[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

On the computational complexity of reachability in 2D binary images and some basic problems of 2D digital topology

Published: 11 June 2002 Publication History

Abstract

We study the computational complexity of some well-known problems of 2D digital topology. We prove that all considered problems (including reachability in 2D binary images, connectivity, lower homotopy and symmetric homotopy) are in LogSpace. We prove that reachability in 2D binary images and some other problems are NC1-hard. Finally, we prove that most of the considered problems are not in AC0.

References

[1]
H.M. Alnuweiri, V.K. Prasanna, Parallel architectures and algorithms for image component labelling, IEEE Trans. Pattern Anal. Mach, Intell. 14 (10) (1992) 1034-1034.
[2]
D.A. Mix Barrington, N. Immerman. H. Straubing, On uniformity within NC, J. Comput. System Sci. 41(3) (1990) 274-306.
[3]
S.R. Buss, Alogtime algorithms for tree isomorphism, comparison, and canonization, in: G. Georg, et al. (Eds.), Computational Logic and Proof Theory, 5th Kurt Godel Colloquium KGC97, Proceedings, Lecture Notes in Computer Science, vol. 289. Springer, Berlin, 1997, pp. 1833.
[4]
A.I. Bykov, L.G. Zerkalov, Algorithms for homotopy classification of binary images, Pattern Recognition 29(4) (1996) 565-574.
[5]
S.A. Cook, P. McKenzie, Problems complete for deterministic logarithmic space, J. Algorithms 8(1987) 385-394.
[6]
R. Cypher, .I.L.C. Sanz, L. Snyder, An EREW PRAM algorithm for image component labelling Correspondence in IEEE Trans. Pattern Anal. Mach, Intell. 11(3) (1989) 258-262.
[7]
L. Denenberg, Y, Gurevich, S. Shelah, Definability by constant-depth polynomial-size circuits, Inform and Control 70 (1986) 216-240.
[8]
H.P. Ebbinghaus, I, Hum, Finite Model Theory, Springer, Berlin, 1995.
[9]
R. Fagin, M. Klawe, N. Pippenger, L. Stocktneyer, Bounded-depth, polynomial-size circuits k: symmetric functions, Theoret. Comput. Set. 36 (1985) 239-250.
[10]
F.E. Fich, The complexity of computation on the parallel random access machine, in: .1. Reif (Ed Synthesis of Parallel Algorithms. Chapter 21, Morgan-Kaufmann, Los Altos, CA. 1993.
[11]
M. Furst, J. Saxe, M. Sipser, Parity, circuits and the polynomial hierarchy, Math. Systems Theory, 17 (1984) 13--27.
[12]
P. Hajek, P. Pudlak, Metamathematics of First-Order arithmetic, Springer, Berlin, 1993.
[13]
G. Herman, Discrete Multidimensional Jordan surfaces, Vision geometry, Proc. AMS Spec. Sess., 85 Meet., Hoboken/NJ (USA) 3989 Contemporary Mathematics, vol. 339, 1991, pp. 85-94,
[14]
N. Immerman, Descriptive Complexity, Springer, New York, NY, 1999.
[15]
D.S. Johnson, A catalog of complexity classes, in: J. Van Leeuwen (Ed.), Handbook of Theoretical, Computer Science Vol. A: Algorithms and Complexity, Elsevier Science Publishers, Amsterdam. 1990, pp. 67-161.
[16]
T.Y, Kong, On topology preservation in 2-D and 3-D thisming. Internat. J. Pattern Recognition Artificial Intelligence 9(5) (39-95) 813-844.
[17]
T.Y. Kong, A. Rosenfeld, Digital topology: introduction and survey, Comput. Vision Graphics lniagc Process. 48 (1989) 357-393.
[18]
A. Lenoir, R. Matgouyres, M. Revenu, Fast computation of the normal vector field of the surface of3D discrete object, DGCI'96, Lecture Notes in Computer Science, vol. 3176, Springer, Lyon, France. November 1996, pp. 101-112.
[19]
A. Lenoir, Fast estimation of mean curvature on the surface of a 3D discrete object, DGCI'97, Lecture Notes in Computer Science. vol. 1347, December 1997, pp. 175-186.
[20]
S. Lindell, A Logspace Algorithm for Tree Canonization, Proc. 24th ACM Symp, on Theory of Computing ACM Press, 1992, pp. 400-404.
[21]
R. Malgouyres, Homotopy in 2-dimensional digital images, Theoret. Comput. Sci. 230 (2000) 221-233.
[22]
R. Malgouyres, A. Lenoir, Topology preservation within digital surfaces, Graphical Models (GMIP) 62 (2000) 71-84.
[23]
C.H. Papadimitnou Computational Complexity AddisonWesley, Reading, MA, 1994.
[24]
C. Ronse, A topological characterization of thinning, Theoret. CO-Put. Set. 43 (1986) 31-41.
[25]
A. Rosenfeld, Adjacency in digital pictures, Infona. and Control 26 (1974) 24-33.
[26]
A. Rosenfeld T.Y. Kong, A. Nakamura, Topology-Preserving deformations of two-valued digital pictures Graphical Models Image Process, 60 (I) (1998) 24-34.
[27]
H. Saubing, Finite Automata Formal Logic and Circuit Complexity, Birduser Boston, 1994.
[28]
J.K. Udupa, Multidimensional digital boundaries CVGIP: Graphical Models Image Process. 56 (4) (1994) 311-323.

Cited By

View all

Index Terms

  1. On the computational complexity of reachability in 2D binary images and some basic problems of 2D digital topology

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Theoretical Computer Science
        Theoretical Computer Science  Volume 283, Issue 1
        June 11 2002
        304 pages

        Publisher

        Elsevier Science Publishers Ltd.

        United Kingdom

        Publication History

        Published: 11 June 2002

        Author Tags

        1. computational complexity
        2. digital topology
        3. homotopy
        4. reachability

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 20 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media