robust solutions to safeguard digital assets, citizens, and critical services. Some solutions include robust cybersecurity measures, data encryption, Artificial Intelligence (AI)-driven threat detection, public–private partnerships, standardized security protocols, and community engagement to foster a resilient and secure smart city ecosystem. For example, Security Information and Event Management (SIEM) helps in real-time monitoring, threat detection, and incident response by aggregating and analyzing security data. To this end, no integrated systems are operating in this context. In this paper, we propose a Hybrid Quantum-Classical Architecture for bolstering Smart City security that exploits Quantum Machine Learning (QML) and SIEM to provide security based on Quantum Artificial Intelligence and patterns/rules. The validity of the hybrid quantum-classical architecture was proven by conducting experiments and a comparison of the QML algorithms with state-of-the-art AI algorithms. We also provide a proof of concept dashboard for the proposed architecture.

Highlights

Hybrid Quantum Architecture for Cyber Security Attacks.
Quantum Machine Learning (QML) and SIEM to provide security based on Quantum Artificial Intelligence and patterns/rules.
The application of Quantum Computing to reduce the time to identify attacks in an IoT scenario.
Hybrid Quantum Architecture to analyze vulnerabilities and threats.

References

[1]
Alrashdi I., Alqazzaz A., Aloufi E., Alharthi R., Zohdy M., Ming H., AD-IoT: Anomaly detection of IoT cyberattacks in smart city using machine learning, in: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC, 2019, pp. 0305–0310,.
[2]
Anon. I., Post-quantum cryptography, 2016, https://csrc.nist.gov/projects/post-quantum-cryptography. (Accessed 10 May 2024).
[3]
Anon. I., DVWA damn vulnerable web application, 2017, https://github.com/digininja/DVWA. (Accessed 28 September 2023).
[4]
Anon. I., IBM QRadar SIEM community edition, 2023, https://www.ibm.com/community/qradar/ce/. (Accessed 29 September 2023).
[5]
Anon. I., Oracle VM VirtualBox, 2023, https://www.virtualbox.org/. (Accessed 29 September 2023).
[6]
Anon. I., QRadar architecture overview, 2023, https://www.ibm.com/docs/en/qsip/7.4?topic=deployment-qradar-architecture-overview. (Accessed 27 September 2023).
[7]
Anon. I., Superflow, 2023, https://www.ibm.com/docs/en/qsip/7.4?topic=monitoring-superflows. (Accessed 28 September 2023).
[8]
Babar M., Tariq M.U., Jan M.A., Secure and resilient demand side management engine using machine learning for IoT-enabled smart grid, Sustainable Cities Soc. (ISSN ) 62 (2020),.
[9]
Barletta V.S., Buono P., Caivano D., Dimauro G., Pontrelli A., Deriving smart city security from the analysis of their technological levels: A case study, in: 2021 IEEE International Conference on Omni-Layer Intelligent Systems, COINS, 2021, pp. 1–6,.
[10]
Barletta V.S., Caivano D., De Vincentiis M., Magrì A., Piccinno A., Quantum optimization for IoT security detection, in: Julián V., Carneiro J.a., Alonso R.S., Chamoso P., Novais P. (Eds.), Ambient Intelligence—Software and Applications—13th International Symposium on Ambient Intelligence, Springer International Publishing, Cham, ISBN 978-3-031-22356-3, 2023, pp. 187–196.
[11]
Barletta V.S., Caivano D., De Vincentiis M., Ragone A., Scalera M., Martín M.Á.S., V-SOC4AS: A vehicle-SOC for improving automotive security, Algorithms (ISSN ) 16 (2) (2023),.
[12]
Barletta V.S., Caivano D., Lako A., Pal A., Quantum as a service architecture for security in a smart city, in: International Conference on the Quality of Information and Communications Technology, Springer, ISBN 978-3-031-43703-8, 2023, pp. 76–89.
[13]
Bhavsar M., Roy K., Kelly J., Olusola O., Anomaly-based intrusion detection system for IoT application, Discov. Internet of Things 3 (1) (2023) 5.
[14]
Bhowmick A., Francellino E., Glehn L., Loredo R., Nesbitt P., Yu S.W., IBM Intelligent Operations Center for Smarter Cities Administration Guide, IBM Corporation, International Technical Support Organization, 2012.
[15]
Bhuyan M.H., Bhattacharyya D.K., Kalita J.K., Surveying port scans and their detection methodologies, Comput. J. 54 (10) (2011) 1565–1581.
[16]
Boixo S., Smelyanskiy V.N., Shabani A., Isakov S.V., Dykman M., Denchev V.S., Amin M.H., Smirnov A.Y., Mohseni M., Neven H., Computational multiqubit tunnelling in programmable quantum annealers, Nature Commun. (ISSN ) 7 (10327) (2016) 1–7,.
[17]
Breiman L., Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[18]
Caivano D., De Vincentiis M., Nitti F., Pal A., Quantum optimization for fast CAN bus intrusion detection, in: Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering, in: QP4SE 2022, Association for Computing Machinery, New York, NY, USA, ISBN 9781450394581, 2022, pp. 15–18,. URL https://doi.org/10.1145/3549036.3562058.
[19]
Chen S.Y.-C., Yoo S., Fang Y.-L.L., Quantum long short-term memory, in: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, IEEE, 2022, pp. 8622–8626.
[20]
Farhi E., Goldstone J., Gutmann S., A quantum approximate optimization algorithm, 2014, arXiv:1411.4028.
[21]
Farhi E., Goldstone J., Gutmann S., Sipser M., Quantum computation by adiabatic evolution, 2000, arXiv:quant-ph/0001106.
[22]
Feynman R.P., Simulating physics with computers, Internat. J. Theoret. Phys. 21 (6/7) (1982) 467–488.
[23]
Gigante D., Pecorelli F., Barletta V.S., Janes A., Lenarduzzi V., Taibi D., Baldassarre M.T., Resolving security issues via quality-oriented refactoring: A user study, in: 2023 ACM/IEEE International Conference on Technical Debt, TechDebt, 2023, pp. 82–91,.
[24]
Grover L.K., A fast quantum mechanical algorithm for database search, in: STOC’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ACM, 1996, pp. 212–219.
[25]
Halfond W.G., Viegas J., Orso A., et al., A classification of SQL-injection attacks and countermeasures, in: Proceedings of the IEEE International Symposium on Secure Software Engineering, Vol. 1, IEEE, 2006, pp. 13–15.
[26]
Hekkala J., Muurman M., Halunen K., Vallivaara V., Implementing post-quantum cryptography for developers, SN Comput. Sci. 4 (4) (2023) 365.
[27]
Herr D., Obert B., Rosenkranz M., Anomaly detection with variational quantum generative adversarial networks, Quantum Sci. Technol. 6 (4) (2021).
[28]
Hwoij A., Khamaiseh A., Ababneh M., SIEM architecture for the Internet of Things and smart city, in: International Conference on Data Science, E-Learning and Information Systems 2021, ACM, ISBN 978-1-4503-8838-2, 2021, pp. 147–152,.
[29]
Ioulianou P., Vasilakis V., Moscholios I., Logothetis M., A signature-based intrusion detection system for the internet of things, Inf. Commun. Technol. Form (2018).
[30]
Jia Y., Gu Z., Du L., Long Y., Wang Y., Li J., Zhang Y., Artificial intelligence enabled cyber security defense for smart cities: A novel attack detection framework based on the MDATA model, Knowl.-Based Syst. (ISSN ) 276 (2023),.
[31]
Jiang C., Qiu Y., Gao H., Fan T., Li K., Wan J., An edge computing platform for intelligent operational monitoring in internet data centers, IEEE Access 7 (2019) 133375–133387,.
[32]
Johnson M.W., Amin M.H.S., Gildert S., Lanting T., Hamze F., Dickson N., Harris R., Berkley A.J., Johansson J., Bunyk P., Chapple E.M., Enderud C., Hilton J.P., Karimi K., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C., Tolkacheva E., Truncik C.J.S., Uchaikin S., Wang J., Wilson B., Rose G., Quantum annealing with manufactured spins, Nature (ISSN ) 473 (7346) (2011) 194–198,. arXiv:21562559.
[33]
Kadowaki T., Nishimori H., Quantum annealing in the transverse Ising model, Phys. Rev. E 58 (5) (1998) 5355–5363,.
[34]
Kaye P., Laflamme R., Mosca M., Kaye P., Laflamme R., Mosca M., An Introduction to Quantum Computing, Oxford University Press, Oxford, England, UK, ISBN 978-0-19857049-3, 2006, URL https://global.oup.com/academic/product/an-introduction-to-quantum-computing-9780198570493.
[35]
Lyon G.F., Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure, 2009.
[36]
Neto E.C.P., Dadkhah S., Ferreira R., Zohourian A., Lu R., Ghorbani A.A., CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT environment, Sensors (ISSN ) 23 (13) (2023),.
[37]
Neven H., Denchev V., Rose G., Macready W., QBoost: Large scale classifier training with adiabatic quantum optimization, J. Mach. Learn. Res. 25 (2012) 333–348.
[38]
Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, Cambridge, England, UK, ISBN 978-0-51197666-7, 2010,.
[39]
Piattini M., Murillo J.M., Quantum software engineering landscape and challenges, in: Quantum Software Engineering, Springer, 2022, pp. 25–38.
[40]
Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A., Hernández, G., de Guzmán, I.G.R., Paradela, C.A., Polo, M., Murina, E., et al., 2020. The talavera manifesto for quantum software engineering and programming. In: QANSWER. pp. 1–5.
[41]
Rajapaksha S., Kalutarage H., Al-Kadri M.O., Petrovski A., Madzudzo G., Cheah M., Ai-based intrusion detection systems for in-vehicle networks: A survey, ACM Comput. Surv. 55 (11) (2023) 1–40.
[42]
Salek M.S., Biswas P.K., Pollard J., Hales J., Shen Z., Dixit V., Chowdhury M., Khan S.M., Wang Y., A novel hybrid quantum-classical framework for an in-vehicle controller area network intrusion detection, IEEE Access (2023).
[43]
Sánchez-Corcuera R., Nuñez-Marcos A., Sesma-Solance J., Bilbao-Jayo A., Mulero R., Zulaika U., Azkune G., Almeida A., Smart cities survey: Technologies, application domains and challenges for the cities of the future, Int. J. Distrib. Sens. Netw. 15 (6) (2019).
[44]
Shor P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5) (1997) 1484–1509.
[45]
Suryotrisongko H., Musashi Y., Evaluating hybrid quantum-classical deep learning for cybersecurity botnet DGA detection, Procedia Comput. Sci. 197 (2022) 223–229.
[46]
Tan H., Wang L., Zhang H., Zhang J., Shafiq M., Gu Z., Adversarial attack and defense strategies of speaker recognition systems: A survey, Electronics 11 (14) (2022) 2183.
[47]
Tariq U., Ahmed I., Bashir A.K., Shaukat K., A critical cybersecurity analysis and future research directions for the Internet of Things: A comprehensive review, Sensors (ISSN ) 23 (8) (2023),.
[48]
Wang M., Huang A., Liu Y., Yi X., Wu J., Wang S., A quantum-classical hybrid solution for deep anomaly detection, Entropy 25 (3) (2023) 427.
[49]
Wassermann, G., Su, Z., 2008. Static detection of cross-site scripting vulnerabilities. In: Proceedings of the 30th International Conference on Software Engineering. pp. 171–180.
[50]
Zarpelão B.B., Miani R.S., Kawakani C.T., de Alvarenga S.C., A survey of intrusion detection in Internet of Things, J. Netw. Comput. Appl. 84 (2017) 25–37.
[51]
Zhao J., Quantum software engineering: Landscapes and horizons, 2020, CoRR, abs/2007.07047. arXiv:2007.07047.
[52]
Zhou X., Liang W., Li W., Yan K., Shimizu S., Kevin I., Wang K., Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system, IEEE Internet Things J. 9 (12) (2021) 9310–9319.
[53]
Zhuhadar L., Thrasher E., Marklin S., de Pablos P.O.n., The next wave of innovation—Review of smart cities intelligent operation systems, Comput. Hum. Behav. (ISSN ) 66 (2023) 273–281,.

Index Terms

  1. Hybrid quantum architecture for smart city security
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Systems and Software
      Journal of Systems and Software  Volume 217, Issue C
      Nov 2024
      328 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 21 November 2024

      Author Tags

      1. Hybrid quantum system
      2. Quantum software engineering
      3. Security engineering
      4. Smart city

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 11 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media