[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

On some intriguing problems in hamiltonian graph theory: a survey

Published: 28 May 2002 Publication History

Abstract

We survey results and open problems in hamiltonian graph theory centered around three themes: regular graphs, t-tough graphs, and claw-free graphs.

References

[1]
{1} D. Bauer, H.J. Broersma, J. van den Heuvel, H.J. Veldman, On hamiltonian properties of 2-tough graphs, J. Graph Theory 18 (1994) 539-543.
[2]
{2} D. Bauer, H.J. Broersma, J. van den Heuvel, H.J. Veldman, Long cycles in graphs with prescribed toughness and minimum degree, Discrete Math. 141 (1995) 1-10.
[3]
{3} D. Bauer, H.J. Broersma, H.J. Veldman, Not every 2-tough graph is hamiltonian, Discrete Appl. Math. 99 (2000) 317-321.
[4]
{4} D. Bauer, G.Y. Katona, D. Kratsch, H.J. Veldman, Chordality and 2-factors in tough graphs, Discrete Appl. Math. 99 (2000) 323-329.
[5]
{5} D. Bauer, E. Schmeichel, Toughness, minimum degree, and the existence of 2-factors, J. Graph Theory 18 (1994) 241-256.
[6]
{6} K. Baxter, The Hopping Lemma, MSc Thesis, University of Waterloo, 1992.
[7]
{7} J.C. Bermond, Hamiltonian graphs, in: L. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, Academic Press, London and New York, 1978, pp. 127-167.
[8]
{8} J.C. Bermond, C. Thomassen, Cycles in digraphs---a survey, J. Graph Theory 5 (1981) 1-43.
[9]
{9} A.A. Bertossi, The edge hamiltonian path problem is NP-complete, Inform. Process. Lett. 13 (1981) 157-159.
[10]
{10} T. Böhme, J. Harant, M. Tkác, More than one tough chordal planar graphs are hamiltonian, J. Graph Theory 32 (1999) 405-410.
[11]
{11} J.A. Bondy, Hamilton cycles in graphs and digraphs, Congr. Numer. 21 (1978) 3-28.
[12]
{12} J.A. Bondy, Basic graph theory, in: M. Grötschel, L. Lovász, R.L. Graham (Eds.), Handbook of Combinatorics, North-Holland, Amsterdam, 1995, pp. 3-110.
[13]
{13} J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[14]
{14} J.A. Bondy, M. Kouider, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory B 44 (1988) 177-186.
[15]
{15} J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[16]
{16} H.J. Broersma, J. van den Heuvel, B. Jackson, H.J. Veldman, Hamiltonicity of regular 2-connected graphs, J. Graph Theory 22 (1996) 105-124.
[17]
{17} H.J. Broersma, J. van den Heuvel, H.A. Jung, H.J. Veldman, Cycles containing all vertices of maximum degree, J. Graph Theory 17 (1993) 373-385.
[18]
{18} H.J. Broersma, J. van den Heuvel, H.J. Veldman, A generalization of Ore's Theorem involving neighborhood unions, Discrete Math. 122 (1993) 37-49.
[19]
{19} H.J. Broersma, M. Kriesell, Z. Ryjácek, On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001) 125-136.
[20]
{20} H.J. Broersma, S. van der Laag, Long cycles in 2-connected and 3-connected claw-free graphs, Working paper.
[21]
{21} H.J. Broersma, Z. Ryjácek, I. Schiermeyer, Closure concepts---a survey, Graphs and Combin. 16 (2000) 1748.
[22]
{22} P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[23]
{23} G. Chen, M.S. Jacobson, A. Kézdy, J. Lehel, Tough enough chordal graphs are hamiltonian, Networks 31 (1998) 29-38.
[24]
{24} V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[25]
{25} V. Chvátal, Hamiltonian cycles, Chapter 11 in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem, Wiley, New York, 1985.
[26]
{26} G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69-81.
[27]
{27} H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87-95.
[28]
{28} G. Fan, personal communication.
[29]
{29} R.J. Faudree, E. Flandrin, Z. Ryjácek, Claw-free graphs---a survey, Discrete Math. 164 (1997) 87-147.
[30]
{30} O. Favaron, E. Flandrin, H. Li, Z. Ryjácek, Clique covering and degree conditions for hamiltonicity in claw-free graphs, preprint, 1997.
[31]
{31} O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, preprint, 1999.
[32]
{32} H. Fleischner, The square of every 2-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34.
[33]
{33} H. Fleischner, B. Jackson, A note concerning some conjectures on cyclically 4-edge connected 3-regular graphs, Ann. Discrete Math. 41 (1989) 171-178.
[34]
{34} R.J. Gould, Updating the hamiltonian problem---a survey, J. Graph Theory 15 (1991) 121-157.
[35]
{35} R. Häggkvist, On the structure of non-hamiltonian graphs I, Combin. Probab. Comput. 1 (1992) 27-34.
[36]
{36} F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
[37]
{37} J. van den Heuvel, Degree and toughness conditions for cycles in graphs, Ph.D. Thesis, University of Twente, 1993.
[38]
{38}J. van den Heuvel, personal communication.
[39]
{39} F. Hilbig, Kantenstrukturen in nichthamiltonschen Graphen, Ph.D. Thesis, Technische Universität Berlin, 1986.
[40]
{40} D.A. Holton, B.D. McKay, M.D. Plummer, C. Thomassen, A nine point theorem for 3-connected graphs, Combinatorica 2 (1982) 53-62.
[41]
{41} S. Ishizuka, Closure, path factors and path coverings in claw-free graphs, preprint, 1998.
[42]
{42} B. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory B 29 (1980) 27-46.
[43]
{43} B. Jackson, Hamilton cycles in 7-connected line graphs, preprint, 1989.
[44]
{44} B. Jackson, Concerning the circumference of certain families of graphs, in: H.J. Broersma, J. van den Heuvel, H.J. Veldman (Eds.), Updated Contributions to the Twente Workshop on Hamiltonian Graph Theory, Memorandum No. 1076, University of Twente, Enschede, 1992, pp. 87-94.
[45]
{45} B. Jackson, personal communication.
[46]
{46} B. Jackson, H. Li, Y. Zhu, Dominating cycles in regular 3-counected graphs, Discrete Math. 102 (1991) 163-176.
[47]
{47} B. Jackson, N.C. Wormald, k-Walks of graphs, Austral. J. Combin. 2 (1990) 135-146.
[48]
{48} F. Jaeger, A note on subeulerian graphs, J. Graph Theory 3 (1979) 91-93.
[49]
{49} H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (1987) 129-144.
[50]
{50} M. Kochol, Sublinear defect principle in graph theory, manuscript, 1999.
[51]
{51} D. Kratsch, personal communication.
[52]
{52} D. Kratsch, J. Lehel, H. Müller, Toughness, hamiltonicity and split graphs, Discrete Math. 150 (1996) 231-245.
[53]
{53} M. Kriesell, All 4-connected line graphs of claw-free graphs are hamiltonian-connected, preprint, 1998.
[54]
{54} E.J. Kuipers, H.J. Veldman, Recognizing claw-free hamiltonian graphs with large minimum degree, preprint, 1998.
[55]
{55} S. Kundu, Bounds on the number of disjoint spanning trees, J. Combin. Theory B 17 (1974) 199-203.
[56]
{56} H. Li, A note on hamiltonian claw-free graphs, Rapport de Recherche 1022, Univ. Paris-Sud, Orsay, France, 1996.
[57]
{57} X. Liu, D. Wang, A new generalization of Ore's Theorem involving neighborhood unions, Systems Sci. Math. Sci. 9 (1996) 182-192.
[58]
{58} X. Liu, L. Zhang, Y. Zhu, Distance, neighborhood unions and hamiltonian properties in graphs, in: Y. Alavi, D.R. Lick, J. Liu (Eds.), Combinatorics, Graph Theory, Algorithms and Applications, Proceedings of the Third China-USA International Conference, Beijing, June 1-5, 1993, World Scientific Publ. Co., Inc., River Edge, NJ, 1994, pp. 255-268.
[59]
{59} M.M. Matthews, D.P. Sumner, Hamiltonian results in K1,3-free graphs, J. Graph Theory 8 (1984) 139-146.
[60]
{60} M.M. Matthews, D.P. Sumner, Longest paths and cycles in K1,3-free graphs, J. Graph Theory 9 (1985) 269-277.
[61]
{61} Min Aung, Circumference of a regular graph, J. Graph Theory 13 (1989) 149-155.
[62]
{62} C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
[63]
{63} D.J. Oberly, D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, J. Graph Theory 3 (1979) 351-356.
[64]
{64} O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[65]
{65} Z. Ryjácek, On a closure concept in claw-free graphs, J. Combin. Theory B 70 (1997) 217-224.
[66]
{66} Z. Ryjácek, A. Saito, R.H. Schelp, Closure, 2-factors and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117.
[67]
{67} C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[68]
{68} C. Thomassen, On the number of hamiltonian cycles in bipartite graphs, Combin. Probab. Comput. 5 (1996) 437-442.
[69]
{69} W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
[70]
{70} W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221-230.
[71]
{71} H.J. Veldman, Existence of Dλ-cycles and Dλ-paths, Discrete Math. 44 (1983) 309-316.
[72]
{72} H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229-239.
[73]
{73} M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Can. J. Math. 19 (1967) 1319-1328.
[74]
{74} D.R. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory B 15 (1973) 225-255.
[75]
{75} S. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991) 89-95.
[76]
{76} Y. Zhu, H. Li, Hamilton cycles in regular 3-connected graphs, Discrete Math. 110 (1992) 229-249.
[77]
{77} Y. Zhu, Z. Liu, Z. Yu, 2-Connected k-regular graphs on at most 3k + 3 vertices to be hamiltonian, J. Systems Sci. Math. Sci. 6 (1) (1986) 36-49; (2) (1986) 136-145.

Cited By

View all
  • (2018)Neighborhood Union Conditions for Hamiltonicity of P3-Dominated GraphsGraphs and Combinatorics10.1007/s00373-013-1354-430:6(1499-1511)Online publication date: 26-Dec-2018
  • (2018)Hamiltonicity of Graphs on Surfaces in Terms of Toughness and Scattering Number – A SurveyDiscrete and Computational Geometry, Graphs, and Games10.1007/978-3-030-90048-9_7(74-95)Online publication date: 1-Sep-2018
  • (2015)Forbidden pairs and the existence of a dominating cycleDiscrete Mathematics10.1016/j.disc.2015.06.018338:12(2442-2452)Online publication date: 6-Dec-2015

Index Terms

  1. On some intriguing problems in hamiltonian graph theory: a survey

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Discrete Mathematics
    Discrete Mathematics  Volume 251, Issue 1
    28 May 2002
    172 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 28 May 2002

    Author Tags

    1. Hamiltonian graph
    2. Hopping lemma
    3. claw-free graph
    4. closure
    5. cubic graph
    6. cyclically 4-edge-connected
    7. essentially 4-edge-connected
    8. line graph
    9. regular graph
    10. t-tough graph
    11. toughness
    12. traceable graph

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Neighborhood Union Conditions for Hamiltonicity of P3-Dominated GraphsGraphs and Combinatorics10.1007/s00373-013-1354-430:6(1499-1511)Online publication date: 26-Dec-2018
    • (2018)Hamiltonicity of Graphs on Surfaces in Terms of Toughness and Scattering Number – A SurveyDiscrete and Computational Geometry, Graphs, and Games10.1007/978-3-030-90048-9_7(74-95)Online publication date: 1-Sep-2018
    • (2015)Forbidden pairs and the existence of a dominating cycleDiscrete Mathematics10.1016/j.disc.2015.06.018338:12(2442-2452)Online publication date: 6-Dec-2015

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media